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Abstract

Bladed-disks are fundamental bricks of the rotating parts of a turbomachine. They
are operated in harsh operating conditions of elevated temperatures and pressures at
high speeds. This can lead to high structural vibration and high cycle fatigue failures.
Thus, it is strongly desired to dampen the vibration and also to predict the vibratory
response accurately. The connections at blade-root and shroud, among other sources,
can be utilized to dampen the vibration. However, predicting the connection or joint
dynamics is extremely challenging, mainly due to complex vibratory characteristics
of the blades and disk, their small and unreachable interface Degrees-of-Freedom
(DoF), and uncertainty of the contact conditions.

This work aims to identify dynamics of blade-root connections through exper-
imental measurements in the dynamic substructuring framework. The inability to
acquire an adequate set of the interface DoF measurements compels one to use
hybrid modelling and expansion techniques in order to describe the substructure
dynamic behaviour. Thereafter, the joint in the assembled blade-disk system is
identified through the inverse approach or substructure decoupling methods. The
inherent sensitivity of the inverse methods to small errors are also investigated and
they are reduced by introducing a new correlation approach in the original expansion
method. The joint identification applications, in practice, have been limited to most
simple test cases and configurations. In this work, these methods have been reviewed
mathematically to better understand their limitations and to provide links with the
general dynamic substructuring framework. A substructure decoupling based on the
expansion strategy is demonstrated on a bladed-disk system with a dove-tail type
connection. The test-case is academic yet the joint is realistic and more complex
compared to other test-cases in the literature. The research findings may enable to
better predict the response of built-up bladed-disk systems at the design and testing
stages.
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Chapter 1

Introduction

1.1 Overview

Many mechanical systems often experience high amplitudes of oscillation during
their service life. This may ultimately lead to their premature failure caused by the
high cycle fatigue (HCF) phenomenon [1]. Therefore, it becomes very important
to accurately predict the dynamic characteristics of a mechanical system under a
dynamic load. One of the biggest hurdles in the prediction methods is the presence
of joints in the system. On the one hand, these joints are connection elements that
hold together several structural components, but on the other hand, they introduce
uncertainties and make the dynamic response prediction extremely challenging. The
effect of the uncertainty of the joints is so significant on the assembly that a lot of
interest has been devoted to the their modelling over the last four decades including
non-linear effects. However, when it comes to experimental validation of the models,
only simple geometries and contact interfaces are considered.

In simple words, a joint can be seen as a difference between an assembly and its
associated substructures. When this difference is added back to the substructures,
it should produce the assembly. However, in experimental joint identification, it is
mostly not the case. From a structural engineer’s perspective, this process consists in
modelling the joint as a structural entity between two structures and then to identify it
by system identification (inverse approach) from experimental measurements. In this
regard, numerous experimental and hybrid (numerical and experimental) attempts
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have been made to identify the joint between two structures of relatively simple
geometric characteristics.

However, for complex mechanical systems, it will not be an overstatement that
the experimental joint identification hasn’t progressed much. To support this, one
can refer to two 27 years apart studies by Tsai and Chou (1988) [2] and Tol and
Özgüven (2015) [3]. The identified joints therein are of a minimalistic size on the
simplest of test-cases (academic bolted beams) and cannot be used for a slightly
complex structural system such as a blade-disk connection (a key structural assembly
in aero-engines and gas turbines), even after so many years of research.

1.2 Joints in turbines

Joints can be of many types, namely lap, flanged, weld, interference-fit, dove-tail,
fir-tree joints. Some of these joints are common in many industrial applications. The
dove-tail and fir-tree joints are specifically found in turbo-machines (aero-engines,
power turbines and compressors).

There can be thousands of joints in an aero-engine or a turbine. Bladed-disks,
being rotating parts mounted on a shaft(s) are composed of a disk with many blades
connected by a dove-tail or a fir-tree arrangement (Fig. 1.1) called here as blade-
root joints. In these bladed-disks, there can be additional joints such as shrouds –
blade-to-blade connections – or under-platform dampers. These assemblies should
be able to withstand the loads that are caused by the surrounding fluid and high
rotational speeds. The joint interfaces, under a dynamic load, can experience some
relative motion. This creates an avenue of energy dissipation due to frictional forces
generated by the relative motion. For the joints near the root, it is desirable to have
no relative motion thereby minimizing the dissipation [4]. On the contrary, the joints
away from the root (blade platform, mid-span damper or shrouds) are designed
to mitigate any unwanted vibration i.e. to dampen the vibration amplitudes. The
problem at hand is well-described by Brake [4]:

"The uncertainty regarding all of these joints has led researchers to the conclu-
sion that the single greatest opportunity for improving models of aeroturbines and
reducing weight (in order to improve efficiency) is the development of an improved
model of jointed systems."
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Fig. 1.1 An aero-engine (courtesy: Rolls Royce) with many bladed-disks. On the top right is
a fir-tree and on the bottom right is a dove-tail connection between the blade and disk.

As opposed to the jointed systems, blades and disk can also be made as a single
unit with the blade integral to the disk hub, known as blisks. Their use originates
from the need to improve efficiency by making lighter components among other
economic factors. However, these single-piece blisks rely only on internal (structural)
damping or aerodynamic damping which can sometimes become negative. This
may lead to overall negative damping or aerodynamic instability called flutter [5].
This further emphasizes the above argument that if the jointed systems are indeed
unavoidable, their models must be improved.

1.3 Problem statement

Joints have well-developed design guidelines with respect to static loads and can be
found in many machine design texts, see for example [6]. From dynamics point of
view, historically, they have been seen as a limitation which introduce uncertainty in
the assembled system’s response. As a result, a designer may overcompensate this
uncertainty in the factor of safety resulting in heavier components.
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With the advent of new substructuring methods, now-a-days, one can measure
components and assemble them to generate rather accurate models (for instance, in
automotive applications) [7–9]. In these applications with the discrete and resilient
interface, joint identification has also been successful [10, 11].

The type of interfaces in a blade-root joint pose two main challenges, namely

1. measurement inaccessibility at the interface locations, and

2. continuous interfaces (the contact points are not discrete, as opposed to bolted
or lap joints).

For the first challenge, measuring dynamics at the interfaces, in dynamic sub-
structuring, is a pre-requisite to couple or decouple substructures which is certainly
not possible for blade-root joints due to lack of space for mounting sensors or ex-
citing the structure. The second challenge is associated with one or more pairs of
contacting surfaces. Consequently, it may not be known a priori where the actual
contact takes place and how much surface area of each side comes into contact.
Additionally, under realistic tightening conditions, these joints are highly stiff, unlike
the resilient joints. For these reasons, such interfaces have not been attempted in the
experimental dynamic substructuring, especially for joint identification, as it was
discussed above. There is a strong need to understand the interface dynamics of
blade-roots (or continuous and inaccessible interfaces) and their influence on the
overall assembly.

1.4 Objectives of the thesis

The main goal of this thesis is to investigate dynamic substructuring methods suitable
for the blade-root interfaces in order to experimentally identify the dynamics of the
joint (or coupling) between a realistic blade and disk. Considering the challenges laid
out in the problem statement, the goal can be achieved by completing the following
objectives:

1. To explore expansion methods in order to predict interface dynamics of the
inaccessible Degrees-of-freedom (DoF).
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2. To analyse and review substructuring methods suitable for joint identification
including the classical methods.

3. To select a suitable academic bladed-disk test-case (or design if not available)
which must have a dove-tail or fir-tree arrangement at the root.

4. To conduct experimental campaigns suitable for expansion of the dynamics.

5. To define interface appropriately (rotations) to identify the joint.

6. To improve further the limitations of the expansion methods, if encountered.

7. To identify the root-joint dynamics in a broad frequency band-width.

Since this thesis deals with experimental work on a realistic geometry represen-
tative of an actual dove-tail joint, the work assumes that the excitation forces are not
high enough to induce high relative motion. As a result, the theory of linear system
dynamics can be applied. If the excitations were to be high, non-linearity would
have to be considered which might make the identification even more challenging.

1.5 Organization of the dissertation

Following the introductory discussion in this chapter, the remainder of this thesis
will be structured as follows:

Chapter 2 presents the theoretical foundation of the dynamic substructuring
methods. Frequency based substructuring (FBS) has been discussed in detail for
coupling and decoupling of a substructure. Some examples are also presented of
the dummy substructures discussed in the text to provide the reader with more
elaborate mathematical and matrix representations. The challenges associated with
experimental substructuring are discussed.

Chapter 3 describes the most common dynamic expansion approaches. Two
most popular expansion methods, SEREP1 and SEMM2, are mathematically com-
pared. Their pros and cons are discussed. The SEMM method is then applied on the
academic bladed-disk.

1System Equivalent Reduction Expansion Process – a modal expansion method
2System Equivalent Model Mixing – a frequency based expansion method
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Chapter 4 addresses some limitations of SEMM by introducing correlations in
it. The method is described in detail mathematically and schematically. Later, its
effectiveness is demonstrated on the same blade-disk measurements by filtering out
bad or uncorrelated measurements.

Chapter 5 presents a review of most of the frequency-based joint identification
strategies. It compares mathematically, using a unified notation, several methods to
provide important links to the literature. The thesis also categorises these methods
in three broad identification classes, namely inverse receptance coupling, inverse
substructuring and substructure decoupling. The method appropriate for a blade-root
joint identification is also presented in this chapter.

Chapter 6 briefly describes the importance of interface definition. It attends to
the fact that prior to identification, it is of utmost importance to have an appropriate
interface definition. It covers different strategies to include rotational effect by
the measured translations. Various sensitivity studies are performed to show the
effectiveness as compared to the validation.

Chapter 7 presents finally the results of joint identification in this research.
Different realizations of constraints, substructure models and joint are employed for
this purpose. Efforts are made to improve the joint as much as possible.

Chapter 8 as a final part of this thesis presents the conclusions arising from
the current research along with recommendations for further development of this
research topic.



Chapter 2

Dynamic Substructuring

A usual human approach to solving a complex system is to divide it into several bits
or parts and then analyse those parts separately. Likewise, Dynamic Substructuring
(DS) is an approach in which a large and complex mechanical system is broken
down into smaller substructures for better understanding of their dynamic behaviour.
It provides a systematic framework to model and synthesize components and the
system built-up by those components.

In dynamic substructuring methods, the most well-known methods are in the
class of component mode synthesis (CMS). They were perceived as model reduction
methods due to high computational effort required for full finite element models.
They usually define a component’s nodal coordinates as a function of the most domi-
nant motion or modes – also called as generalized coordinates – which are usually
smaller in number compared to the total number of coordinates. Consequently, the
so-called reduced order models can be used for further analysis or assembled with
other components leading to a reduced set of coordinates in the assembly. In this
regard, the first development can be attributed to Hurty [12] and Craig and Bampton
[13]. Due to limited computational power available at that time, the CMS methods
received great attention and led to multiple reduction methods by Gladwell [14],
Guyan [15], MacNeal [16] and Rubin [17].

The methods based on fixed interface modes by Guyan and Craig-Bampton
and free interface modes by MacNeal and Rubin are quite popular and commonly
available in commercial finite element softwares. The key success factors of a
reduction method are: the accuracy, the time taken to compute the reduction basis,
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the shape or sparsity of the reduced matrices and the assembling procedure (before
or after reduction). Another method called the dual Craig-Bampton method [18, 19]
uses the same ingredients as MacNeal’s and Rubin’s method, but assembles the
substructures in a dual way using interface forces. The development of reduction
methods is still continuing to date since one method does not fit all sizes. For example,
reduced order models specific to turbomachinery bladed-disks for mistuning were
developed in [20–25]. Comparative studies on several of these reduction methods
have been presented in [26, 27]. Sometimes, a reduced system can still contain too
many coordinates and may require secondary reduction by employing the so-called
characteristic constraint modes [28].

Another class of dynamic substructuring is Frequency based substructuring
(FBS) which provides a framework to dynamically couple or decouple two or more
substructures in frequency domain. The methods developed in this class are more
suitable for measurements. Substructuring in frequency domain dates back to 1941
by Duncan [29] and 1946 by Sofrin [30]. It has evolved in the methodology over the
years by Jetmundsen et al. [31] who used the graph theory to couple multiple systems.
The method had improved computational efficiency due to one inverse operation
of the interface receptance (or admittance) instead of three, as done classically in
the impedance coupling method [32]. This also resulted in better accuracy whilst
coupling the measured frequency response functions (FRFs) of substructures. The
original formulation of Jetmundsen et al. [31] was generalized later by Gordis et al.
[33].

A more systematic approach was then proposed by De Klerk et al. [34] in which
they reformulated the frequency based coupling to a dual formulation, also known
as Lagrange Multiplier Frequency Based Substructuring (LMFBS). The method is
powerful in the sense that it systematically introduced Boolean matrices that help
maintain book-keeping of all the degrees-of-freedom in the assembly procedure.
This generalization now makes it convenient to perform coupling or even decoupling
[32, 35–37] of substrucutures.

The dynamic substructuring can prove to be of great advantage in the following
cases [38–40]:

• For larger systems, for example, automotive or spacecraft design, where
different working groups can collaborate so that each group can work on
individual components.
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• By working on smaller parts, the local dynamic behaviour is easy to understand
compared to the entire system.

• In non-linear structural dynamics, the non-linearity is often confined locally
on a smaller portion. Solving such non-linearity using the full system may be
highly costly. Instead it is feasible to apply dynamic substructuring to break it
into the linear and non-linear parts and speed-up the solution.

• During design optimization studies, only a part of the structure may need
to be updated or changed instead of modifying the entire structure. The
substructuring approach can be beneficial in saving a lot of computational
effort.

• In the experimental world, it is often not possible to measure the full system
(due to lack of space or lack of required force for a large system). Measuring
only the parts of it and coupling on those points can help achieve an assembled
system.

• It allows substitute coupling for the parts which are not manufactured yet.
By combining its numerical model with an already manufactured and tested
substructures, one can make predictions of the total system.

2.1 Representing the dynamics of a system

A structural system can be modelled in different ways depending upon the conditions
(operating conditions, computational capacity for a numerical model or initial condi-
tions) and the user needs. For example, from a testing perspective, a structural health
diagnostician might be interested in the time histories of the measured signals on a
running machine during the start-up or shut-down phases. He / she might also need to
inspect the spectral content during a continuous run (steady-state) thus necessitating
a transformation to the frequency domain. An experimentalist might be interested in
viewing the test system as mode shapes extracted from measured FRFs (see Fig. 2.1
bottom right).

From a pure modelling perspective, given that a structure can be discretized using
finite elements known as physical domain (stiffness matrix K, mass matrix M and
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Fig. 2.1 An overview of various domains of a mechanical system [8]

damping matrix C), its solution can be expressed in either of these domains: modal,
frequency and time (Fig. 2.1 top left).

As depicted in Fig. 2.1, if the dynamics are represented in one domain, it is
possible to transform to another. A mathematical overview on these domains and
their transformations is covered by van der Seijs [8]. For details on each domain
with respect to substructuring, interested readers can refer to [41, 42] for impulse
based substructuring, [43–45] for state-space identification and substructuring, and
[46, 47] for modal domain substructuring. In this thesis, the emphasis is made on
the frequency domain representation whereby the dynamics of the structures are
measured from actual tests directly as the frequency response function or calculated
by inverting the dynamic stiffness from the physical domain or synthesized from the
modal domain.

2.2 Frequency based substructuring

Frequency based substructuring (FBS) provides a framework to dynamically couple
or decouple two or more substructures. This class of methods is quite popular
amongst the experimentalists or test-analysts. It owes its popularity to the fact
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that the measured quantities (FRFs) can be used directly for substructuring instead
of extracting the parameters first, for instance, modal properties. However, there
are certain challenges in the experimental FBS methods related to sensitivity of
measurement errors [40, 48–50]. Despite these challenges, as discussed in the
introduction to this chapter that, these methods have improved greatly in their
approach over the years.

The following subsections present in detail the different formulations of FBS
using the primal and dual assembly procedure along with some examples to provide
insight into the coupling and decoupling of substructures.

2.2.1 Equation of motion

Let us take a mechanical structure described as a linear time invariant system of
equations of motion (EQM) under the action of an external force f(t).

Mü(t)+Cu̇(t)+Ku(t) = f(t) (2.1)

where u is a vector of displacements, and u̇ and ü are its first (velocity) and second
(acceleration) time derivatives, respectively. M,K and C are mass, stiffness and
proportional damping matrices, respectively. These matrices are typically obtained
from a finite element analysis using in-house codes or many commercial softwares.

Assuming that the applied force f(t) is periodic with amplitude f̃ and circular
frequency ω in rad/s such that

f(t) = ℜ(f̃ eiωt). (2.2)

The system response to the force f(t) is also periodic of the form u(t) = ℜ(ũ eiωt),
so the EQM becomes:

(−ω
2M+ iωC+K) ũ(ω) = f̃(ω) (2.3)

Z(ω) ũ(ω) = f̃(ω) (2.4)

where
Z(ω)≜−ω

2M+ iωC+K (2.5)
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is the dynamic stiffness. This quantity can be calculated from the matrices M,K
and C, if available (from FE models, for example) for each excitation frequency
ω . However, elements of Z(ω) can be interpreted to be obtained by calculating
(or measuring) a force at p DoF and applying a unit displacement at q DoF whilst
grounding all the remaining DoF i.e. constraining every DoF r ̸= q to have zero
displacement. It can be written mathematically as:

Zpq ≜
fp

uq

∣∣∣∣
ur ̸=q =0

(2.6)

The explicit frequency dependence is omitted in the above equation and will be
done so from here onwards, for the sake of clarity. When it comes to experimental
measurements, a more intuitive quantity is the response over force or inverse of the
dynamic stiffness called Frequency Response Function (FRF).

Y ≜ Z−1 (2.7)

Equivalent to Eq. (2.6), the definition of elements of Y is

Ypq ≜
up

fq

∣∣∣∣
fr ̸=q =0

(2.8)

It can be seen from the above expression that one does not need to constrain the
whole structure in order to obtain an output-input relationship between DoF p and q,
in contrast to Eq. (2.6), because it requires that all the DoF r ̸= q are left unforced.
The only DoF to be excited is the qth. This makes FRFs easier and more intuitive
from an experimental point-of-view.

The FRFs can be collected by measuring responses in the form of displacement,
velocity or acceleration at DoF p whilst exciting at DoF q and repeating for the
whole set of DoF. Depending upon the type of measured responses, the FRFs Y(ω)

can have different names which are listed in Table 2.1 along with the corresponding
nomenclature of Z(ω) [51]. For more information on the characteristics of these
different FRFs based on translational DoF, the readers are referred to Ewins [51].
The rotational counterparts of the response and force (torque) are also possible [52],
however, they have not gained much attention to acquire separate names.
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Table 2.1 Names of FRFs based on the response quantity type

Response Quantity Y(ω) Z(ω)
Displacement u Receptance or admittance Dynamic stiffness
Velocity u̇ Mobility Mechanical impedance
Acceleration ü Accelerance Apparent mass

The common approaches to measure FRFs are by SISO (single input, single
output), SIMO (single input, multi outputs) or MIMO (multi inputs, multi outputs)
methods. The first two approaches are straightforward as their names imply; however,
MIMO requires special arrangements and processing [53, 54]. For our analysis
purpose, SISO or SIMO approaches are utilized in acquiring the FRF matrices.
Each FRF is a result of a Fourier transform of the time domain response divided by
the Fourier transform of the time domain excitation. There are several books that
provide guidelines on the quantities (auto- and cross-spectral densities, coherence),
windowing and other signal processing techniques. Two excellent book references
on measuring correct FRFs and performing the modal analysis from practical point
of view are Ewins [51] and Avitabile [55].

2.2.2 Coupling of substructures

Frequency based substructuring (FBS) provides a framework to dynamically couple
two or more substructures. It requires frequency domain representation of the
substructures such as Frequency Response Functions (FRFs) or dynamic stiffness or
similar quantities of Table 2.1. Let us consider two substructure A and B of Fig. 2.2
with their indicated set of internal and boundary DoF. Let us first write the EQMs of
the first substructure A:

ZAuA = fA +gA or

[
ZA

ii ZA
ib

ZA
bi ZA

bb

]{
uA

i

uA
b

}
=

{
fA
i

fA
b

}
+

{
gA

i

gA
b

}
(2.9)

Note that the tilde sign is dropped over u and f to avoid loaded notations. However,
they still correspond to the harmonic amplitudes. The vector gA contains the reaction
forces at the boundary b DoF with no reaction forces on the internal DoF i.e. gA

i = 0.
Expressing substructure B in the same way:

ZBuB = fB +gB or

[
ZB

ii ZB
ib

ZA
bi ZB

bb

]{
uB

i

uB
b

}
=

{
fB
i

fB
b

}
+

{
gB

i

gB
b

}
(2.10)
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Fig. 2.2 Two uncoupled subsructures A and B.

The dynamic stiffnesses ZA and ZB can be arranged in a block diagonal matrix and
the associated displacement and force vectors can be concatenated to express the
uncoupled equation of motion.

Z u = f+g (2.11)

where

Z =

[
ZA

ZB

]
u =

{
uA

uB

}
, f =

{
fA

fB

}
, g =

{
gA

gB

}
(2.12)

Since the two substructures are to be joined together, the displacements at the
boundary DoF should be equal or compatible. By doing so, the substructures would
feel reaction forces through the interface (shown as λ to be equal in magnitude but
opposite in direction in Fig. 2.2). These two constraints, namely compatibility and
equilibrium, can be supplemented with the uncoupled equations (2.11) by expressing
the compatibility as Bu = 0 and the equilibrium as LT g = 0. The whole set of
equations and constraints is called three-field formulation [40, 56] and is expressed
as:


Z u = f+g,

B u = 0,

LT g = 0

(2.13)

where L and B are Boolean matrices used in the assembling process to be discussed
next. This three-field formulation can be coupled in a primal way or dual way. These
two coupling methods and their inter-relations are discussed in detail below.
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2.2.2.1 Primal coupling

The primal type of coupling is quite common in finite element assembling procedures.
The primal coupling consists in localizing all the redundant DoF of the associated
substructures. This means that any repeated DoF at the boundary of either of the two
substructures are expressed as a unique set of DoF. As a result, the displacements are
made compatible a priori at the boundary DoF. In order to assemble the substructures,
a localization matrix L is defined such that

u = Lq (2.14)

where u contains all the DoF of the substructures and q contains only the unique set
of DoF. In other words, the two sets of boundary DoF on A and B are considered as
one. Substituting u = Lq in the first of Eq. (2.13) and pre-multiplying both sides by
LT leads to:

LT Z Lq = LT f+LT g (2.15)

It can be easily noticed that LT g = 0 since L simply picks and sums the interface
forces gA

b and gB
b . Thus, the equilibrium at the interface is satisfied. Eq. (2.15) so

becomes:
Z̄ q = f̄ (2.16)

where
Z̄ ≜ LT Z L, f̄ ≜ LT f (2.17)

are the primally assembled dynamic stiffness of the system and the force vector,
respectively. The set of primal DoF qAB = q of the assembly is shown on the left
side of Fig. 2.3.

The equivalent form for the FRFs is then obtained by:

q = Z̄−1 f̄ =
(
LT Y−1 L

)−1 f̄ (2.18)

It can be seen clearly that this assembly approach requires an inversion of Y which
means that two inversions of YA and YB separately and then another inversion of
LT Y−1 L i.e. a total of three inversions. This has been the traditional method in
FBS using the primal approach, commonly known as impedance coupling since
impedance or dynamic stiffness matrices are used in the assembly process. Inverting
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Fig. 2.3 The FBS coupling: A and B are to be coupled at their boundary DoF. On the left is
primal coupling with a unique set of DoF qAB of the coupled system. On the right is dual
coupling including the boundary DoF uAB of both A and B.

the measured FRFs to obtain the impedance matrix is problematic due to the fact that
the noise and errors cause ill-conditioning. The method was improved by Jetmundsen
et al. [31] by introducing only one inversion and later generalized by Gordis et al.
[33]. The method was later reformulated by De Klerk et al. [34] in dual formulation
and is commonly being practised now-a-days.

Example 1: Primal Coupling

Consider the dummy substructures A and B of Fig. 2.2 with the indicated DoF

u =


uA

i

uA
b

uB
i

uB
b

 and a unique set q =


uA

i

uA
b

uB
i

 .

This leads to the localization matrix of this form:

L =


I 0 0
0 I 0
0 0 I
0 I 0
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It can be easily verified that

LT g =

I 0 0 0
0 I 0 I
0 0 I 0




gA
i

gA
b

gB
i

gB
b

=


gA

i

gA
b +gB

b

gB
i

=


0
0
0


because on the internal DoF gA

i = gB
i = 0 and on the boundary DoF equilibrium

is satisfied when gA
b +gB

b =−λ +λ = 0. Also

Z̄ = LT ZL = LT


ZA

ii ZA
ib 0 0

ZA
bi ZA

bb 0 0
0 0 ZB

ii ZB
ib

0 0 ZB
bi ZB

bb

L =

ZA
ii ZA

ib 0
ZA

bi ZA
bb +ZB

bb ZB
bi

0 ZB
ib ZB

ii


The dynamics stiffness associated with the boundary DoF of A and B are
simply summed, as seen above. This assembly produced the same coupled
dynamic stiffness as would be obtained by assembling the stiffness or mass
matrices in Finite Element methods. In order to get the coupled FRF matrix
YAB

primal , one inverts the assembled dynamic stiffness Z̄.

2.2.2.2 Dual coupling

The dual coupling of substructures relies on enforcing equilibrium a priori, as
opposed to the primal coupling wherein the compatibility was enforced first. The
dual coupling process begins by expressing the interface forces g as Lagrange
multipliers λ or interface force intensities:

g =−BT
λ (2.19)

The matrix B is a signed Boolean matrix. In this form, the interface forces act in
opposite directions for a pair of interface DoF, because of the way B is constructed
(to be explained later). Inserting Eq. (2.19) in Eq.(2.11) and supplementing it with
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the compatibility equation leads toZ u+BT λ = f,

B u = 0
(2.20)

or in the matrix form [
Z BT

B 0

]{
u
λ

}
=

{
f
0

}
(2.21)

The duality is clear in Eq. (2.21) from the solution vector containing two quanti-
ties together i.e. displacements u and (interface) forces λ . However, one may not
need to determine λ except in some special cases, so one can proceed to eliminate
them and solve for u. Keeping only u on the left side in the first of Eq. (2.20)

u = Z−1(f−BT
λ ) (2.22)

and putting in the second of Eq. (2.20)

B u = BZ−1(f−BT
λ ) = 0 (2.23)

gives the expression for

λ = (BZ−1BT )
−1BZ−1f . (2.24)

When λ is substituted back in Eq. (2.22), the dually assembled displacement
vector is calculated as follows:

u = Z−1(f−BT (BZ−1BT )
−1BZ−1f

)
(2.25)

or
u =

(
Z−1 −Z−1BT (BZ−1BT )

−1BZ−1)f (2.26)

Finally, knowing that Z−1 = Y

u =
(
Y−YBT (BYBT )

−1BY
)
f (2.27)
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is the famous single-line Lagrange-Multiplier FBS or LMFBS expression in order to
couple the substructures. This form is quite suitable from experimental point of view
since only a part of the measured FRFs, namely interface FRFs, have to be inverted.
Note that the interface DoF appear twice in the u vector, as indicated in Fig. 2.3 right.
Eq. (2.27) can be written in a compact form as:

u = YAB f ; (2.28)

Due to its usage in the thesis multiple times, a handy function-type notation is
adopted for the dually coupled FRF matrix YAB to denote coupling (or decoupling)
of multiple substructures as follows, for example, for A and B:

YAB = f bs(Y,B) where Y =

[
YA

YB

]
(2.29)

with an appropriate definition of the Boolean matrix B to satisfy the compatibility
conditions.

2.2.2.3 Interpretation of LMFBS

In order to physically interpret the LM-FBS equation, let us express Eq. (2.27) as

u = Yf−YBT (BYBT )
−1BYf

u = Yf−YBT (BYBT )
−1uint

u = Yf−YBT Zintuint

u = Yf−YBT
λ

(2.30)

Note that the relevant terms in the top equation are renamed successively in the
following equations. These terms are illustrated graphically in Fig. 2.4 through the
example substructures A and B. Consider that B is subjected to an external force fB

in one direction only whilst no force is applied on A as indicated in Fig. 2.4(a). Due
to this force f = {0T fBT}T on the uncoupled A and B, a gap is formed by the term
Yf i.e. the uncoupled response. Since Y is a measure of flexibility, the substructure
B deforms due to the external force whilst A is unaffected. The amount of the gap
is calculated by uint = BYf, as shown in Fig. 2.4(b). In order to close this gap uint ,
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Fig. 2.4 Illustration of the LM-FBS coupling at an arbitrary frequency. The deformation are
only indicative.

the interface should have stiffness Zint = (BYBT )
−1 to produce the interface force

λ = Zintuint . The substructures feel this force λ when it is pre-multiplied by YBT ,
as illustrated in Fig. 2.4(c). As a result, both the substructures deform. The final
step is to combine the uncoupled response Yf and the response YBT λ due to λ in
Fig. 2.4(d) to obtain the response of the coupled system.

Example 2: Dual Coupling

Consider again substructures A and B of Fig. 2.2 with the indicated DoF u.
The B matrix for this problem should be written in the following form to result
in the correct displacement compatibility

B u =
[
0 −I 0 I

]
uA

i

uA
b

uB
i

uB
b

= uB
b −uA

b = 0 .
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Now let us look at the dually coupled FRF matrix YAB

YAB = Y−YBT (BYBT )
−1BY

=


YA

ii YA
ib 0 0

YA
bi YA

bb 0 0
0 0 YB

ii YB
ib

0 0 YB
bi YB

bb

−


−YA

ib

−YA
bb

YB
ib

YB
bb

[
YA

bb +YB
bb

]−1 [
−YA

bi −YA
bb YB

bi YB
bb

]

By performing the algebraic steps and gathering terms for the first column of
the coupled matrix, we get

YAB =


YA

ii −YA
ib[Y

A
bb +YB

bb]
−1YA

bi . . . . . . . . .

YA
bi −YA

bb[Y
A
bb +YB

bb]
−1YA

bi . . . . . . . . .

YB
ib[Y

A
bb +YB

bb]
−1YA

bi . . . . . . . . .

YB
bb[Y

A
bb +YB

bb]
−1YA

bi . . . . . . . . .

 (2.31)

In this form, one can see how each DoF in the coupled system AB is influenced
by the corresponding interface DoF on substructures A and B. The first term,
for instance, indicates the coupled receptance which would result in a dis-
placement of the coupled system (internal DoF corresponding to substructure
A) under an applied force on the same DoF.

2.2.2.4 From dual to primal

In the dually couple admittance YAB, the interface DoF are repeated. In particular to
Example 2, the second and fourth rows and columns of the so-obtained assembled
admittance are identical. One could delete one of the redundant rows and columns
and so the external forces acting on interface DoF of the individual substructures can
also be summed up

q =


uA

i

uA
b = uB

b

uB
i

= ȲAB


fA
i

fA
b + fB

b

uB
i


where ȲAB contains only the independent rows and columns. Alternatively, ȲAB can
be obtained systematically by the use of the localisation matrix L defined earlier
during the three-field formulation. However, starting from the dual assembly, B
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matrix is used instead of L. The matrix L can be derived from the third of Eq. (2.13)
that

LT g =−LT BT
λ (2.32)

This implies that BT lies in the null-space of LT and similarly one can deduce for L,
namely BT = null(LT ),

L = null(B)
(2.33)

Using L either given by u=Lq or by Eq. (2.33), one can retrieve the primal variables
q, f̄ and the corresponding primally coupled FRF matrix ȲAB.


q = L+u,

f̄ = (LT )+f,

ȲAB = L+YAB(LT )+

(2.34)

The pseudo-inverse effectively takes the average over the entries in the non-
unique rows and columns, creating the new primal admittance matrix ȲAB. This
is same as manually selecting the unique rows and columns from the FRF matrix.
Irrespective of the primal or dual assembly method, the result of the coupled system
should, theoretically, be identical.

2.2.3 Decoupling of substructures

Whilst the coupling of substructures is intended to know the overall dynamic be-
haviour of the entire system, it may be desired, sometimes, to understand the local
dynamics of a sub-component. This can be achieved by decoupling a known sub-
structure from the known assembly to identify an unknown substructure, also called
substructure identification. In substructure identification methods, the popular ones
are based on structural modification [57, 32], direct decoupling (or substructure
decoupling) [35, 50, 37], receptance coupling [2, 58, 3] or inverse substructuring
[59, 10, 11].

The details of the latter three approaches will be discussed in Chapter 5 in the
context of joint identification. We use here the direct or substructure decoupling
method based on the dual approach in order to identify a substructure or a component.
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(a) standard interface (b) extended interface

Fig. 2.5 Two instances of interface definitions. In the standard interface, only the boundary or
coupling DoF are considered. In the extended interface, some internal DoF are also included.
The depicted interface in (b) is the limiting case in which all of the internal DoF are included.

The substructure decoupling consists in removing dynamics of one substructure, say
B, from an assembly AB to obtain A, as shown in Fig. 2.5a. Let us begin with a
dynamic stiffness matrix assembled primally for substructure A and B.

ZAB =

ZA
ii ZA

ib 0
ZA

bi ZA
bb +ZB

bb ZB
bi

0 ZB
ib ZB

ii

 (2.35)

In ZAB, one can clearly see contribution of each substructure whilst being coupled
at the boundary DoF. Upon inverting ZAB, one gets the FRF matrix YAB in which
this distinction is lost because YAB represents that each DoF has a coupling with
every other DoF (output-input relationship exists for every DoF). Hence, different
subscripts r and s are used to denote the internal DoF of substructure A and B,
respectively. The resulting coupled FRF matrix1 looks like this:

YAB =

YAB
rr YAB

rb YAB
rs

YAB
br YAB

bb YAB
bs

YAB
sr YAB

sb YAB
ss

 (2.36)

1In the assembled form, it is always a great deal to measure FRFs between internal to boundary
DoF or vice versa. As a result, most of the substructure or joint identification methods usually use
only the FRF sets from internal to internal DoF. This aspect is covered in detail in Chapter 5
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In order to decouple B from AB, the FRF matrix of B,

YB =

[
YB

ss YB
sb

YB
bs YB

bb

]
(2.37)

is represented fictitiously (with a negative sign) in the uncoupled FRF matrix

Y =

[
YAB 0

0 −YB

]
(2.38)

to proceed for the direct decoupling using first of the 3-field formulation Eq. (2.13).

u = Y(f+g) (2.39)

where

u =

{
uAB

uB

}
,

{
fAB

fB

}
and

{
gAB

gB

}
. (2.40)

Also uAB can be written as:

uAB =


ur

ub

us

 , (2.41)

and likewise for fAB and gAB. One needs to define appropriate compatibility and
equilibrium through the interface. Unlike substructure coupling, in decoupling, it
is possible to define a set of DoF which may not be a physical boundary DoF on
the associated (sub)structures. By boundary DoF, it is meant that the substructures
are actually coupled or connected through them. Therefore, a distinction is made
between a physical boundary DoF and an interface. The interface is defined by any
set of DoF which is used in the decoupling process to cancel the dynamic effect of
a substructure. It may very well contain also some or all of the internal DoF (see
Fig. 2.5). Based on what DoF are included in the interface, the following definitions
of the interface are relevant [37]:

• standard interface: including only the boundary DoF set b (Fig. 2.5a),

• extended interface: including boundary b as well as internal DoF of the
substructure to be decoupled, denoted here by s for simplicity of subscripts
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Fig. 2.6 Different interfaces for compatibility and equilibrium in a decoupling problem. In
B alone, it is assumed that there are limited FRFs available on the internal DoF, for the
demonstration purpose.

(Fig. 2.5b). A variant of extended interface is mixed interface [60] which
includes subsets of boundary and internal DoF (Fig. 2.6).

Apart from the inclusion of internal DoF in the interface, it can also be different
in terms of compatibility and equilibrium. This implies that the two conditions can
be satisfied on different DoF sets. Fig. 2.6 depicts this situation by including in YB a
non-collocated2 set of FRFs.

In order to apply the compatibility to Eq. (2.39), the following should hold:

BC u = 0, or
[
BAB

C BB
C

]{uAB

uB

}
= 0 (2.42)

where BC = [BAB
C BB

C] selects the interface DoF (based on whether it is standard or
extended). Although separate Boolean matrices were not used for the coupling prob-
lem in Section 2.2.2.2, they are equally valid there. In the separate Boolean matrices,
one must ensure that they have opposite signs on each pair of connected substructures.
Similarly, the Localisation matrix LE can be defined to satisfy equilibrium on the

2By collocated, we mean that every DoF is an output as well as an input so as to have a square
FRF matrix. It includes also the drive-point FRFs. All the matrices discussed so far were considered
to be of this form. A non-collocated matrix needs not have the drive-point FRFs. In the decoupling
problem, the compatibility and equilibrium DoF can be different, thus leading to a non-collocated
interface DoF set.



26 Dynamic Substructuring

interface DoF, such that

LT
Eg = 0 or

[
LAB

E

LA
E

]T {
gAB

gB

}
= 0 (2.43)

The 3-field formulation for the decoupling problem becomes:
u = Y(f+g),

BC u = 0,

LT
Eg = 0 .

(2.44)

Let us assemble the uncoupled system of Eq. (2.44) in the dual way. The
equilibrium gAB

b +gB
b = 0 is ensured a priori by setting gAB

b =−gB
b = λ with λ being

the interface force intensities. If a Boolean matrix BE is defined similar to BC, but
related to interface equilibrium DoF, then

g =−BT
Eλ (2.45)

leads to the condition
LT

Eg =−LT
EBT

Eλ = 0. (2.46)

It can be deduced that BT
E lies in the nullspace of LT

E and vice versa.LT
EBT

E = 0

BELE = 0
(2.47)

Substituting Eq. (2.45) in the first of Eq. (2.44) gives:u = Y(f−BT
Eλ ),

BC u = 0,
(2.48)

Following the same procedure of Eq. (2.21) to (2.27) leads to the single-line
expression:

u =
(
Y−Y BT

E(BC Y BT
E)

+ BCY
)
f (2.49)
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This is a general form of decoupling with all the DoF of both AB and B. There are
some redundant and meaningless rows and columns which need to be eliminated.
(•)+ denotes the generalized inverse due to the fact that the interface flexibility
matrix can be non-square. In other words, BC and BE are not the same, in general.

Voormeeren and Rixen [50] derived the resulting decoupled system using only
the DoF set uAB. This becomes possible when it is assumed that the substructure B
has no external forces. Thus, what remains meaningful is only the substructure A
DoF in uAB. The formulation is derived here by splitting the first of Eq. (2.44) and
representing the interface force g as λ .

uAB = YAB(f AB −BAB
E

T
λ ) (2.50)

uB =−YB(−f B −BB
E

T
λ ) = YB BB

E
T

λ (2.51)

Note that we used f B = 0 in the last equation. Substituting the above two equations
in the compatibility equation in the second of Eq. (2.44) and solving for λ :

BAB
C YAB(f AB −BAB

E
T

λ )+BB
CYB BB

E
T

λ = 0

=⇒
(
−BAB

C YABBAB
E

T
+BB

CYB BB
E

T)
λ =−BAB

C YABf AB

=⇒ λ =
(
BAB

C YABBAB
E

T −BB
CYB BB

E
T)+BAB

C YABf AB

(2.52)

and putting it back in Eq. (2.50) gives the final expression of the decoupled system:

uAB =

(
YAB −YAB BAB

E
T(BAB

C YABBAB
E

T −BB
CYB BB

E
T)+BAB

C YAB
)

f AB (2.53)

Recall that uAB was defined in Eq. (2.41) which contains ur (internal DoF of A) and
us (internal DoF of B) and a unique set of boundary DoF ub. Only the rows and
columns corresponding to the DoF of A are to be retained. Eq. (2.53) allows one
to better inspect the equation. The substructure B is disconnected from AB via the
interface, as seen in the interface flexibility (the expression to be inverted in the
parentheses). It was discussed above that the interface in decoupling can contain
internal DoF and the compatibility and equilibrium DoF do not have to be collocated.
This gives rise to many variants of the interface. In order for it to be solvable, the
interface flexibility needs to be determined or over-determined. This condition is
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satisfied if one chooses the interface DoF such that

rank(BC)≥ rank(BE)≥ Nb (2.54)

where Nb is the number of boundary or coupling DoF. It simply states that there
should be more interface compatibility equations than equilibrium equations which
should eventually be greater than the physical boundary DoF.

Example 3: Interfaces in Decoupling

Consider that substructure B needs to be decoupled from AB, as shown in
Fig. 2.5. The assembly AB is describe as:

uAB =

ur

ub

us

= YABf AB =

YAB
rr YAB

rb YAB
rs

YAB
br YAB

bb YAB
bs

YAB
sr YAB

sb YAB
ss

fr

fb

fs


Substructure B is decoupled using Eq. (2.53) in three ways by choosing
different BC and BE .

1. Standard interface, when only the boundary DoF are included in the
interface

ur ub us[ ]
BAB

C = BAB
E = 0 −I 0

,

uB
s uB

b[ ]
BB

C = BB
E = 0 I

The response of A is obtained as:
ur

ub

us

= YAB −

YAB
rb

YAB
bb

YAB
sb

[
YAB

bb −YB
bb

]−1 [
YAB

br YAB
bb YAB

bs

]
fr

fb

fs

 (2.55)

2. Extended interface, when all the internal DoF along with the boundary
DoF make the interface

ur ub us[ ]
BAB

C = BAB
E = 0 −I 0

0 0 −I ,

uB
s uB

b[ ]
BB

C = BB
E = 0 I

I 0
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ur

ub

us

= YAB −

YAB
rb YAB

rs

YAB
bb YAB

bs

YAB
sb YAB

ss

[
YAB

bb −YB
bb YAB

bs −YB
bs

YAB
sb −YB

sb YAB
ss −YB

ss

]−1[
YAB

br YAB
bb YAB

bs

YAB
sr YAB

sb YAB
ss

]
fr

fb

fs


(2.56)

3. Mixed interface, all the internal and boundary DoF for compatibility
whilst only the boundary for equilibrium (note that one could choose other
variants).

ur ub us[ ]
BAB

C = 0 −I 0
0 0 −I ,

uB
s uB

b[ ]
BB

C = 0 I
I 0

fr fb fs[ ]
BAB

E = 0 −I 0
,

fB
s fB

b[ ]
BB

E = 0 I


ur

ub

us

= YAB −

YAB
rb

YAB
bb

YAB
sb

[
YAB

bb −YB
bb

YAB
sb −YB

sb

]+[
YAB

br YAB
bb YAB

bs

YAB
sr YAB

sb YAB
ss

]
fr

fb

fs

 (2.57)

4. Pseudo interface, if only the internal DoF are considered (no boundary
DoF) in the interface.

ur ub us[ ]
BAB

C = 0 0 −I
,

uB
s uB

b[ ]
BB

C = I 0

fr fb fs[ ]
BAB

E = 0 0 −I
,

fB
s fB

b[ ]
BB

E = I 0


ur

ub

us

= YAB −

YAB
rs

YAB
bs

YAB
ss

[
YAB

ss −YB
ss

]−1 [
YAB

sr YAB
sb YAB

ss

]
fr

fb

fs

 (2.58)

In the last two examples, we used all the internal DoF. However, from a
practical point of view, the full set of the internal DoF is not required to be
considered as long as the number of interface DoF are not less than the number
of coupling (boundary) DoF.
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The above four forms in Eqs. (2.55), (2.56), (2.57) and (2.58) allow us to see
clearly the respective interfaces simply by virtue of different definitions of BC

and BE .

A Special Case: As seen in the first two cases of standard and extended
interface when BC = BE , the final LMFBS equation (2.53) can be written
in a compact and simple form. First, let g be a set of all the DoF such that
g = {i,b}= {r,s,b}, then the equation becomes:

uAB =
(

YAB
gg −YAB

gb (Y
AB
bb −YB

bb)
+YAB

bg
)
fAB (2.59)

This form will be used in the frequency based expansion method in Chapter 3.

The need for various interfaces for substructure identification perhaps arises due
to the reason that there is some compliance at the interface i.e. the DoF are not
coupled rigidly in reality. Since the interface surfaces can be of continuous nature,
there also exits some uncertainty of the contact. Consequently, the rigid coupling
Bu = 0 is weakened by choosing different sets of DoF by changing B. Thus, using
different interface definitions is, in essence, an attempt to find a solution (coupling
paths) through the realm of uncertain coupling points.

2.3 Challenges in experimental substructuring

Even though FBS is quite popular, it presents numerous problems if applied in
its elementary form [40, 61, 62, 39]. The assembly procedures outlines above do
not account for errors arising from measurement or modelling errors, nor do they
consider practical difficulties encountered during an experiment. In the following
subsections, some of the challenges in experimental substructuring are discussed.

1. Experimental Errors: In any measurement campaign, errors are unavoidable.
The measured FRFs as the main ingredient in the LMFBS equation (2.27) are usually
polluted with noise and other errors such as sensor mounting and excitation errors,
errors due to signal leakage, or improper use of windowing. The level of these
errors may be more prominent in a single FRF (where signal to noise ratio is low,
especially at or near anti-resonances), or FRFs at other locations (for example, drive
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point FRFs or rotational FRFs). The interface FRF matrix, despite being a smaller
submatrix compared to the entire matrix, has still to be inverted. This might lead to
amplification of those small errors. In the coupled FRFs, these amplifications can
cause spurious peaks [48] and erroneous results.

2. Collocated DoF: The LMFBS equation (2.27) assumes that the measured
FRF matrices are square. It implies that each DoF is collocated (both output and
input) and so the drive point FRFs are also present for every interface or internal
DoF. whilst in reality, these FRFs are difficult to measure in practice and are prone
to errors [51, 39].

3. Rotational DoF: It is customary to measure only the translational FRFs on a
structure. This information is often not sufficient to completely constrain the interface
i.e. the interface remains too soft. Therefore, the importance of rotations cannot
be undermined in a dynamic substructuring problem [63]. However, measuring
rotations directly is not feasible as yet for light structures, even though some research
is being conducted on directly measuring rotations [61, 64]. To this end, one is left
with approximating the rotational effect by different means presented in the literature
[65–67]. More discussion on this to follow in Chapter 5 and 6.

4. Interface surfaces: The interface between connecting substructures can be of
different types, e.g. lap joints connected by bolts, dove-tail joints, pin-joints. Often
these joints form continuous interface surfaces, whereas the measurements can only
be performed at discrete points. In this case, a sufficient number of FRFs have to
be measured. For bolted joints, the measuring point on the substructures is a hole
and thus one has to measure near the bolt holes. In other events, measurements at
the interface may not be possible at all due to constricted space for either response
measurement or exciting the interface DoF. All these limitations may introduce errors
in the measured or otherwise approximated (by expansion) FRFs.

5. Singularity of interface in a decoupling problem: Related to the decou-
pling, there is an additional problem of singularity of the interface FRF matrix. Since
a decoupling interface can be of extended type, it was shown in [56] that if an ex-
tended interface is collocated, the interface FRF matrix is singular at all frequencies.
Due to the small errors in the FRFs, the singularity may be avoided but it may still
be ill-conditioned.
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2.3.1 Some remedial actions

Some of the errors outlined above can be avoided by accounting for them from the
very beginning of a test campaign. Alternatively, their effect can be reduced by using
several techniques suggested in the literature. However, one must bear in mind that
those techniques help avoid a part of the error whilst introducing other limitations or
errors caused by the technique itself. A classic example of this is to estimate modal
parameters from the measured FRFs and then synthesize the FRFs from the estimated
parameters. The so-called modal filter may reduce the undesired effect of noise and
errors; however, it poses many other limitations such as modal truncation, inaccuracy
of parameters in cases of high modal density or high damping or inaccurate rigid
body modes estimation. The remedial actions are briefed as follows:

Modal filter: As discussed, by applying the modal filter, the errors in the FRF
can be reduced to produce clean and smooth FRFs. One also does not need to
approximate the rotations since now it is the modes of the interface which are
coupled rather than the physical DoF. The result is weakening of the interface which
may serve to be useful in some cases [46]. Nevertheless, rotational effect by finite
difference method can be used even for modal substructuring [65].

Expansion for inaccessible interface DoF: In the event of no access to the
interface DoF, one may use expansion methods such as SEREP, SEMM or model
updating techniques. These dynamic expansion methods are discussed in this thesis
in Chapter 3.

Rotations by virtual point interface: A virtual point type interface description
is possible by assuming the rigid behaviour of the measured points around the
interface. This formation leads to an error minimization by over-determined least
squared interface which includes also the rotational effects [67].

Smart techniques: In some instances, it has been shown that by truncating
the lowest singular values (possibly related to errors), the coupling results can be
improved [68, 69]. It has also proved useful in the case of singularity of the interface
FRF matrix in the substructure decoupling problems [56].
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2.4 Summary

This chapter covers the basic concepts of dynamic substructuring (DS). It starts
with a quick review of literature on two major classes of DS: component mode
synthesis and frequency based substructuring. The latter being the most relevant
from an experimental point of view, is discussed in detail. In order to couple
two or more substructures, primal and dual assembly procedures are presented
mathematically. The dual method, also known as Lagrange Multiplier Frequency
Based Substructuring (LMFBS), is a method suitable for coupling experimental
substructures. Graphical interpretations and examples are provided for insights into
the methods.

FBS framework can easily be extended to decouple a substructure from its
assembly. In this case, different realizations of interface can be utilized in order to
better predict the unknown substructure.

Since errors can affect the quality of measured FRFs, the assembled system
can have some non-physical spurious effects. The possible error sources and their
remedial actions are discussed at the end of the chapter.



Chapter 3

Dynamic Expansion

Part of the work described in this chapter was previously published in [70–72].

A mechanical component in any system should have a certain reliability that can
be predicted by its different descriptions, called models. Each model can describe
some of its aspects but lacks in the other. Therefore, it needs to be validated against
another model. From the dynamics viewpoint, for example, a numerical model can
provide a larger description of the system dynamics based on the nominal or ideal
properties (geometry, material, constraints), but it may lack the characteristics of
the actual component. On the other hand, an experimental model of the same may
provide richer and compact information to be used for validation purposes but the
testing may have been performed out of its usual service environment [51]. Besides,
the measurements can only be performed on a limited set of the degrees-of-freedom
(DoF) and can be prone to random noise and errors. This implies that one cannot
absolutely say that one model describes the actual system in its entirety. Therefore,
the two model descriptions of the same component should complement each other in
order to make accurate predictions.

3.1 General Description of an FRF Model

Whilst measuring mechanical systems’ dynamic response, response based methods
in frequency domain are undoubtedly very popular and convenient. For linear
systems, transfer functions amongst different DoF can provide an adequate set for
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Fig. 3.1 An academic disk on which the different DoF sets are indicated. For demonstration,
boundary DoF b are displayed only for one disk-slot. The lack of space in the slot inhibits
any direct measurement there. On the internal DoF i, there are two tri-axial accelerometers
labelled c, and one uni-axial accelerometer labelled v for validation. Among five e and w
impacts, w is designated as a validation impact. All of them form a set of internal DoF
i ≡ x∪o where x and o are indicated in the top right corner.

model updating, modal parameters estimation, state-space or other types of system
identification methods. In fact, the first step is usually to measure the FRFs. Consider
a general FRF model of a component which consists of internal ui and boundary
ub displacements. On the same degrees of freedom, a set of input forces can also
be defined i.e. forces fi acting on the internal and fb on the boundary DoF. The
corresponding FRF matrix Y consists of all the FRFs between output and input DoF.

Y =

[
Yii Yib

Ybi Ybb

]
, u =

{
ui

ub

}
, and f =

{
fi

fb

}
(3.1)

Since Eq. (3.1) contains the point and transfer functions among all the input
and output DoF, it is called a collocated DoF set. Such DoF set is essential for
computing the coupled admittance in Eq. (2.27). This could easily be obtained
from an analytical or numerical model. In order to check the reliability of the
numerical model, an experimental validation is always desired. However, the number
of measurements in the experiment is limited due to inaccessibility of some DoF
for either response measurement or excitation or even due to limited number of
measuring equipment. For bladed-disk interfaces such as dove-tail (Fig. 3.1) and fir-
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tree type joints, the boundary DoF b are clearly neither measurable nor excitable and
hence Ybb, Yib and Ybi can not be obtained experimentally. Only the internal FRF Yii

are accessible from measurement point-of-view. However, not all the internal FRFs
can be measured accurately. Especially, accurate measurement of the drive-point
FRFs is very challenging in practice [51, 73]. Besides these, other DoF belonging to
internal system could also be retained in an onward analysis. Therefore, the set of
internal DoF i is divided into two sets:

ui =
{

uT
x uT

o

}T
and fi =

{
fT
x fT

o

}T
(3.2)

The different subscripts represent:

• x: a set of DoF where measurements are possible,

• o: a set of other useful internal DoF.

From the limited measurable set of FRFs on x, a key question arises: how to predict
the unmeasurable boundary DoF b or o?

3.2 Methods for predicting unmeasured dynamics

The common methods for prediction of unmeasured substructure dynamics (FRFs)
are discussed in the next subsections with more emphasis on the technique, SEMM,
selected as a working method in this thesis, in order to provide a good theoretical
basis.

3.2.1 Model updating methods

In structural dynamics, it is quite common that the numerical predictions and experi-
mental results disagree. Thus updated models are required to produce the dynamic
behaviour of the actual structure. In this respect, Finite Element (FE) model up-
dating of mechanical systems [74–78] has been very popular for over the last four
decades. The main principle is to minimize a residual vector of measured and pre-
dicted quantities by differentiating sensitivity matrices with respect to the design
parameters [77, 79]. In this way, the predicted quantities (in the numerical model)
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are regarded as an updated model and can thus be used as a valid representation of
the unmeasured quantities. Typically, a first order Taylor series approximation is
used for the unknown updating parameters θ .

ρ = S ∆θ (3.3)

where ρ is the residual vector of the difference between the measured and predicted
parameters, S is the sensitivity matrix containing the first order derivatives of the
dynamic parameters with respect to the design parameters, and ∆θ is the unknown
vector representing the changes in design parameters. By solving Eq. (3.3) for ∆θ ,
the system matrices can be updated. The residual vector ρ can be defined with
respect to modal parameters in the class of modal methods [80] or with respect to
FRFs in the class of response-based methods [81].

The modal methods certainly require accurate modal parameters extraction.
Experimental modal analysis can introduce errors especially when the structure
exhibits close modes or regions of high modal density [82]. Another issue is that
non-unique solutions emerge when the sensitivity matrix S is under-determined or
ill-conditioned [83]. Furthermore, discrepancies arising from constraints (boundary
conditions) make the task even more difficult. Besides, incorporating damping into
models by either modal or response-based requires special attention and methods
[84]. With ever-increasing applications, more model-updating methods are being
developed. An in-situ transmissibility based model updating of constrained structures
is recently proposed in [85].

3.2.2 CMS methods

The classical CMS based reduction methods, if inverted, can also be seen as ex-
pansion methods. These methods were reviewed in Chapter 2. Since most of the
CMS methods use some combination of physical coordinates (master) and modal
coordinates, it is generally quite difficult to measure these generalized coordinates
directly. In fact, one has to measure the FRFs first and then extract modal parame-
ters. In addition to these, the other physical coordinates need also to be measured.
For example, in Guyan’s [15] or Craig-Bampton’s [13] method, constraint modes
cannot be measured easily due to the reason that realizing an ideal constraint is very
challenging in practice. For the same basis, measuring fixed interface modes is yet
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another endeavouring task. The free interface modes CMS reduction methods, on
the other hand, have also been attempted by experimentalists [86–88] but they did
not gain popularity.

3.2.3 Expansion methods

Expansion methods in the literature are commonly used to predict the dynamic
behaviour to the unmeasured DoF. Some of the expansion methods are based on
polynomials that provide an analytical basis to obtain the unmeasured dynamics.
They are usually very specific to applications. To name a few, a rotor-bearing system
in [89], a beam [90] and cylindrical shells [91]. A method called the round trip
theory [92] can be seen as an expansion of the FRFs measured at limited locations.
The method produces a collocated FRF matrix by measuring responses at all the
DoF whilst exciting one or few, or vice versa. This is essentially an expansion of the
measured FRFs whereby responses are measured on the interface DoF by avoiding
the excitations on the interface. It is very useful when there is not sufficient space
to excite the interface DoF, but just a little bit to mount the sensors to measure
the responses. This type of expansion is suitable for automotive applications with
resilient joint elements. These methods might prove useful in their target application,
but they cannot be generalized.

In the modal domain, System Equivalent Reduction Expansion Process (SEREP)
expands the measured modes to the unmeasured modes by means of a numerical
modal basis [93]. The method is simple and cheap since it uses the invariant modal
basis. The expanded modes can be used to transform the full system matrices
(stiffness, mass) or to synthesize FRFs directly. Since the measured modes have to
be estimated from modal estimation methods, there is always some unaccounted
residual and so the number of modes have to be equal to or less than the measured
DoF. This results in deficiency of the rank. Later, this aspect will be treated more in
detail.

In the response based measurements, a recent expansion technique called System
Equivalent Model Mixing (SEMM) exploits different equivalent models of the same
component [94]. It is based on Frequency Based Substructuring framework [34]. A
set of FRFs over a limited DoF in a physical component is overlaid on a larger DoF
in its parent numerical model. The resulting hybrid or the expanded model of the
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SEMM mimics the measurements and the remaining DoF are the expansion. The
SEMM can be thought as the frequency domain counter-part of the SEREP. It has
certain advantages over the SEREP such as: 1) modal parameters estimation is not
required and hence no limitation on the closely spaced modes nor on the damping,
2) mode shapes need not to be measured, 3) the hybrid model is full rank. But
it comes at the cost of frequency dependent response function matrices which is
not significant with the modern day computing resources and the development of
reduced order models.

SEREP and SEMM are more general and can be extended to application where
structure’s measured modes 1 and FRFs, respectively, are available. The two methods
will be discussed in the following sections.

3.3 SEREP

System Equivalent Reduction Expansion Process or SEREP can be used as a method
of reduction as well as expansion of modes of two equivalent systems [93]. It utilizes
the basic principle of modal superposition that describes the solution as a sum of
individual modal contributions. Let us consider the disk of Fig. 3.1 in which the
modes have been measured on x DoF. The set of DoF o and b cannot be measured
and thus need to be expanded. The solution can be transformed to modal domain as:

u = Φη =⇒


ux

uo

ub

=

Φx

Φo

Φb

η (3.4)

where Φ is an m×n mode shape matrix and the subscripts x,o,b denote the respective
partitions of Φ. From Eq. (3.4),

ux = Φxη (3.5)

or
η = (ΦT

x Φx)
−1

Φ
T
x ux = Φ

+
x ux . (3.6)

1Even though measured modes are extracted from measured FRFs, here a distinction is made in
terms of the basis, used in SEREP and SEMM, respectively.
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where Φ+
x is the Moore-Penrose pseudo inverse of the partitioned mode shape matrix.

Putting it back in Eq. (3.4) results in
ux

uo

ub

=

Φx

Φo

Φb

Φ
+
x ux = Φ Φ

+
x︸ ︷︷ ︸

Tφ

ux (3.7)

Considering that the modes Φ in Eq. (3.6) are the numerical modes, then using
Tφ one can expand the measured modes ΦE

x (corresponding to measurements on the
DoF set x) onto Φ as follows:

Ψ = Tφ Φ
E
x = Φ Φ

+
x Φ

E
x = Φ(ΦT

x Φx)
−1

Φ
T
x Φ

E
x (3.8)

Tφ is the SEREP transformation matrix. SEREP needs a finite element model
(FEM) whose eigenvectors are well-tuned to the experimental mode shapes. If the
measured DoF mx are greater than modes nφ < n, then the measured modes ΦE

x are
expanded in a least square sense on the numerical modes Φ. This also means that a
smoothing (or filtering) is applied.

Using the expanded modes Ψ, one can synthesize an expanded FRF matrix [95,
96] or use the transformation Tφ matrix to obtain the mass and stiffness matrices. The
SEREP method has been quite popular and has been used in numerous applications
[97–100].

3.3.1 Limitations

The quality of the SEREP expansion depends on the selection of measured DoF –
here denoted by x – since the generalized inverse is based on the partition of x DoF
as well as on the selected numerical modes. Johansson and Abrahamsson [101]
proposed an optimization strategy to find an optimal numerical basis to improve
the quality of the SEREP expansion. It can be noticed that SEREP is inherently
rank deficient. When mx = n, then the pseudo-inverse is a simple inverse and the
transformation is referred to as SEREPa. However, its rank is still limited because no
matter how many DoF one can measure, the rank will be determined by the modes
present in the frequency range of interest.
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In addition to the above, there may exist some discrepancy between measured
and numerical coordinates leading to non-smoothness of the expanded mode shapes.
A correlation based smoothness was suggested in the SEREP method called Vari-
ability Improvement of Key Inaccurate Node Groups [95, 102]. The work made
use of statistical correlations such as Modal Assurance Criteria (MAC) and Pseudo
Orthogonality Check (POC) to retain only the correlated DoF or modes.

3.4 SEMM

The System Equivalent Model Mixing or SEMM [94] is an expansion technique
that mixes (couples) in frequency domain different equivalent models of the same
structure. In substructure coupling sense, when two substructures are coupled, the
result is a mathematically assembled system. In SEMM, the coupling happens
between two equivalent models of the same (sub-)system. This would imply an
assembly of two models, for example, numerical and experimental whilst desiring a
good equivalence between the two. However, the assembly effect is eliminated by
decoupling another equivalent numerical model. The net result is a hybrid model
that behaves exactly like the experiments on the coupling points (DoF) whilst the
other points are expanded. The SEMM method has gained popularity very quickly
and is being applied in multiple applications [103–108].

SEMM relies on three models, namely, a parent, an overlay and a removed model.
In Klaassen et al. [94], its different interface formulations are presented. A recap
of the models used in SEMM and the corresponding coupling/decoupling interface
formulations is presented below.

3.4.1 Parent model

The parent model provides a larger spatial description of the system since it can
contain all the DoF in terms of numerical or FE representation. The unmeasured
DoF, as discussed in Section 3.1, are thus available in the numerical model – similar
to the numerical modes used in SEREP. The parent model needs to be expressed in
the admittance or FRF form which can be obtained from a full finite element model
(FEM) or a reduced form of it.
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Fig. 3.2 Equivalent models of the substructure A. The parent numerical model YN has all the
essential DoF required for the analysis. A limited set of measured FRFs in Yov are coupled
to YN. The parent dynamics are decoupled by the removed model YR and coupled by Yov.
The resulting hybrid or expanded model YS is exact at the corresponding overlay model’s
DoF.

Since generating an FRF model from a full FEM 2 can be very costly, one can use
one of the many reduction methods in the literature. After the reduction, according
to the DoF partition in Eq. (3.1) and (3.2), parent model’s DoF set, referred to as
global DoF ug, can be written as follows:

uN
g = YN

gg fN
g =⇒


ux

uo

ub


N

=

Yxx Yxo Yxb

Yox Yoo Yob

Ybx Ybo Ybb


N

︸ ︷︷ ︸
YN


fx

fo

fb


N

(3.9)

where g = i∪ b = x∪ o∪ b. The parent model is depicted in dark grey colour in
Fig. 3.2 with a grid.

2Alternative to direct FRF matrix computation from direct inversion of FE model is the frequency
response calculation under a known excitation vector: 1) The methods based on Krylov subspace are
iterative and approximate the solution vector up to a set tolerance, see for example, [109, 110]. 2)
Another very common approach is to use a truncated set of modal or eigenvectors and approximate
the solution by the modal superposition principle [111]. 3) Methods based on interpolatory model
order reduction use several Krylov sequence vectors of dynamic stiffness to form a reduction basis to
find the harmonic response. This approach is called "Moment Matching" or "Padé approximation"
[112, 27]. In order to further reduce the computational cost, new fast preconditioners are being
developed [113] along with their recycling [114, 115]. Since this work deals with FRF matrices, only
direct matrix inversion is used [116].
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3.4.2 Overlay model

In order to describe a structure’s response experimentally, only a few points are
available for measurements (coloured DoF in Fig. 3.2). As discussed in Section 3.1,
measuring FRFs is not practically possible on the boundary DoF (also some parts
of internal DoF). Then it is possible to describe the experimental FRF model from
Eq. (3.2) in the following:

uov
x = Yov

xx fov
x (3.10)

In the SEMM terminology, Yov is a model whose dynamics are important and
need to be imposed on the numerical parent model. In a practical application of
SEMM, this overlay model collects experimental results. This can include FRFs
where the response and the force are along the same DoF (drive-point) and FRFs
where the response and the force are along different DoF (transfer). It is well-known
that accurately measuring drive-point FRFs can become very challenging. Obviously,
Eq. (3.10) contains both the point and transfer functions. It will be seen later in the
chapter how to avoid point FRFs and still construct a hybrid model which includes
them.

3.4.3 Removed model

Using the FBS framework, the parent and overlay models can be coupled. However,
it would still contain the dynamics of the numerical model. These dynamics could
be conflicting and undesired because a numerical model always needs to be tuned or
updated to the experimental data. The dynamics of the numerical model are removed
by decoupling: on the one end, a reduced form of the numerical model; or on the
other end, the entire numerical model. The decoupling interface due to the removed
model YR can so be standard or extended (see Section 2.2.3 for details).

3.4.4 Hybrid model

The hybrid model YS is obtained by coupling the overlay model with the parent
model and decoupling at the same time the removed model. Mathematically, using



44 Dynamic Expansion

the aforementioned equivalent models, the uncoupled admittance matrix

Y =

YN

−YR

Yov

 , (3.11)

the appropriate signed Boolean matrices

BC =

uN
x uN

o uN
b uR

x uR
o uR

b uov
x


−I 0 0 I 0 0 0
0 −I 0 0 I 0 0
0 0 −I 0 0 I 0
0 0 0 −I 0 0 I

, (3.12)

and

BE =

fN
x fN

o fN
b fR

x fR
o fR

b fov
x


−I 0 0 I 0 0 0
0 −I 0 0 I 0 0
0 0 −I 0 0 I 0
0 0 0 −I 0 0 I

(3.13)

are substitued in Eq. (2.45) to get dually coupled admittance Ỹ which is then reduced
to the primal DoF by the following transformation:

YS = (LC)
+ Ỹ (LT

E)
+ (3.14)

The localisation matrices LC and LE can be obtained by calculating the nullspace of
respective BC and BE . The hybrid model can be expressed in a single-line expression
in the same manner as it was derived in Section 2.2.3. In particular, in decoupling,
one can express the dually assembled system in the DoF of the assembled system. In
the case of SEMM, this corresponds to the numerical parent model’s YN DoF set.
The three models to be assembled in Eq. 3.11 can then be assembled in two steps:

1. decouple overlay Yov from the removed model YR – called the delta model Y∆
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2. decouple Y∆ from YN

Using this two step process and with the removed model’s two definitions, the
corresponding formulations for the hybrid models are derived in the following
subsections.

3.4.4.1 Hybrid model with standard interface

One of the limiting cases in SEMM is obtained if one sets the removed model as a
reduced form of the parent model, as shown in Fig. 3.2 and defined as:

YR ≜ YN
xx (3.15)

The delta model Y∆ is a decoupling of Yov from YR = YN
xx on the same x DoF. The

LMFBS equation (2.53) in Section 2.2.3 is used to decouple the models here:

Y∆ = YR −YR(YR −Yov)−1YR (3.16)

Recall that the Boolean matrices pick the elements belonging to the interface DoF.
Replacing YR with its definition in Eq. (3.15)

Y∆ = YN
xx −YN

xx(Y
N
xx −Yov)−1YN

xx (3.17)

The hybrid model YS is then the decoupling of Y∆ from YN:

YS = YN
gg −YN

gx(Y
N
xx −Y∆)−1YN

xg (3.18)

Inserting in the above equation, the expression of Y∆ and simplifying

YS =YN
gg −YN

gx

(
YN

xx −
(
YN

xx −YN
xx(Y

N
xx −Yov)−1YN

xx
))−1

YN
xg

=YN
gg −YN

gx
(
YN

xx(Y
N
xx −Yov)−1YN

xx
)−1YN

xg

(3.19)

The final expression becomes

YS = YN
gg −YN

gx(Y
N
xx)

−1
(YN

xx −Yov)(YN
xx)

−1YN
xg (3.20)
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In this form, the hybrid model has some effect of the internal system of the numerical
model. This becomes evident when Eq. (3.20) is split in two parts as below:

YS = YN
gg −YN

gx(Y
N
xx)

−1YN
xg︸ ︷︷ ︸

ρN

+YN
gx(Y

N
xx)

−1Yov(YN
xx)

−1YN
xg︸ ︷︷ ︸

χ

(3.21)

The residual ρN is purely numerical. This term resembles the inverse of the
dynamic stiffness of the internal DoF [8, 94, 60] of the parent model3 and arises
from the fact that only a part of the parent model YN

xx was removed. In Appendix A,
it has been shown how the dynamic stiffness of the internal DoF is a condensed form
of the FRF matrix when the boundary DoF are fixed. The residual term may appear
to affect the overall predicted dynamics of the hybrid model; however, its presence
makes the hybrid model full rank which was absent in SEREP. In fact, the form of
the residual can be changed by selecting a larger part of the parent model to make it
more robust. This variant of SEMM is discussed in the next subsection.

3.4.4.2 Hybrid model with extended interface

The other limiting case of SEMM is when the removed model is the entire parent
model (Fig. 3.3), namely

YR ≜ YN = YN
gg (3.22)

The delta model Y∆ now is written in the same way as before.

Y∆ = YN
gg −YN

gx(Y
N
xx −Yov)−1YN

xg (3.23)

The hybrid model YS is then decoupling of Y∆ from YN:

YS = YN
gg −YN

gg(Y
N
gg −Y∆)−1YN

gg (3.24)

Following the same derivation steps, the final expression for the extended inter-
face is:

YS = YN
gg −YN

gg(Y
N
xg)

+
(YN

xx −Yov)(YN
gx)

+YN
gg (3.25)

3Here, by internal DoF it is meant the DoF other than x which are not measured.
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Fig. 3.3 Equivalent models of the substructure A. The parent numerical model YN has the
essential DoF. Its own dynamics are decoupled by the removed model YR and coupled
by Yov. The resulting hybrid or expanded model YS mimics at the corresponding overlay
model’s DoF.

where the inverse is replaced with the pseudo inverse since the matrices YN
xg and YN

gx

are not square. The terms of this version of SEMM can be separated in the same way
as for Eq. (3.21).

YS = YN
gg −YN

gg(Y
N
xg)

+YN
xx(Y

N
gx)

+YN
gg︸ ︷︷ ︸

ρN

+YN
gg(Y

N
xg)

+Yov(YN
gx)

+YN
gg︸ ︷︷ ︸

χ

(3.26)

The residual term ρN in this case is not the inverse of the dynamic stiffness, as with
the standard decoupling interface. As a result, the expansion has lesser effect of
the internal dynamics of YN, also illustrated in Fig. 3.3 by the change in colour of
the hybrid model YS. This form of SEMM is more useful. It also enables the use
of filtering by virtue of pseudo-inverses which can be computed by singular value
decomposition [117, 69]. Note that we discussed only the limiting cases. Whereas,
different conditions on the decoupling interface can be applied to get variants of the
extended interface formulation of SEMM.

3.4.4.3 Hybrid model with extended interface: Non-collocated overlay model

Up until now, it was the removed model which was changed whilst the overlay model
was kept of the form Yov

xx which is a square and collocated FRF matrix. From practical
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Fig. 3.4 A pictorial illustration of the extended interface formulation of SEMM when the
overlay model is non-collocated. The interface is so indicated by the blocks of YN used as
pseudo-inverses in Eq. 3.29.

point-of-view, drive point FRFs are very challenging to acquire [118, 51, 47, 73].
When triaxial accelerometers are mounted on a point, all three directions of the point
cannot be excited. SEMM makes it viable to measure a non-collocated FRF matrix
and then use it in the expansion. A further division of the x DoF into c and e

ux =

{
uc

ue

}
and fx =

{
fc

fe

}
(3.27)

and defining an experimental FRF that contains

uov
c = Yovfov

e (3.28)

where the subscripts represent:

• c: set of DoF where responses are measured by triaxial accelerometers (or by
other sensor types),

• e: set of DoF where excitations are applied by a modal impact hammer

Using the new overlay model and the extended interface form of SEMM, the appro-
priate expansion in the hybrid model looks as follows:

YS = YN
gg −YN

gg (Y
N
cg)

+ (YN
ce −Yov

ce) (Y
N
ge)

+ YN
gg (3.29)



3.4 SEMM 49

Note that this form is achieved by using different BC and BE . It allows one to
measure as many FRFs as possible, provided they are independent, to include in
the expansion. The different models interacting in the expansion process form an
interface that looks as depicted in Fig. 3.4. In this work, the formulation of Eq. (3.29)
is preferred for all of the experimental results. For the sake of convenience, a function
notation is employed for this equation as,

YS = semm(YN, Yov ) (3.30)

to be used later in the thesis. Of course, another input to the function can be the DoF
set according to which the partitions in Eq. (3.29) are done. This is left to the context
of the discussion.

3.4.5 Singular value filtering in SEMM

In this subsection, the effect of singular values (SV) truncation (called SV filtering)
whilst computing the pseudo-inverses is investigated. In SEMM, the first use of SV
filtering was made in [117] and applied to a numerical benchmark structure i.e. only
a single uncoupled structure was considered. Let P denote one of the pseudo-inverses
in Eq. (3.25) or (3.29). It can be decomposed into:

P = USVH (3.31)

where S is a matrix containing singular values σ j on its diagonal such that σ1 >

σ2 > .. . > σN , with N being the smallest dimension of P. The matrices U and V are
unitary matrices containing left and right singular vectors, u j and v j, respectively.
(•)H denotes complex conjugate transpose. Eq. (3.31) can be expressed in the
summation form for all N singular values and vectors in the following form:

P =
N

∑
j

u jσ jvH
j . (3.32)

In this form, the contribution of each jth singular value can be clearly seen. The
pseudo inverse can be computed from Eq. (3.31)

P+ = VS−1UH . (3.33)
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Note that the use has been made of the unitary matrix property, UUH = UHU = I
and VVH = VHV = I. Thus, P+ according to the form in Eq. (3.32) becomes

P+ =
N

∑
j

v jσ j
−1uH

j . (3.34)

The singular values in S−1 appear as σ j
−1. By retaining only k < N singular values,

one can approximate the inverse as follows:

P+ ≈
k<N

∑
j

v jσ j
−1uH

j . (3.35)

Thus, it becomes clearer that the smallest (N−k) singular values, those more affected
by errors, in the inverse problem give the largest contribution to the solution and for
this reason they are discarded. Since P, in general, is a frequency dependent matrix,
the decomposition needs to be done at every frequency.

3.4.5.1 Advantages and limitations of SEMM

The different formulations so far can be summarized to have the following advantages
and limitations:

1. The hybrid model YS has the same DoF structure as the parent numerical
model YN.

2. The dynamics of Yov are exactly imposed on the corresponding DoF of YN.

3. For the remaining blocks of YS, the FRFs are expansions on the unmeasurable
DoF.

4. YS is full rank in standard as well as extended formulation due to the presence
of the numerical residual ρN. In the latter, this residual does not affect the
expansion adversely.

5. The experimental FRFs in Yov
ce have not been inverted during the process; yet

any noise in the experimental model is transmitted to the hybrid model.

6. The pseudo inverses enable filtering by discarding the lowest singular values,
as discussed in Section 3.4.5 to reduce the effect of noise and errors.
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Fig. 3.5 The actual blade and disk (a) The blade shown as connected in a disk slot (b) The
disk

7. The modelling or expansion error is the norm of the difference |YN
xx−Yov|. Of

course, it depends on the closeness between the two models.

8. By using a non-collocated DoF in the overlay model, one may avoid measuring
the drive-point FRFs. However, it may lead to non-symmetric or non-reciprocal
hybrid model matrix.

3.5 Experimental test-cases

The test-geometries for application of the SEMM method are a disk and a blade,
to be tested as single components here in this chapter and chapter 4. The disk has
18 slots to host as many blades (Fig. 3.5). Their nominal characteristics are listed
in Table 3.1. The blade and disk connection is characterised by a dove-tail joint –
typically found in turbine or compressor disks. Their geometric and finite element
models are illustrated in Fig. 3.6. The two components will be assembled and tested
in chapters 6 and 7 for the joint identification.

3.5.1 Test campaigns and experiment design

There are two test campaigns whose results will be presented in this chapter and
the thesis from here on. In each campaign, the blade is tested in a constraint-free
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Table 3.1 Nominal characteristics of the blade and disk

Characteristics Blade Disk
Material Steel Steel
Nominal length 120 mm (max. length) 100 mm (diameter)
Nominal weight 0.250 kg 2.480 kg

Fig. 3.6 Models of the blade disk: (a) geometric model of the full disk with all blades (b)
finite element model of one blade and disk

condition. The disk has been tested constrained in the first campaign. In the second
campaign, the constraint is removed and hence the disk is tested as a free component.
The constraints are realized as follows in each test campaign:

1. Campaign 1: The blade suspended on flexible wires (Fig. 3.7a).

2. Campaign 1: The disk rigidly connected by six bolts to a cylindrical attachment
(Fig. 3.7b).

3. Campaign 2: The same disk suspended on flexible wires (Fig. 3.7c)

Five tri-axial accelerometers are positioned on the blade and five on the disk. During
each FRF measurement campaign, an instrumented hammer is used for the excitation
on the locations indicated in Fig. 3.8. These number of measured DoF are deemed
essential in order to observe and control the desired (interface DoF). For practical
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Fig. 3.7 The realized boundary conditions along with the mounted triaxial sensors (15
response channels for each component). (a) and (b) form campaign-1. (c) campaign-2: the
sensor positions on the disk in campaign-1 are retained but with different sensor make and
type.

Fig. 3.8 The impact positions on the blade and the disk. 18 impacts on the blade and 19 on
the disk. The impact positions do not change in the two campaigns.

experimental reasons, the impact points are never coincident with the measurement
points where the accelerometers are positioned.

Recalling that SEMM needs a parent (numerical) model of each substructure,
therefore, finite element (FE) models in ANSYS were created for both the blade
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Fig. 3.9 Comparison of FRFs on the blade in campaign-1

and the disk. These FE models were then reduced by Hurty-Craig-Bampton (HCB)
transformation to retain only the physical master DoF together with 200 fixed-
interface eigen modes. The retained master DoF include all the internal DoF in
Fig. 3.7 and Fig. 3.8 as well as the boundary DoF on the joint surfaces (as were
indicated in Fig. 3.1. The parent models according to the SEMM terminology, are
then obtained by computing the accelerance FRFs.

3.6 Results

This section presents the validation of the SEMM method on each substructure i.e.
the blade and disk in the two campaigns. In the SEMM method, the overlay model is
a set of experimental FRFs that provides the dynamics at some DoF to the parent
model. Since SEMM is exact on those measured DoF, an FRF comparison on such
DoF will be trivial. Therefore, for validation purpose, a group of some experimental
FRFs was kept out of the overlay model as reference measurements, designated as
uo.
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3.6.1 FRF prediction by SEMM

Fig. 3.9 shows the validation of the SEMM method for the single blade by comparing
numerical, experimental and the hybrid FRF generated by the SEMM method. The
FRFs predicted by the SEMM model are overlapping well with the experimental
ones. The numerical FRFs do not have any damping but the SEMM model captures
the damping fairly well. There is one small discrepancy in the first anti-resonance
which happens to be due to unavoidable human errors whilst mounting the sensors
or exciting the structure.

The FRFs for the disk in the constrained condition is shown in Fig. 3.10. The
FRFs predicted by the SEMM model do not match so well for the disk in the presence
of many modes. This discrepancy between the numerical and experimental results
can be attributed to the reasons listed below.

1. The numerical model of the disk does not take into account the masses of the
accelerometers. They alter the cyclic symmetry of the disk. Furthermore, the
mass of these accelerometers is greater than those mounted on the blade.

2. Most importantly, the constraints applied to the disk’s FE model to fix its
centre do not correspond exactly to the actual constraint condition of the
disk. Actually, the disk centre is connected to a flanged type fixture which is
attached rigidly to a bench, see Fig. 3.7b. The fixture introduces some of its
own dynamics in the frequency band. whilst modelling the same fixture (along
with the disk) in ANSYS, the displacement boundary condition is not ideally
matched with the actual setup.

Remark 1. From the modal content in Fig. 3.9, it is evident that there are only
three modes in the 3000 Hz range. By using a modal parameter extraction, one can
only extract three flexible modes in this range. In order to have more modes, the
bandwidth would have to be increased. It was, however, tested with the available
hardware that there were only two more modes before 5000 Hz, making the total
of five modes whilst the power spectral density of the input signal and coherence
degraded significantly. The SEREP method then would have provided an expanded
model of rank 5. It would be noted in Chapter 6 (and already reported in [62]) that
for the joint identification of the blade-root here required a system of more than 12
independent DoF. Thus, SEREP is not suitable in this case.
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Fig. 3.10 Comparison of FRFs on the disk in campaign-1

On the disk’s modal content Fig. 3.10, even though there are more modes but
clearly the modal estimation would not be very accurate due to high modal content
and high damping. Therefore, the SEMM expansion method is appropriate for this
test-case.

The disk is then remeasured in campaign-2, as discussed above, with the con-
straint in the disk centre removed. The resulting FRFs are plotted in Fig. 3.11. The
numerical (black dotted) FRF agrees well with the the experimental FRF already.
The modelling errors caused by the constraint have been removed. The hybrid FRF
obtained by SEMM predicts the resonance peaks exactly. Some differences in the
anti-resonances are attributed to the unavoidable human errors in the experimentation.
This expansion in the unconstrained disk FRFs is certainly more reliable than that in
Fig. 3.10.

3.6.2 Condition number and singular value filtering

In the previous subsection, the FRFs predicted by SEMM were in agreement with the
measured ones, justifying the use of SEMM method. Although the hybrid models are
full rank, they can be ill-conditioned sometimes. Therefore, it is a good practice to
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Fig. 3.12 Condition number of the blade hybrid models and the effect of number of interface
DoF.

inspect those hybrid models more in detail, so that any limitations can be understood
beforehand.

In this regard, we inspect the condition number of the blade’s hybrid models
on the frequency axis as the number of expansion DoF are increased in Fig. 3.12.
Condition number is defined as the ratio of the largest to the lowest singular value.
In the figure, the peaks in the experimental plot (black line) refer to the resonances
where the condition number is on the order of 104. Note that the experimental
model size is 15×18. Then the hybrid models are generated successively from the
numerical models of different sizes. The first model size is 33×33. The number
33 comes from the sum of 15 response channels from five triaxial sensors and 18
excitation channels i.e. all the measured DoF are included in the numerical model
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Fig. 3.13 Condition number by truncating 2 singular values successively in the blade hybrid
models of size 57×57.

and expansion is performed only on these. This is nothing but an expansion of the
unexcited DoF or unmeasured responses in order to have a square FRF matrix. It is
seen that the condition number of this model size is higher than the experimental
matrix. Then 6 interface DoF are included to make the model size 39, and so on.
The result is a gradual increase of the condition number. The higher condition
number implies that one may experience difficulties when the interface FRF matrix is
inverted in the dynamic substructuring. Moreover, the condition number from 0–750
Hz seems to have high fluctuations which can be attributed to the lowest singular
values becoming even smaller by the increased model order.

The singular value (SV) filtering can be employed in this case. By removing the
smallest 2 SVs successively in Fig. 3.13, the new condition number is lower and
shows that the noise was attributed to the filtered SVs. Whilst removing 02 SVs
eliminates high fluctuation in 0-750 Hz band, removing 2 additional SVs introduces
more fluctuations. Similarly, the disk hybrid model’s condition number can also be
inspected by truncating singular values in Fig. 3.14. Here, only 1 SV is truncated
first which shows improvement in the 0–250 Hz band. The spurious peaks near 1800
and 2350 Hz also disappear. Note that these are not the modes. In fact, the modes
are the small peaks near 1100, 1950 and 2650 Hz.

The SV truncation can serve beneficial in large models but it should be done with
caution by not over filtering the meaningful dynamic content.
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Fig. 3.14 Condition number by truncating 1 singular value successively in the disk hybrid
models of size 58×58.

3.7 Summary

This chapter presents the dynamic expansion methods for those components on
which only a limited number of measurements are possible, for example, the blade-
root joint – the object under investigation. The techniques for reliable prediction
of dynamics are discussed including model updating, CMS reduction inverse view,
special purpose polynomial expansion, and round trip theory for FRFs. More
popular methods SEREP and SEMM are covered in more detail with their different
formulations.

The SEMM formulations are derived using the LMFBS notation. The advantages
of SEMM over SEREP are also highlighted in general and in the context of the
blade-root joint. The experimental setups and campaigns are introduced which will
be used throughout the thesis. The results of SEMM hybrid or expanded models are
presented which show promising prediction on the blade as well as the disk. The
modelling errors in the disk due to constraint are isolated and it is shown that SEMM
produced good agreement of FRFs throughout the frequency bandwidth without the
need to calculate damping.

Other than the FRFs, the condition number of the hybrid models is also inspected.
By increasing the size of the numerical model, the condition number increases which
warrants the use of singular value truncation.



Chapter 4

Introducing Correlations in SEMM

Part of the work described in this chapter was previously published in [71, 119, 72].

In test-based analysis, measured and predicted quantities often need to be compared
over a certain domain (modal, time, frequency). Their one-to-one visual comparison
is practical only when the quantities are scalars or the system degrees-of-freedom
(DoF) are small in number. Since mechanical systems can have many test or analysis
DoF, it becomes difficult to draw quantitative inferences on all of them. It is, therefore,
a natural human desire to make a qualitative (good or bad) as well quantitative
assessment (number or percentage). For this purpose, statistical correlations are
deployed to provide a quantitative measure usually between 0 and 1 describing how
good or bad are the measured and predicted quantities for various DoF. Depending
on the type of quantities to be assessed, one correlation metric is not enough. As a
result, several correlation techniques have been (and are being) developed suitable
for specific needs. Especially their use is very common in model updating [120, 79]
as well as in expansion methods.

4.1 Overview of correlation methods

Due to the popularity of the modal methods, the first application of correlating
measured and numerical mode shapes was by Allemang and Brown [121]. The
so-called Modal Assurance Criteria (MAC) is used as a key correlation since 1982.
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It return a value between 1 and 0 for jth and kth mode by:

MAC jk =
|ψE

j
∗

ψN
k |

2

ψE
j
∗

ψE
j ψN

k
∗

ψN
k

(4.1)

where ψE and ψN are experimental and numerical mode shapes and (⋆)∗ represents
complex conjugate transpose if the modes are complex. The unity values indicate
a good similarity between the two mode shapes. MAC is usually biased towards
those coordinates which have higher values and thus the contribution of small
valued coordinates is not properly accounted. Therefore, another metric known as
Co-Ordinate MAC (COMAC) was introduced by Lievens and Ewins [122] to find
similarity among the DoF. COMAC for the ith DoF is defined as:

COMACi =

[
∑

n
j=1 |ψE

i j ψN
i j |
]2

∑
n
j=1(ψ

E
i j)

2 ∑
n
j=1(ψ

N
i j )

2 (4.2)

where ψi j is a modal coefficient corresponding to DoF i and modal coordinate j with
j = 1, . . . ,n modes. Since normal modes also have a property of orthogonality (mass-
orthogonality), it is good to make this check between measured ψE and numerical
ψN modes or modal matrices. Based on the orthogonality, Pseudo Orthogonality
Check (POC) is quite common among various other correlations [123]. POC is
simply:

POC = ψ
E M ψ

N (4.3)

where M is the mass matrix. The result should be a matrix with ones on the diagonal
and zeros elsewhere to indicate the mass orthogonality. Similarly, stiffness matrix K
can be used to check whether or not it reduces to natural frequencies on the diagonal.
One can list many modal correlation metrics. The reader may refer to Ewins [124]
for their detailed review.

Another class of correlations exists for frequency response functions. In contrast
to the modal correlations, there is another dimension of the problem i.e. frequency.
Therefore, correlations in frequency domain can be divided in two categories: i)
those which correlate each FRF belonging to DoF i, j over a given frequency range
[125, 126] and ii) those which correlate overall shape of the FRF matrix (or a row or
column) at each frequency line [120, 124, 127].
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In the first category are Frequency Response Assurance Criterion FRAC defined
by:

FRACi j =
|YS

i j(ω) Yexp*
i j (ω)|2

YS
i j(ω) YS∗

i j (ω). Yexp
i j (ω) Yexp∗

i j (ω)
(4.4)

where YS
i j(ω) and Yexp

i j (ω) ∈ Cnω×1 are predicted (by SEMM, see Chapter 3) and
experimental FRF measured over DoF i and excited at DoF j. nω is number of
spectral points and (⋆)∗ represents the complex conjugate transpose. A strong
correlation is indicated by 1 whilst a no correlation is indicated by 0. FRACi j is a
COMAC-like correlation [122] since it takes into account the coordinate information.
For differently scaled FRFs, FRAC can be similar. Therefore, a variant of the above
Frequency Amplitude Assurance Criterion FAAC to correlate amplitudes.

FAACi j =
2|YS

i j(ω) Yexp*
i j (ω)|

YS
i j(ω) YS∗

i j (ω)+Yexp
i j (ω) Yexp∗

i j (ω)
(4.5)

In the second category are Frequency Domain Assurance Criterion FDAC [128],
Global Shape Criterion GSC and Global Amplitude Criterion GAC [120]. FDAC
takes into account the frequency shift between predicted and measured FRFs nor-
mally encountered in model updating. It is defined as:

FDAC(ωs,ωe) =
|yS

j
∗
(ωs) yexp

j (ωe)|
∗ |yS

j
∗
(ωs) yexp

j (ωe)|
yS

j
∗
(ωs)yS

j (ωs) yexp
j

∗
(ωe)y

exp
j (ωe)

(4.6)

where yS
j ∈ Cm×1 is a vector of predicted responses excited at jth DoF with the

fixed frequency ωs and yexp
j ∈ Cm×1 is a vector of measured responses excited at

the same DoF j with the fixed frequency of ωe, and m are the number of responses.
This allows to compare FRFs at two different frequencies assuming that they are
shifted. In this way, one correlates the shapes of two distinct frequencies. With
a slight modification in the numerator of Eq. (4.6) and using the same frequency
ω = ωs = ωe, one calculates GSC and GAC.

GSC =
|yS

j
∗
(ω) yexp

j (ω)|2

yS
j
∗
(ω)yS

j (ω) yexp
j

∗
(ω)yexp

j (ω)
(4.7)
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j
∗
(ω)yS

j (ω)+yexp
j

∗
(ω)yexp

j (ω)
(4.8)

These two measures allow one to correlate shape and amplitudes of FRFs excited at
DoF j and visualize them at all the frequencies ω .

In the decade of 1990, correlations development was on boom. Since then,
numerous applications have used them to update their models or test the truthfulness
of the prediction methods. Of course, there are more variations than the listed
correlations for which one can refer to [120, 127, 129, 79] for more insights. Still
some developments on correlations are in progress. More important is that how one
obtains the vectors or matrices that need to be correlated. Two very recent papers are
by Chen et al. [130] and Kodric et al. [105] which propose similar strategies to find
out inconsistent data or measurements. These two studies also have similarities with
the method developed herein and called Correlated SEMM. This is discussed next
by introducing correlations in the SEMM method in order to filter out bad or poor
quality measurements.

4.2 Correlations in SEMM

In the previous chapter, a structure’s hybrid model by the SEMM methodology was
obtained which essentially is a coupling of its overlay (experimental) and numerical
models. The hybrid model can be significantly affected by the discrepancies between
the measurements and numerical model. For instance, the location of sensors on the
actual structure and the corresponding DoF in its numerical model may not be exactly
coincident, thereby, introducing some variations in the respective FRFs. The same
holds for the impact positions and directions. In addition to this, unavoidable noise
in the measured FRFs also transmits to the hybrid model. Moreover, the numerical
model due to its discretization type, material properties and boundary conditions
will always have some differences from its experimental counterpart. It is, therefore,
of paramount importance to identify the best set of measurements that represent the
overall system dynamics while filtering out the ones that do not correlate well with
the system.

We introduced a technique of checking the correlation between the FRFs in
a systematic way in the SEMM procedure. This new approach, called correlated
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SEMM, is a-posteriori (offline) analysis i.e. after doing an experimental campaign
and making necessary checks of the data quality by coherence or visual or other
means provided in the data acquisition system. Since the online checks are limited,
some measurements can be more corrupted or uncorrelated than others. When all
these measurements are used to generate a hybrid model, the expansion may be
erroneous. By the new correlated approach, the aim is to improve the quality of
the substructure hybrid models as much as possible before a subsequent coupled
structure model is created (see Chapter 5 to 7). In this work, we used FRAC to
quantify the discrepancies between the FRFs of the two models in a convenient way.
In particular, the correlation of FRFs is computed between hybrid model (instead
of the numerical model) and the FRFs from measurements kept only for validation
and not included in the hybrid model. The FRAC from Eq. (4.6) is redefined in a
function notation:

φi j ≜ FRAC
(
YS

i j(ω),Yexp
i j (ω)

)
=

|YS
i j(ω) Yexp*

i j (ω)|2

YS
i j(ω) YS∗

i j (ω). Yexp
i j (ω) Yexp∗

i j (ω)
(4.9)

Before embarking on the correlation strategy, let us elaborate the experimental
model that contains transfer functions on all the measurable DoF uexp and f exp as
follows:

uexp = Yexpf exp =⇒

{
uc

ue

}exp

=

[
Yce Ycw

Yve Yvw

]exp{
fe

fw

}exp

(4.10)

The different subscripts were shown in Fig. 3.1 and explained in the following:

• c: set of DoF where responses are measured by triaxial accelerometers (or by
other sensor types)

• e: set of DoF where excitations are applied by a modal impact hammer

• v: set of DoF where responses are measured as uc but reserved for validation.

• w: set of DoF where excitations are applied as fe but reserved for validation.

Yexp may, in general, contain point or transfer FRFs. For more practical reasons,
the point FRFs are not measured and so Yexp is rectangular of size m× n. From
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Fig. 4.1 The process flow of the method to identify the uncorrelated response and input
channels.

Yexp, different subsets called overlay models Yov, are created to generate the hybrid
models by the SEMM method. The process is explained in detail below and shown
in Fig. 4.1:

1. Define an overlay model such that one response channel (a row Yexp
re ) from

Yexp is excluded in the overlay model to be kept for validation, i.e.

Yov,r ⊂ Yexp : Yexp
re /∈ Yov,r (4.11)

where r = 1,2, ...,m. Since one channel has been excluded, the size of Yov,r

is (m−1)×n. The channel Yexp
re is now considered as the moving validation

channel (MVC) and is graphically shown in the upper left part of Fig. 4.2a.

2. Perform expansion by the SEMM method with Yov,r as per Eq. (3.29) to get
YS,r, i.e. YS,r = semm(YN,Yov,r).

3. The corresponding rth expanded channel YS,r
ve is correlated with Yexp

re (see
Fig. 4.2a) by computing FRAC, as per Eq. (4.9). FRAC is computed over a
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Table 4.1 Summarized action steps to generate overlay and hybrid models in order to
find correlations among all DoF or channels (both response and input). The dimension
of the overlay matrix is different for response or input channels correlations. Note that
size(Yexp) = m×n.

Action Response Channel Input Channel

Define overlay models Yov,r ⊂ Yexp : Yexp
re /∈ Yov,r Yov,q ⊂ Yexp : Yexp

cq /∈ Yov,q

for r = 1,2, . . . ,m for q = 1,2, . . . ,n

size(Yov,r) = (m−1)×n size(Yov,q) = m× (n−1)

Generate hybrid models YS,r = semm(YN,Yov,r) YS,q = semm(YN,Yov,q)

Compute correlations φre = FRAC(YS,r
ve ,Yexp

re ) φcq = FRAC(YS,q
cw ,Yexp

cq )

φ
avg
r = 1

n ∑
n
j=1 φr j φ

avg
q = 1

m ∑
m
i=1 φiq

Plot and decide r = {1, . . .m} vs φ
avg
r q = {1, . . .n} vs φ

avg
q

fixed frequency band in Eq. (4.9) for two given FRFs. However, the explicit
dependence of the FRFs on frequency ω is not shown for the sake of clarity
in the above expressions. The FRAC, thus computed for the pairs of FRFs in
YS,r

ve and Yexp
re are denoted by φre and used for calculating φ

avg
r as follows:

φ
avg
r =

1
n

n

∑
j=1

φr j (4.12)

The parameter in Eq. (4.12) can be considered an indication of an overall
correlation level of the response channel r.

4. The process is repeated for all the remaining channels up to r = m, i.e. each
time one channel r in Yexp is excluded from the rth overlay model.

5. The low correlated response channels are identified based on the average
correlation in Eq. (4.12).

In a similar way, by successively excluding the columns from the overlay model,
the respective correlations can be computed for the input channels. Fig. 4.2b il-
lustrates the procedure by excluding qth column from Yexp. The two schemes of
computing correlations are listed side by side in Table 4.1 and depicted in Fig. 4.1
for further clarity.
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(a) The overlay model Yov,r is short of the rth response channel (row) in experimental
model Yexp. In the respective rth hybrid model YS,r, the correlation is calculated between
YS,r

ve ,Yexp
re . For simplicity, the DoF set in YS,r consists of only g = {c,e,v}.

(b) The overlay model Yov,q is short of the qth input channel (column) in experimental
model Yexp. In the respective qth hybrid model YS,q, the correlation is calculated between
YS,q

cw ,Yexp
cq . For simplicity, the DoF set in YS,r consists of only g = {c,e,w}.

Fig. 4.2 Illustration of the different models used to find correlated or uncorrelated response
channels and input channels. The DoF set in the hybrid models YS are shown only for the
internal DoF. Note the difference in the DoF structure in the top and bottom figure. The
colour of Yexp is the same in both figures to signify that Yov,r and Yov,q are its subsets. The
same colour appearance of the overlay model in the respective hybrid model shows the
mimicking behaviour of those DoF.
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4.2.1 Physical interpretation

The correlation analysis can be interpreted physically from the observability and
controllability perspective. At the step r, when rth channel is excluded from the
construction of the hybrid model, there are m− 1 response channels which try to
observe the rth channel through the SEMM expansion. FRAC as a correlation
provides a measure or degree of observability. By repeating the process until r = m,
each response channel has undergone an observability check (performance review)
by the rest of the channels in terms of FRAC. Computing the overall performance,
for example, by averaged FRAC values in Eq. (4.12), the best or least observed
channels can be identified. A similar interpretation holds also for the input channels
from the controllability perspective. In short, excluding the input channel q, how
well n−1 input channels could control the qth input channel.

4.2.2 Criteria for channel filtering

If one or more channels have low correlation at the end of the process, the following
could be the probable reasons:

1. the DoF associated with the channel(s) did not have significant dynamic
contribution in the selected frequency band. Thus, they could not be fully
observed or controlled by the other measured channels.

2. the location of sensors or impacts and the corresponding DoF in the numerical
model were not coincident.

Different criteria can be assumed to select the channels to keep after the FRAC
analysis. A minimum threshold value criterion would imply that all the channels
with a correlation level below the threshold will be disregarded. This could lead to
missing the sufficient number of independent measurement channels necessary for
an onward analysis. For this reason, it was chosen to define a minimum number z
required for the joint identification Chapter 7. In this way, only the z channels with
the highest correlation levels are kept, all the other channels are discarded.
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Fig. 4.3 Experimental setup for impact testing of the blade. Reproduced from chapter 3.

4.2.3 Method’s applicability

The method correlated SEMM may appear to be restricted to applications relating to
expansion by the SEMM method only. However, the framework outlined above can
be used to filter out bad measurements in any linear FRF measurement campaign
which can be encountered often times. The SEMM then provides only a means
to calculate the FRF correlations assuming that a viable numerical model of the
component is available.

4.3 Results

In order to find the correlations of hybrid models by the above-mentioned method,
two structural components are considered: i) blade and ii) disk. The blade tests
are conducted in a constraint-free condition. The disk tests are conducted in two
configurations: constraint-free and constrained configuration for a detailed analysis
on the method’s sensitivity to numerical model, experimental FRFs as well as to the
sensor intrusiveness effect.
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Table 4.2 Details of numerical and experimental parameters of the blade and disk tested
in constraint free conditions. Note a missing channel in the response channel labels. This
channel had unusual high noise floor and was not included in the correlation analysis. The
channels with the lowest average FRAC levels are also listed after the correlation analysis.

Type Description Blade A Free disk B

Experimental
Setup

Number of accelerometers 5 5
Number of available response channels 15 15
Number of useful response channels (m) 14 14
Labels for response channels {1-8, 10-15} {16-23, 25-30}
Number of input channels (n) 18 19
Labels for input channels {1–18} {19–37}

Numerical
Modelling

Young’s Modulus (GPa) 190 178
Density (kg/m3) 7800 7800
Fixed interface modes 200 200

Correlation
Analysis

Poorly correlated response channels ch # 4 ch # 27
Poorly correlated input channels ch # 4, 17 ch # 30, 31

4.3.1 Correlation analysis of the blade

The sensors as per the actual mounting on the blade and the impacts as per the
experiment design are as shown in Fig. 4.3. The sensors are triaxial accelerometers
and the excitations are made with a modal impact hammer. The details about the
sensors and channels are given in Table 4.2. The free constraint is realized by
suspending the blade on flexible wires with their modes far below the first mode
of the blade. From these measurements, the accelerance FRFs of the blade A are
collected in Yexp,A.

Numerical modelling consisted in creating corresponding FE models from the
solid geometries. The discretization was done with Solid elements in ANSYS and
with the material properties listed in Table 4.2. The FE models were then reduced
by Hurty-Craig-Bampton [13] method by retaining only the essential nodes and
fixed interface modal amplitudes. The retained DoF corresponded to the nodes of
sensors, impacts and the interface. From the reduced systems, accelerance FRFs are
computed and stored in YN,A.

The blade’s overlay models are generated from the measured FRFs Yexp,A of size
14×18 (Table 4.2). In order to compute correlations for the response channels, 14
overlay models are taken as subsets where each model corresponds to the exclusion of
rth response channel. The expansion in each hybrid model is checked by computing
the FRAC. Since FRAC is computed between two FRFs over the frequency range of
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Fig. 4.4 Average FRAC of the blade A against response channels and (b) input channels. The
channels which are removed from measurements based on the lowest FRAC are indicated
with arrows.

1 – 3000 Hz, the average FRAC is then plotted against all the 14 response channels
in Fig. 4.4a. It can be seen that overall correlation levels are higher than 0.80 except
for r = 4. This means that this channel or DoF could not be well-observed by the
other channels, when this was removed from Yov,A. Following the same method for
the input channels by skipping the qth column in Yexp,A to generate qth overlay and
hybrid models, the average FRAC values are plotted as bars in Fig. 4.4b versus the
input channels. The correlations are again good for many input channels with the
exception of q = 4 and q = 17 marked with two arrows.

If the channels or DoF with low correlations are retained in the measurements
and the standard SEMM method is applied, some of the resulting FRFs may have
some inconsistencies. In the standard SEMM, all the measured FRFs (except the
validation) are included in the overlay model such that Yov,A = Yexp,A

ce . In Fig. 4.5,
for the sake of validation, an FRF by standard SEMM (thin solid line) is compared
with a corresponding experimental FRF (called Reference) and for this reason not
included in the construction of YS,A.
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Fig. 4.5 FRFs of the blade with standard SEMM and correlation based SEMM when the low-
est correlated channels marked with arrows in Fig. 4.4 are removed from the measurements.
The reference FRF is Yexp,A

10,18 with description shown at the top of the FRF.

At the first glance, the standard SEMM method YS,A expands the dynamics really
well in most of the frequency band. This is because experimental and numerical
FRF models are quite close. However, comparing the standard SEMM and reference
curves, some inconsistencies are visible especially around 1700−2200 Hz. In the
same figure, it is plotted as dash-dotted line the FRF (labelled: ’Correlated SEMM’)
obtained from SEMM after filtering out the lowest correlated channels r = 4, q = 4
and q = 17. These channels have been filtered according to the criterion adopted
in Section 4.2.1. It can be noticed that this FRF obtained by new correlated hybrid
model ŶS,A agrees extremely well with the reference FRF both in amplitude and
phase (Fig. 4.5). From an a-posteriori check on the measurements of each channel, it
came out that the channels discarded by FRAC were not good for different reasons.
In detail:

• channel r = 4 had very low response levels in the shown frequency bandwidth
and was, therefore, prone to be easily polluted with noise

• input channels q = 4 and q = 17 did not produce good FRF due to human
errors in the impact direction or location.
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Fig. 4.6 Average FRAC of the disk B against response channels and (b) input channels. The
channels which are removed from measurements based on the lowest FRAC are indicated
with arrows.

4.3.2 Correlation analysis of the free disk

After the blade’s analysis, the free disk’s correlations are calculated. Note this
configuration of the disk was discussed as campaign-2 in Section 3.5 and depicted in
Fig. 3.7. Its specific modelling and channel details for the correlation analysis are
listed in Table 4.2 alongside the blade.

The disk’s FRAC bar graphs similar to that of the blade are shown in Fig. 4.6
both for the response channels and input channels. One response channel with
label r = 27 and two input channels with label q = 30 and q = 31 are found to
be the least correlated. By filtering these channels from the experimental (and the
overlay) model and regenerating the hybrid model of the disk, the filtering effect
is seen in Fig. 4.7. From the figure, it is evident that the standard SEMM using all
the measurements produce an FRF that does not overlap with the reference FRF
around the first antiresonance from 1200 to 1800 Hz. On the contrary, a remarkably
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Fig. 4.7 FRFs of the disk with standard SEMM and correlation based SEMM when the lowest
correlated channels marked with arrows in Fig. 4.6 are removed from the measurements. The
reference FRF is Yexp,A

22,19 with description shown at the top of the FRF.

improved FRF is obtained with the correlated SEMM in both the amplitude and
phase. It can also be noticed that prediction also improves slightly in 0–700 Hz.

4.3.3 Correlation analysis of the fixed disk

In this subsection, the same correlated SEMM method is applied to the fixed disk
component shown in Fig. 4.8. The aim of this investigation is to apply the correlated
SEMM method to a more complicated test structure whose numerical modelling is
often difficult. The disk is constrained to the test-bench in the centre by means of a
bolted joint. The primary reason for choosing the constrained disk is that it is always
difficult to model the boundary conditions correctly and this will be illustrated by a
great difference between purely numerical FRFs and the measured FRF.

A typical experimental response is shown in Fig. 4.9 (orange curve). It is possible
to see how the response is definitively more complex than the one obtained for the
blade since the level of modal density is high for a wide frequency bandwidth.
Moreover, the support in the middle of the disk is greatly affecting the overall
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Fig. 4.8 Experimental setup for impact testing of the disk.

Table 4.3 Details of numerical and experimental parameters of the disk B.

Type Description Disk Model 1 Disk Model 2

Numerical
Modelling

Young’s Modulus (GPa) 190 150
Density (kg/m3) 7850 7850
Fixed interface modes 200 200

Experimental
Setup

Number of accelerometers 5
Number of used response channels (m) 14
Labels for response channels {2–15}
Number of input channels (n) 19
Labels for input channels {1–19}

dynamics. In the same figure (Fig. 4.9(a)), the calculated forced response of the
corresponding FE model is shown for two different Young’s moduli (see Table 4.8):
the blue curve is obtained with a nominal value of the Young modulus while the
green curve is obtained by changing the Young modulus in order to have some
resonance peaks closer to the experimental resonance peaks.

However, for both the numerical FRFs, it is possible to see that the numerical
models are far from the one of the overlay model. The main reason is to be associated
to the lack of cyclic symmetry for the actual disk and the constraint, while in the FE
models the cyclic symmetry property is nominally guaranteed by a cyclic geometry
and constraints. The FRFs are expanded by SEMM method of both the numerical
models and an example of the final response after expansion is shown in Fig. 4.9(b)
corresponding to Yexp

4,10. Note that the measured FRF on these DoF (response channel
4 and input channel 10) was not used to generate the expanded models. In the figure,
it is possible to see that the Expanded model 2 FRF matches better than that of the
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Fig. 4.9 Comparing FRFs of two different numerical models. Disk FRF at channel 4 (sensor
2) excited at the input channel 10 i.e. Yexp

4,10. The corresponding hybrid models (bottom) are
also shown. The FRF of the model 2 has higher correlation with the measurement.

Expanded model 1 with the measured response. Hence, it can be concluded that
the numerical model plays a significant role in the expansion and one can expect
different results in a subsequent correlation analysis.

By using the correlation approach, the average FRAC values are depicted in the
bar plot of Fig. 4.10. for the two expanded models. Each bar represents how well the
validation channel is reconstructed by all the other response channels. The bar values
are further averaged and shown in Table 4.4 (With all channels) in order to give a
global index of the expansion goodness. It is clear from the table and Fig. 4.10 that
Model 2 gives better global correlation (and a better hybrid model). According to
the correlations, the least correlated channels are different for each model (channel
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Fig. 4.10 FRAC bar plot for the disk vs Response Channels. Two different numerical models
are used to generate the respective hybrid models and the corresponding correlation levels.

6 for Model 1 and channel 3 for Model 2). Consequently, one may want to discard
these channels from the measurement set to generate new hybrid models.

In order to improve the result of the correlation calculated for Model 2, Response
Channel 3 is removed from the experimental model since this channel gives the
worst correlation. Similarly, Response Channel 6 can be done away with for Model
1. The result is an improvement of the global FRAC index of Table 4.4 for the
respective models for which these actions were made and vice versa the global
FRAC index decreases when a response channel associated to a good correlated
channel is removed.

4.3.4 Effect of sensor mass loading

As previously mentioned, the sensors used for response measurement are triaxial
accelerometers. They were preferred over more sophisticated non-intrusive measure-
ment equipment, such as laser doppler vibrometry (LDV) [131, 132] for the different
reasons listed below.

1. It is very difficult to obtain accurate measurements by LDV on unconstrained
structures (such as the hung blade) due to the presence of rigid body modes.

2. The signal-to-noise ratio in LDV is higher and requires additional processing
[133, 132].

3. For a multi-response measurement (SIMO – single input, multi output) with a
manual hammer, the FRF measurement by LDV introduces additional uncer-
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Table 4.4 Overall Mean FRAC Values for the Disk

Model 1 Model 2 Model 2 with
Sensor Mass

With All Channels 0.638 0.719 0.720

Without Channel 3 0.637 0.741 0.742

Without Channel 6 0.660 0.713 0.714

tainty of exciting again and again the same point to measure all the responses
leading to more human error.

4. In the substucturing context, the accelerometer sensor mass loading effect can
be taken into account in the process with a good degree of accuracy [51, 134].

In order to find out a possible influence of the accelerometers masses on the re-
sults of the hybrid model, the case of the constrained disk (Model 2) was reprocessed
by keeping into account the accelerometers masses. Assuming that the mounted
accelerometers only add inertia on the disk, their mass can either be 1) coupled to
the numerical model or 2) decoupled from the experimental FRFs [51]. In the first
case, the accelerometers’ masses are added to the numerical model of the disk. In
the second case, the numerical model does not have the added masses, but the effect
must be decoupled from the measurements [134–136]. Theoretically, this last choice
is possible but practically it needs inversion of the measured FRFs [40, 50], and
hence, not preferred.

The first solution was then selected for the present case. There are five accelerom-
eters, as shown in Fig. 4.8 at five different locations; each of them has a nominal
mass of 6.5 grams. Therefore, we added a point mass in the numerical Model 2 of
the disk at the accelerometers’ positions. New expanded models were then generated
to compute the updated FRAC values. The resulting overall mean FRAC values are
listed in the last column of Table 4.4. By comparing the last two columns of the
table, it can be noticed that the mean FRAC values are almost unchanged between
’Model 2’ and ’Model 2 with Sensor Mass’. Thus, it can be concluded that the sensor
loading has little or no effect on the expanded dynamics of the disk.
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4.4 Discussion

In the global FRAC values, the improvement may seem marginal (about 2 percent
points) but it should not be considered so. Even if there was no overall FRAC
improvement (after discarding the uncorrelated channels), it would mean that the
lesser number of channels could have the same observability or controllability. Most
importantly, the correlation levels should not drop after an uncorrelated channel was
removed.

The correlated SEMM method on the blade showed that, when the experimental
and numerical models are close, the correlation indices are higher. The same was
also demonstrated for the free disk case. In constraint-free systems, good numerical
models are easy to produce.

In the application of the method to the fixed constrained disk – a more compli-
cated test structure – the use of different numerical models demonstrates that even
though the overall correlation levels are low, one could still point out the uncorrelated
channels depending upon the modal directions of the numerical model. Nonetheless,
the closer the numerical model is to the measured model, the better would be the
correlation based channels’ filtering and the hybrid models.

The FRAC as a correlation index used herein concerns more to the shape of the
FRF. The other formulation is the FRF amplitude FRACa correlation, also called
Local Amplitude Correlation [127] defined as:

LACi j =
2|YS

i j(ω) Yexp*
i j (ω)|

YS
i j(ω) YS∗

i j (ω)+Yexp
i j (ω) Yexp∗

i j (ω)
(4.13)

In our analysis, the LAC values demonstrated the same pattern as the FRAC shape
φ and thus were not shown here for clarity. In fact, one could show more correla-
tion metrics as well as perform numerous tests on the method by tweaking some
measurements, for example, by: i) adding noise in some measurement channels, ii)
wrongly labelling the impacts or responses, iii) changing the direction of an impact,
and so on. The method can be shown to work easily. In fact, a very recent rather
parallel to the present work is the development of the same method independently by
Kodric et al. [105]. In their work, the authors made use of local amplitude criterion
and coherence like function to calculate correlation levels. Each correlation metric
produced the same results. Some of the above-mentioned tests of introducing errors
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deliberately were also performed in their work and revealed the robustness of the
method. However, their test-case was a simple beam test-case while ours are rather
realistic and light-weight structures like blade and disk. In our work, the method is
tested on different numerical models of the disk through a commonly experienced
problem of boundary constraint. In addition to this, the sensor intrusiveness is also
taken into account.

4.5 Summary

This chapter introduces a new method to identify uncorrelated or bad measurement
channels in an FRF measurement campaign. Since the SEMM method in its original
formulation can include effects of measurement errors, the effect is reduced by using
correlations in frequency domain. The chapter begins with a review of various corre-
lation methods originally used in modal methods (MAC, POC) and then extended
to frequency response methods (FRAC). The new method of correlations is elabo-
rated by the help of mathematical expressions, process charts and matrix illustration,
followed by the physical interpretation from the observability and controllability
perspective.

The new correlation approach is then applied to the blade and disk as stand-alone
components wherein the bad response and input channels are identified. The resulting
hybrid FRFs show remarkable improvement. The effect of different numerical
models is also investigated by using the constrained disk measurement campaign
along with the sensor mass-loading effect. It is shown that the correlation approach
is robust even for different numerical models and is insensitive to the mass-loading
effect.

In the end, attention is drawn towards a similar and parallel developments to this
work to emphasize the need for filtering of inconsistent measurements.



Chapter 5

Joint Identification Methods

Most engineering structures are assembled by holding together different components
with various joining techniques. Among those, the non-permanent joints such as
bolted, riveted, pinned, dove-tail, affect greatly the dynamic response prediction. It is
well-known that, when subjected to dynamic loads, the added flexibility introduced
by the joint to the structure heavily affects its behaviour. This effect may manifest
as a change in the stiffness or the natural frequencies of the system or the amount
of damping. Due to these factors, joints require different modelling and parameter
estimation techniques to accurately predict the structural response. Broadly, the
effect of joints can be modelled into the system as a forward problem or as an inverse
problem [4, 137], like in many other fields [138].

The classical forward problem finds the effect of a given cause by using the
appropriate law or model. The solution of these problems is generally unique, and it
is insensitive to small changes in the problem. Such problems are called well-posed
and they typically arise from the so-called direct problems of natural sciences [138].
In the joint modelling context, this means, for example, calculating the displacement
(effect) of a jointed system under an applied load (cause). Even though the joint
may introduce non-linearity in the system, whose solution may be difficult to find,
the solution is still unique1. On the effect of joints, numerous publications attempt
to predict the dynamic response by different methods for various joints and their
configurations [19, 139–145]. With the advancements in computational resources,

1Multiple solutions of non-linear systems in a forward problem are the result of different initial
conditions which can be uniquely found when the same initial condition is used.
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more sophisticated methods are being developed for non-linear back-bone curves or
response envelopes [146–149].

On the other side are the problems inverse to the classical forward problems
which may be interpreted as finding the cause of a given effect. The problems of esti-
mating parameters from transfer functions (modal parameter extraction), determining
internal characteristics from measurements on the system boundary, calculating a
force from a displacement field etc. fall in this category. The inverse problems are
often ill-posed because distinct causes can produce the same effect or small changes
in the effect can correspond to large changes in a given cause.

The joint identification is an inverse-problem which consists in determining
a set of joint parameters from the dynamics of the assembled system to account
for the difference that exists between the assembled system and the substructures.
Such differences are typical in the presence of joints which not only may introduce
non-linearity but also uncertainty of the contact (even when considered as a linear
system). Although in practice, the properties of some joints are non-linear, many
joints’ characteristics can be regarded as approximately linear [58].

The identification of joint or difference between the assembly and the substruc-
tures has been of great interest in various areas of structural dynamics. The most
noteworthy applications have been in the machine tooling industry [150–152, 3]
and the automotive industry for Noise Vibration and Harshness (NVH) problems
[59, 10, 7, 11]. In the machine tools, the interest has been in predicting the dynamic
response when tool tips of different types are used. In the NVH problems, the
vibration and noise has to be minimized in the passive substrucutures. This implies
that all those structural or airborne paths should then be designed in such a way
that the passive component receives minimum vibration or sound [153–155, 103].
In this regard, it is crucial to identify the dynamic characteristics of the resilient
joint elements to be installed between the active (a source that actively generates
vibration) and passive (a receiver that usually vibrates due to the presence of the
source) subsystems.

The substructure identification problems can be ill-posed even when the system
under consideration are numerical, as highlighted by D’Ambrogio and Fregolent
[35, 36, 56] and Voormeeren and Rixen [50]. However, the identification problems
are rooted in the observation of a system, usually observed in reality from a physical
phenomenon or realized in the laboratory as an experiment. Due to the errors
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associated with measurements, the ill-posed problems and the sensitivity of the
methods to these errors, the identification problems lead to incoherent or spurious
results. Therefore, the actual systems researched for joint identification in practice
have been quite simple. Furthermore, various assumptions are made during the
identification process which renders the methods specific only to those particular
applications. Besides, it is a human tendency to represent a complex phenomenon as
a single parameter or a set of parameters. For example, representing kinematics of
an entire contact by a tangential stiffness, a normal stiffness and a friction coefficient
[156–158] or representing a tractor with a few lumped masses and springs and model
them as dynamic substructures [159]. The results of such simplified systems may
be good enough for the cited applications but not others. Thus, a higher fidelity
modelling or identification is deemed necessary, as will be shown in Chapter 6 and 7.

In this chapter, we review the popular joint identification methods based on
dynamic substructuring. Since various methods exist with different names, they can
be classified into three broad categories:

I. Inverse Receptance Coupling (IRC),

II. Inverse Substructuring (IS),

III. Substructure Decoupling (SD).

Each method is presented in a unified notation of the FBS methodology which should
make it easy to correlate with one another.

5.1 General joint identification approach

There have been numerous strategies proposed in the literature to identify the joint
characteristics from the assembly. Irrespective of their classification, each method
needs a set of essential elements which are depicted in Fig. 5.1 and listed below:

1. substructure dynamics,

2. assembly dynamics observing the joint behaviour,

3. a joint model,

4. a mathematical framework that provides a set of equations to identify the joint,
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Fig. 5.1 General depiction of joint identification approaches – their framework and con-
stituents.

5. the identified joint, and

6. an equivalent estimate of the joint parameters.

In the following subsections, an overview of each element is provided whilst referring
to the related literature. The different methods will then be discussed in detail in the
sections named as the methods themselves.

5.1.1 Substructure dynamics

Since the effect of substructure has to be removed from the assembly, an important
input to the joint identification is the substructure dynamics. All the connected
substructures must have their dynamics (measured, analytical or numerical) on the
internal DoF and on the interface DoF (coupling DoF). Due to numerous difficulties
in acquiring accurate FRFs in a measurement setup, many times the substructure
models are only numerical or analytical. For components with the fixed boundary
conditions, the numerical modelling may pose yet another challenge [160]. In fact,
this thesis has covered so far the aspects related to substructures and how to predict
by expansion the interface dynamics in Chapter 3 and 4. The interface so obtained
by translational FRFs is not complete in spatial sense [63]. The need for a complete
interface description is discussed in Section 5.1.1.1.
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Before that, it is good to clarify in this chapter and onwards that the notion of
a joint is generally associated with an assembly of substructures. One may also
regard the interface as a joint. However, we distinguish between the two terms by
the following definitions:

A joint is an entity that exists only in an assembly. It does not exist if substructures
are not connected.

An interface is a part of the structure whose dynamics represent those DoF through
which a connection is established with another substructure. These DoF always exist
on the substructures even if they are not connected together.

5.1.1.1 Interface dynamics

In order to feed the substructures into a joint identification method, they must
be described with sufficient spatial dynamic content i.e. enough DoF have to be
measured or predicted. Whilst this may be easy to do on the internal DoF which are
more accessible, it is difficult to do so on the interface DoF. Even on the internal DoF,
mostly translational FRFs are easy to measure. Therefore, more DoF are needed to
properly constrain the interface. This gives rise to using rotations as an additional
set of constraints which are certainly hard to measure. Therefore, they have to be
calculated from the translational FRFs.

Duarte and Ewins [65] reviewed the rotational DoF and traced it back to as
far as 1969 where the problem of spatial incompleteness is studied due to limited
measuring capacity on the interface. In their paper of year 2000 [65], they referred
to many works classifying various methods of including rotational coordinates.

One possibility is to measure the rotations directly [61, 98, 64] by rotational
accelerometers. However, these sensors are usually heavy and may only be suitable
for bulky structures. Sensor loading becomes too significant for small-sized structural
components. Therefore, one has to derive rotational effect indirectly. The finite
difference approach by Duarte and Ewins [65] has been one of the popular methods
for this purpose which uses finite differences of closely spaced translational DoF and
approximates the rotational FRFs.

An implicit method of incorporating the rotations is an Equivalent Multi-point
Connection (EMPC) [66] with an interface consisting of a non-collinear DoF set.
This is similar to a finite element model in which an element with only translations
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is considered. Based on the EMPC approach, the virtual point transformation (VPT)
[153] was proposed as an upgradation of EMPC. In this approach, the measured
translations are projected on the interface displacement modes which then describe
the interface as a virtual point. Each virtual point interface then consists of both
the translation and rotations – all collocated and suitable for FBS. In this work, the
virtual point interface is used for our blade-root joint. Its mathematical details are
presented in Section 6.2.

5.1.1.2 Internal dynamics

In addition to the interface dynamics, the internal dynamics must also be predicted
in a joint identification process. Their role is pivotal for two reasons:

• A set amongst the internal DoF is used to remove their effect and produce a
joint. In other words, the joint effect can only be obtained after any internal
effects have been isolated from the assembly and substructures. This will be
seen in detail in Sections 5.2, 5.3 and 5.4.

• Validation of the method i.e. to verify whether the identified joint produced
a response on a set of key internal DoF (for example, on the blade-tip in a
turbine, the wing-tip in an aeroplane).

5.1.2 Assembly dynamics

Since the joint is the delta between the assembly and the associated substructures, it
is imperative that the assembly dynamics are known (measured). In the assembled
state, however, the joint or coupling DoF are not accessible because the fastening
leads to closing of the gap. Therefore, measurements on the coupling DoF is mostly
not possible, as depicted in Fig. 5.2(a). In some applications related to vibration
isolation in the vehicles (as discussed in the introduction to this chapter), the resilient
rubber elements may provide some access to or near the coupling DoF (Fig. 5.2(b)).
The methods used therein are usually referred to in-situ substructuring or inverse
substructuring (see Section 5.4). Irrespective of the access to the joint DoF, the joint
dynamics must be observable. That is, when the internal DoF are measured on the
assembly, the effect of joint must be observable in the internal DoF.
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Fig. 5.2 (a) A simple bolted joint connection: the indicated coupling DoF can be measured in
the uncoupled substructures but cannot be measured when they are assembled. In this case,
it is only possible to measure on the internal DoF. (b) A source and a receiver assembled
with the rubber mounts, adapted from [155]. There is some space for measurements in the
assembly.

It is worth mentioning that the explicitly measured coupling DoF are often
necessary for some methods such as IS (as discussed above) or SD. Even though
some measurements can be performed in-situ in Fig. 5.2(b), but sometimes it is not
possible to measure the complete FRF matrix. For example, exciting some DoF may
not be realized on the so-called passive DoF. Moorhouse and Elliott [92] developed
the round trip theory in which an FRF matrix (Green’s function) can be constructed
for a set of passive DoF, thus providing an expanded set of FRFs. In the SD methods,
the coupling DoF dynamics in the assembled system can be obtained by the iterative
scheme by Ren and Beards [161]. This method was further improved by Batista and
Maia [162] by a demonstration on a numerical case-study. It is yet to be applied to
a real life application. A SEMM based expansion strategy by Klaassen and Rixen
[163] has been shown to expand the coupling DoF dynamics in the assembly. The
method will be explained in detail in Section 5.5 and used for the joint identification
purpose.

5.1.3 Joint model

When modelling a joint in dynamic substructuring, it can mean different types or
formulations. The selection of the right joint identification method can then be based
on the modelling assumptions. The joint system can be treated as quasi-static – a set
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Fig. 5.3 Joint models: (a) In a quasi-static joint, no inertia is considered. The damper shown
is a dash-pot. The choice is arbitrary. (b) An inertial or dynamic joint.

of springs and dampers, as shown in Fig. 5.3(a). From a mathematical point of view,
this is a relaxation of the compatibility condition in the frequency based formulation
[164] such as inverse receptance coupling, since no inertia is assumed from the joint.
The inverse substructuring methods also neglect the inertial effect of the joint due
to negligible mass of the rubber elements (bushings) compared to the connected
substructures.

When the joint is considered to have also the inertial effect, it has to be treated as
a substructure [42, 163] and the equilibrium on each coupling DoF has to be satisfied.
This type of joint model is depicted in Fig. 5.3(b) whereby the black dots on the
box indicate degree-of-freedom on the joint (modelled as a substructure). Although
by fraction, the fasteners (bolts, rivets) can contribute to the inertial effects in the
joint. Note that the fasteners appear only when talking about the assembly and not
the substructures. Other than identifying their inertial effect in the joint, they can be
included in the substructures during testing or modelling.

Another consideration in the joint model is whether the connection is flexible
or highly stiff. The IS methods again consider the flexible or resilient joints. The
highly stiff joints pose a great risk of being prone to noise [141].
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5.1.4 A mathematical framework

The purpose of a method is to provide a set of equations to define relationships
amongst its different variables. The mathematical formulation in most joint identi-
fication methods is based on assembling (or disassembling) of substructures. The
principle steps in each method are to assemble the substructures by:

(i) writing equations of motion of the uncoupled substructures,

(ii) satisfying interface equilibrium and

(iii) ensuring interface displacement compatibility.

Depending on how the substructures and the assembled system are expressed
and joint model type, the methods of identification can be mathematically exploited
to produce a joint. The methods for joint identification discussed herein are based
on frequency domain (as are common identification strategies). Each method’s
mathematical framework will be presented using symbols coherent with the previous
chapters.

5.1.5 Identified joint

The output of the joint identification should clearly be the joint itself. Ideally, the
joint should be a set of parameters that would produce the desired coupled system. It
should not have identified any errors associated with measurements or modelling.
However, in all practical applications, the identified joint contains lots of spurious
effects which can also be non-physical.

Whether an identification is a physical or a non-physical joint (cause), can be
verified by the following tests:

(i) By recoupling the identification to the substructures and by comparing it with
a set of measured responses which were not used in the identification. This
means that the identification produced a response (frequency response) of
another set of internal DoF.

(ii) By estimating parameters from the identification. The parameters should then
be physical. For example, real or imaginary parts are in accordance with
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the FRF type (receptance or accelerance); or the coefficients of stiffness or
damping are positive on the diagonal; or the identified matrices are symmetric
or reciprocal.

5.1.6 Parameter estimation of the joint

Many IRC works use curve-fitting to experimental data as a way to extract joint
parameters. Starting from a calculated quantity (say, receptance), parameters (as-
sociate with dynamic stiffness) are to be identified. Since the search region for
joint parameters is usually very wide, the fitting is generally not very successful
[165]. The formulations usually attempted in the literature are based on least squares
solutions [2] or other application-specific optimization schemes [151, 166, 3].

In the following sections, the three methods of joint identification are presented
mathematically derived using the FBS notation and reviewed from different presen-
tations by several authors.

5.2 Inverse Receptance Coupling

Inverse Receptance coupling (IRC) is one of the most popular method of identifying
the joints. This approach consists in coupling the FRFs or receptances (or mobility,
accelerance) of substructures to give a mathematically coupled system. Then the
corresponding blocks in this coupled system and in the actual measured assembly
can be compared to give a set of equations from which the joint can be identified
as depicted in Fig. 5.4. It can be seen from the figure that it allows to choose at
convenience appropriate blocks from which the joint equations can be derived. The
receptance coupling can take into account both of the joint types (quasi-static or
inertial), as discussed above. Due to this, the mathematical treatment becomes
different. Its details in relation to the two joint types, as described in the literature,
are discussed separately in Subsections 5.2.1 and 5.2.2.
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Fig. 5.4 The receptance coupling is equating the measured FRF blocks on the assembly and
the mathematically coupled FRFs.

5.2.1 IRC for quasi-static joints

Depending on the specific type of application, one may consider a quasi-static
(spring and damper) joint model or an inertial (spring, damper and mass) joint model,
as discussed in Section 5.1.3. Let us recall the dual formulation for two rigidly
connected substructures:u = Y(f−BT

λ )

Bu = 0
where Y =

[
YA

YB

]
(5.1)

Note that equilibrium is satisfied a-priori in the dual formulation by setting the
interface forces g =−BT

λ (see Section 2.2.2.2). The equation Bu = 0 ensures exact
displacement compatibility. By introducing the quasi-static joint model expressed
as receptance2 YJ would cause some displacement incompatibility at the interface.
This can be expressed as:

2It should be noted for this type of joint, the ZJ matrix is singular at all frequencies. Hence one
cannot compute YJ for a numerical system unless some mass is introduced. One such problem is also
encountered in this thesis in Section 7.1. However, from an experimental point of view, one deals
with the measured quantities i.e. FRFs which are susceptible to noise and so it is possible to use the
joint admittance YJ that would relax the interface compatibility when multiplied by the interface
intensity λ .
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Bu = YJ
λ (5.2)

to signify that the delta δ in displacement at the interface uB
k − uA

j = δ = YJλ

[49, 164]. Substituting the first of Eq. (5.1) in Eq. (5.2) and solving for λ gives:

BY(f−BT
λ ) = YJ

λ

=⇒ λ = (BYBT +YJ)−1BYf .
(5.3)

λ can now be inserted back in the first of Eq. (5.1) to obtain the displacements

u =
(
Y−YBT (BYBT +YJ)−1BY

)
f (5.4)

and the coupled receptance (FRF)

YAJB = Y−YBT (BYBT +YJ)−1BY (5.5)

where the subscript J in YAJB denotes the explicit presence of joint dynamics whose
effect is clearly included in the interface stiffness of Eq. (5.5).

Let us expand the above receptance matrix in terms of different blocks of sub-
structures. Before that, we relabel the interface DoF. The substructure internal DoF
in Section 2.2.3 were relabelled with subscripts r and s for substructure A and B,
respectively. Likewise, the boundary DoF are also relabelled from here on as j and k
for A and B, respectively (also indicated in Fig. 5.3). The notation is adopted from
[3] to help tracking the DoF in the uncoupled substructures as well as the coupled
structure. Thus, YA and YB are written as:

YA =

[
YA

rr YA
r j

YA
jr YA

j j

]
, YB =

[
YB

ss YB
sk

YB
ks YB

kk

]
(5.6)

As shown in Example 2 of Section 2.2.3, all the terms in Eq. (5.5) using the above
relabelled partitions can be expanded as follows:

YAJB =



YA
rr −YA

r jZintYA
jr YA

r j −YA
r jZintYA

j j YA
r jZintYB

ks YA
r jZintYB

kk

YA
jr −YA

j jZintYA
jr YA

j j −YA
j jZintYA

j j YA
j jZintYB

ks YA
j jZintYB

kk

YB
skZintYA

jr YB
skZintYA

j j YB
ss −YB

skZintYB
ks YB

sk −YB
skZintYB

kk

YB
kkZintYA

jr YB
kkZintYA

j j YB
ks −YB

kkZintYB
ks YB

kk −YB
kkZintYB

kk


(5.7)
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where
Zint =

(
BYBT +YJ)−1

=
(
YA

j j +YB
kk +YJ)−1 (5.8)

is the interface stiffness.

Consider that the measured FRFs on the assembly are collected in YAB whilst
measuring only on the internal DoF

YAB =

YAB
rr YAB

rs

YAB
sr YAB

ss

 (5.9)

then the receptance coupling is simply equating the blocks in YAB with those in YAJB

in Eq. (5.7).

Clearly, four equations can be written now by comparing YAB and YAJB (depicted
also graphically in Fig. 5.4).

YAB
rr = YA

rr −YA
r j
(
YA

j j +YB
kk +YJ)−1 YA

jr (5.10a)

YAB
rs = YA

r j
(
YA

j j +YB
kk +YJ)−1 YB

ks (5.10b)

YAB
sr = YB

sk
(
YA

j j +YB
kk +YJ)−1 YA

jr (5.10c)

YAB
ss = YB

ss −YB
sk
(
YA

j j +YB
kk +YJ)−1 YB

ks (5.10d)

If more sets of coupled measurements are available on the coupling DoF, one can
derive more equations. Assuming that all the FRFs in Eqs. (5.10) can be measured
or predicted, the only unknown is YJ which can be found from any or all of the
equations. Up until here, most RC methods use one or more of the above equations
to derive the joint parameters with some application-specific simplifications and
consideration of the rotational coordinates (to be discussed shortly). In fact, the IRC
methods gained their popularity due to these simple expressions and avoidance of
joint coordinates in the assembly. Any of the above equation should produce the
same joint YJ , from the mathematical standpoint. Due to errors in experiments and
modelling, the results can be different, as observed by Tol and Özgüven [3]. This
difficulty gives rise to various conditioning, linear least squares or other non-linear
optimization schemes implemented within the inverse receptance coupling approach.

The receptance coupling Eqs. (5.10), provide a mathematical basis for derivation
of the joint. Depending upon the needs of an application, multiple approaches have
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been devised. One of the very first approach has been that of Tsai and Chou [2]
in which all four Eqs. (5.10) are put together in the matrix form to solve for the
interface dynamic stiffness as follows:

YAB =

[
YA

rr −YA
r jZintYA

jr YA
r jZintYB

ks

YB
skZintYA

jr YB
ss −YB

skZintYB
ks

]
, (5.11)

YAB −

[
YA

rr

YB
ss

]
=

[
−YA

r jZintYA
jr YA

r jZintYB
ks

YB
skZintYA

jr −YB
skZintYB

ks

]
. (5.12)

They can be written in a compact form

Yγ = YαZintYβ . (5.13)

Yγ = Yα(YA
j j +YB

kk +YJ)Yβ (5.14)

where Zint was defined in Eq. (5.8) along with the following definitions:

Yγ = YAB −

[
YA

rr

YB
ss

]
, Yα =

[
−YA

r j

YB
sk

]
and Yβ =

[
YA

jr −YB
ks

]
. (5.15)

By inverting both sides of Eq. (5.14) and moving the terms to the left hand side, we
get: (

Yγ − (Yβ )−1(YA
j j +YB

kk)(Y
α)−1)−1

= Yα(YJ)−1Yβ . (5.16)

Eq. (5.16) is then written as:

Yδ = Yα(K+ iωC)Yβ (5.17)

where Yδ =
(
Yγ − (Yβ )−1(YA

j j +YB
kk)(Y

α)−1)−1 and a quasi-static joint model is
used which can be expressed as a frequency dependent dynamic stiffness as ZJ with
stiffness K and damping C:

YJ = (ZJ)−1 = (K+ iωC)−1 . (5.18)

Since the above set of equations are frequency dependent, Tsai and Chou [2]
made use of nω frequency lines to express the above 2×n2 set of equations3 and

3Due to complex FRFs having real and imaginary parts
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transformed them to an overdetermined set of equations.

y(ωz) = A(ωz)x(ωz) (5.19)

where the i-th and j-th elements in yi =Ai jx j correspond to Yδ
pq =Yα

pl(K+iωC)lmYβ
mq

at frequency ωz. By concatenating all the elements at other frequencies, an overde-
termined system is obtained. The set of joint parameters in x is thus determined by
taking the generalized inverse of A.

x = A+y (5.20)

The least-squared solution can provide different joint values depending on the
chosen frequency band. For the same set of two beams coupled with a single bolt,
Tsai and Chou calculated three different sets of stiffness and damping (2×2 joint
system). Note that the substructures and assembly FRFs used in the identification
were synthesized from modal parameters extracted from the directly measured FRFs.

On the other hand, Tol and Özgüven [3] used a slightly different strategy to find
the joint parameters. They used each of the four Eqs. (5.10) to determine the joint
parameters ZJ = (YJ)−1 = K+ iωC and produced the following four expressions:

K∗ =
(

YA
jr
(
YA

rr −YAB
rr
)−1 YA

r j −YA
j j −YB

kk
)−1 (5.21a)

K∗ =
(

YB
ks
(
YAB

rs
)−1 YA

r j −YA
j j −YB

kk
)−1 (5.21b)

K∗ =
(

YA
jr
(
YAB

sr
)−1 YB

sk −YA
j j −YB

kk
)−1 (5.21c)

K∗ =
(

YB
ks
(
YA

ss −YAB
ss
)−1 YB

sk −YA
j j −YB

kk
)−1

. (5.21d)

Even though their approach falls under IRC, they called their method FRF decou-
pling. They also modelled rotations by second order central finite difference method
on the bolted beams’ interface from three translations. Their six-parameter joint
system (translational, rotational and cross coupled terms of stiffness and damping)
was used first on a numerical assembly of beams (simulated with noise) in which it
was found that each equation produced different results. They used an unconstrained
optimization scheme to find out the optimal set of parameters for which an accurate
initial guess is required. In fact, they found the first Eq. (5.21a) to be more accurate
than others which had the maximum error of 30%. They also tested their methodol-
ogy on an experimental assembly of beams. For the experimental setup, one of their
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beam was fixed which was measured, whilst the other beam was free-free (by FE
model updating). In this case, they could only use the fourth equation Eq. (5.21d)
for the joint identification. Through the identified joint parameters, they could show
good agreement in their validation measurements.

Schmitz et al. [151] used Eq. (5.10a) or only YAJB
rr as their main receptance

coupling equation and introduce the joint in terms of translational and rotational
stiffness kt ,kθ and damping ct ,cθ , respectively. The final expression is then a
function of translational and rotational FRFs with the joint parameters as unknowns
YAJB

rr = f (kt ,kθ ,ct ,cθ ). The rotational FRFs are estimated analytically from substruc-
ture A, the tool, whilst neglecting this effect on substructure B, the holder/spindle;
since it was not thought feasible to measure. Their problem can be represented
mathematically as:

argmin
kt ,kθ ,ct ,cθ

∣∣∣∣YAJB
rr −YAB

rr
∣∣∣∣= ∣∣∣∣ f (kt ,kθ ,ct ,cθ )−YAB

rr
∣∣∣∣

s.t. kθ = τ kt

cθ = ν ct

(5.22)

where τ and ν are constants due to an assumption of proportionality of rotational
stiffness and damping to their respective translational counterparts. In order to
predict the coupled FRF, they vary the joint parameters manually to obtain a sufficient
overlap with the measured FRF on the assembly. This can be regarded as a manual
parameter search in optimization. They applied the method to three different sizes of
tools having different slenderness ratios.

In a similar application is the work by Park et al. [150] in which instead of identi-
fying a set of joint parameters, they estimate the interface FRFs on the holder/spindle
YB in order to predict the coupled system’s FRF. They also used Eq. (5.10a) or YAJB

rr

and an additional coupled equation YAJB
r j expressed in Eq. (5.7). Using these two

equations and neglecting the internal FRFs of B, they formulate the interface FRFs
YB

kk as a non-linear function of rotational FRFs. If YB
kk can be expanded as below

YB
kk =

[
YB

tt YB
tθ

YB
θ t YB

θθ

]
, (5.23)

then YB
tt is easily measurable on B and the rotational counterparts YB

θ t and YB
θθ

are
the two unknowns. Using the two equations stated above, YB

θ t and YB
θθ

are cast
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as two non-linear variables for which two equations are available. The non-linear
solution is determined using a symbolic toolbox at each frequency. Note that the
rotational interface FRFs of the tool A are determined by finite element analysis.

In the above works, it can be noticed that the substructure B (spindle/holder
assembly) is usually difficult to model because of the complex structural design and
ground constraints. Ertürk et al. [167] developed an analytical framework to model
spindle–holder sub-assembly and then coupling them with the tool to obtain the tool
point FRFs. They introduced springs and dampers simulating the bearing effects
and included them in the receptance coupling by means of structural modification
method [57, 32, 168]. The joints between two connecting substructures were also
added to model the discrepancies. Their study was more on developing an analytical
framework for better modelling of such systems which laid foundation for future
work on identification.

Özsahin et al. [169] is another work on joint parameters identification between
the spindle-holder and tool. They again used YAJB

rr as the main element of the coupled
matrix referring to the tool tip FRF. In the analytical study, they could exactly identify
the joint parameters (stiffness and damping – linear and rotational including cross-
coupling terms) which is typical in a noise-free, error-free case. When they added
the noise, the parameters became frequency dependent, yet one could observe the
variation about the actual values. On the experimental case, they used the Savitzky-
Golay filtered FRFs to circumvent the sensitivity of the IRC method to the noise. The
identified joint parameters were still frequency-dependent, however, with improved
estimates.

5.2.2 IRC for joints with mass

When the model of the joint is inertial, the treatment of the receptance coupling
equations becomes different. The joint has to be considered as a structural entity
with masses on which additional equilibrium and compatibility conditions should
be satisfied. In the FBS formulation, it means that additional compatibility and
equilibrium equations have to be satisfied. This is in contrast to the relaxation of
compatibility in the above section where the number of compatibility equations
remained the same, as if for the rigid coupling. The main IRC strategies with this
type of joint have been attempted by Ren and Beards [170, 171] and Mehrpouya
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et al. [152] along with some RC substructure analysis based approaches Schmitz
and Duncan [166]. The FBS formulation for such a joint begins with the following
equations:

u = Y(f−BT
λ )

Bu = 0
where Y =


YA

YJ

YB

 (5.24)

and

YA =

[
YA

rr YA
r j

YA
jr YA

j j

]
, YB =

[
YB

ss YB
sk

YB
ks YB

kk

]
, YJ =

[
YJ

j j YJ
jk

YJ
k j YJ

kk

]
. (5.25)

The interface compatibility is given by two equations now, namely

uJ
j −uA

j =0

uJ
k −uB

k =0
(5.26)

which can be applied in Eq. (5.24) if we write the Boolean matrix B as:

B =

uA
i uA

j uJ
j uJ

k uB
i uB

k[ ]
0 −I I 0 0 0
0 0 0 I 0 −I

(5.27)

By following the same coupling procedure of Section 2.2.2.2, one obtains the general
LMFBS dual coupling equation:

YAJB = Y−YBT (BYBT )−1BY. (5.28)

As it was done in Section 5.2 and Fig. 5.4 that the respective blocks are compared
and equated. Then one proceeds to identify the joint dynamics from there. Eq. 5.28
can be expanded for all its terms. This dual system size is bigger than before and
populating the full matrix may result in loss of legibility. Therefore, we would pick
only the relevant blocks for the derivation of joint dynamics according to Ren and
Beards’ approach [170].
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YAJB =

fA
r fA

j fJ
j fJ

k fB
s fB

k



uA
r − − −⃝ −⃝ − −

uA
j − − − − − −

uJ
j − − − − − −

uJ
k − − − − − −

uB
s − − −⃝ −⃝ − −

uB
k − − − − − −

Legend: − non-joint FRFs

−⃝ joint FRFs

Fig. 5.5 A dually coupled system representing the relevant FRFs on non-joint and joint
coordinates.

First, let us inspect the interface flexibility Yint to find the joint dynamics.

Yint = BYBT =

[
YA

j j +YJ
j j YJ

jk

YJ
k j YJ

kk +YB
kk

]

=

[
YA

j j

YB
kk

]
+

[
YJ

j j YJ
jk

YJ
k j YJ

kk

] (5.29)

The interface is now the sum of boundary dynamics from the substructures, denoted
here as Ybb, and the joint FRFs YJ . The above equation then becomes

Yint = Ybb +YJ

= Ybb +(ZJ)−1

= (ZJ)−1(I+ZJYbb)

(5.30)

The combined stiffness of the interface Zint can be written in the following form:

Zint = Y−1
int = (I+ZJYbb)

−1ZJ . (5.31)

Ren and Beards [170] actually partitioned their coupled system into non-joint
and joint coordinates, thus producing four blocks of FRFs. However, they used only
the first block of non-joint FRFs for the application of their theoretical development.
In order to derive their set of equations, consistent with the notation of this thesis,
we use only the relevant blocks in the dually coupled system which is depicted in



100 Joint Identification Methods

Fig. 5.5. Redundant rows and columns can be noticed in the dually coupled system.
The non-joint FRFs indicated with the squares can be collected in the following
matrices:

YAJB
ii =

[
YA

rr −YA
r jZ11YA

jr −YA
r jZ12YA

jr

−YB
skZ21YA

jr YB
ss −YB

skZ22YB
ks

]

=

[
YA

rr

YB
ss

]
−

[
YA

r j

YB
sk

]
Zint

[
YA

r j

YB
sk

]T (5.32)

where YAJB
ii denotes the set of coupled FRFs on the non-joint coordinates and

Z11,Z12,Z21,Z22 are partitions of the interface stiffness matrix of Eq. (5.31) defined
as below:

Zint =

[
Z11 Z12

Z21 Z22

]
. (5.33)

Eq. (5.32) can also be written compactly

YAJB
ii = Yii −YibZintYT

ib (5.34)

Each Y⋆, without a superscript, represents an uncoupled block diagonal matrix in
the order the matrices appeared in Eq. (5.32). Replacing Zint from Eq. (5.31) gives

YAJB
ii = Yii −Yib(I+ZJYbb)

−1ZJYT
ib (5.35)

Similarly, the other set of FRFs relating non-joint coordinates to joint coordinates
(shown as encircled blocks in Fig. 5.5) can be cast into the following matrices:

YAJB
ib =

[
YA

r jZ11YJ
j j +YA

r jZ12YJ
k j YA

r jZ11YJ
jk +YA

r jZ12YJ
kk

YB
skZ21YJ

j j +YB
skZ22YJ

k j YB
skZ21YJ

jk +YB
skZ22YJ

kk

]

=

[
YA

r j

YB
sk

]
Zint

[
YJ

j j YJ
jk

YJ
k j YJ

kk

] (5.36)

which can also be written compactly, like Eq. (5.32) and (5.34).

YAJB
ib = YibZintYJ (5.37)
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Note that the last matrix in the above equation is the joint flexibility YJ . Substituting
Zint from Eq. (5.31) in Eq. (5.36) and solving yields

YAJB
ib = Yib(I+ZJYbb)

−1ZJYJ

= Yib(I+ZJYbb)
−1

(5.38)

where ZJYJ = I.

Generally, the receptance coupling approach would compare YAJB
ii with a cor-

responding set of measurements, say YAB
ii , or comparing YAJB

ib with measured YAB
ib ,

i.e. YAB
ii = Yii −Yib(I+ZJYbb)

−1ZJYT
ib

YAB
ib = Yib(I+ZJYbb)

−1
. (5.39)

In fact, Ren and Beards [170] went further and substituted the second of Eq. (5.39)
in its first equation

YAB
ii = Yii −YAB

ib ZJ YT
ib (5.40)

ZJ , as per IRC, can be solved easily from this equation,

YAB
ib ZJ YT

ib = Yii −YAB
ii (5.41)

In this formulation, it is necessary to measure the FRFs YAB
ib between non-joint and

joint coordinates. Although Ren and Beards [170] devised an iterative strategy to
obtain YAB

ib [161], their method’s applicability thus becomes limited. Regardless
of this, their approach on identifying the joint parameters used a constrained least
squares solution by considering multiple response functions in a given frequency
bandwidth, all concatenated together. First, the above equation is rearranged to this
form:

z = E+ y, (5.42)

where z is the vector of unknown dynamic stiffness (for example, z11,z12,z21,z22

for a 2×2 system), y is calculated by the right hand side of Eq. (5.41) and E is the
coefficient matrix obtained from the coefficients of YAB

ib and YT
ib. The constraints can

be introduced as follows:
z = Tω Ts x (5.43)

The matrix Ts maintains the shape of the dynamic stiffness matrix of the joint
(reciprocity or opposing effect of cross coupling terms etc.) and Tω is the matrix con-
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taining multiples of iω to make the vector x frequency independent. In Appendix B,
one such constraint matrix is derived for a simple joint system. Ren and Beards also
introduced various weighting functions to reduce the effect of large deviations in
their constrained least-squared approach of parameter estimation. The test-object
for their method were two rectangular beams joined by two aluminum pieces and
a steel shell element cut from a nut. They used the element to introduce flexibility
at the joint. They measured two DoF on each interface thereby making the joint
system 4×4. Like others, their joint parameters were different based on the selected
frequency bandwidth. The predicted response on the internal DoF was also quite
satisfactory up to a 1000 Hz when compared with the validation measurement.

Schmitz and Duncan [166] introduced another substructure, the so-called ex-
tended holder4 between the tool A and the spindle B. The presence of the extended
holder, denoted here by J, is thus equivalent to adding an inertial joint model (J does
not necessarily indicate a joint here but a substructure) which falls under the inertial
joint based receptance coupling approach. The aim was to identify the interface FRF
of the spindle B from the whole assembly measurements and the coupled receptances
obtained by RC. In their previous paper, Schmitz et al. [151], the authors identified
the joint parameters between the tool A and the holder/spindle B.

Their system can be depicted using our dummy substructures A and B in Fig. 5.6.
The figure shows a simplified version of their tool A, extended holder J and spindle
B assembly. In the first step, the coupled receptance YAJ

rr on the internal DoF r of A
is calculated as:

YAJ
rr = YA

rr −YA
r j
(
YA

j j +YJ
j j
)−1 YA

jr . (5.44)

Note that we used the first block of matrix in Eq. (5.32) whereof Z11 = YA
j j +YJ

j j.
With the same strategy, YAJ

rr is coupled with YB
kk in the second step to give

YAJB
rr = YAJ

rr −YAJ
rk

(
YAJ

kk +YB
kk
)−1 YAJ

kr . (5.45)

Using measurements on YAJB
rr = YAJB,meas

rr , the spindle interface FRF YB
kk is thus

calculated from the above equation:

YB
kk = YAJ

kr
(
YAJ

rr −YAJB,meas
rr

)−1 YAJ
rk −YAJ

kk . (5.46)

4Even though the extended holder is introduced as a sub-assembly, already composed of two
substructures rigidly coupled together by receptance coupling, the method is easily extendable to
multiple substructures, as shown in their paper.
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Fig. 5.6 Receptance coupling of three structures in two steps. In the first step, A and J are
coupled forming the sub-assembly AJ. In the second step, AJ is coupled to B to form the
final assembly AJB. Only a set of simplified DoF is indicated here. According to [166], A
would be called the tool, J the extended holder, and B the spindle with no internal DoF.

The measurements are performed on the extendable tapered tool holder assembly
whilst predicting analytically the individual receptances of the extended holder and
the tool by the Euler-Bernoulli beam theory. It is remarked that the interface FRFs
on J are obtained by the backward finite difference approach [65]. They showed
the method worked fairly using Eq. (5.46). However, they needed to include some
frequency and amplitude offset by introducing a joint model with damping and
stiffness parameters, as per their previous approach [151]. Later, Kumar and Schmitz
[172] used the same method but with the rotational FRFs calculated directly by
the Euler-Bernoulli beam theory (instead of approximating by the finite difference
formula) and showed improved prediction of the coupled system. The same method
was also applied on a machine by Cheng et al. [173] by taking into account the
rotational speed effect of the rotating tool head type machines.

Mehrpouya et al. [152] compared the two types of joint models using the IRC
approach. They refer to the IRC approach when using the quasi-static joint whilst
the inertial joint introduced in the IRC method is called the point mass model.
The interface rotations on substructures were calculated analytically whilst using
measured and predicted translations. Their experimental case-study was a modular
tool assembly used in the milling process with the interchangeable cylinder as
substructure A and the chuck as B. They measured three translational FRFs on
the assembly, namely, YAJB

rr ,YAJB
r j and YAJB

rk since it was easily possible due to
the simplicity of the geometries. The inertial joint model was modelled with no
cross-coupling between translations and rotations, as follows:
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YJ =

kt + iωct −mtω
2

kθ + iωcθ −mθ ω2


−1

(5.47)

where kt ,ct ,mt are translational stiffness, damping and mass coefficients of the joint
and likewise are the rotational counterparts for the subscript θ . Using the identified
joint to recouple with A and B by both the joint types showed significant differences
with each other as well as with the validation measurement near the resonances.

5.2.3 Concluding remarks on IRC

After reviewing the major IRC based methods, one can draw the process schematics
as shown in Fig. 5.7. The mathematical treatment was seen to be different for the
joint models. In this way, the approach becomes like a grey box in which a priori
assumptions have to be made, as indicated in the figure. Due to the sensitivity
of the methods to small unavoidable errors and noise, direct FRFs were seldom
used. Instead the efforts were made to either apply modal or other filters, or update
FE models, or use analytical models wherever possible. All the works tried to
include interface rotations by computing them from explicit formulation, or by finite
difference method, or implicitly included them by multi-point connection.

The assembly FRFs are always required to be measured for the experimental
test-studies by using one or more elements of the coupled matrix. This provides a
set of equations from which the joint can be obtained. The identification always
comes out frequency dependent (noisy) which then requires some sort of parameter
estimation by fitting based optimization schemes. In fact, the core difficulty lies in
this aspect of the identification process in spite of simple test-geometries and very
small joint systems – mostly 2×2 or 4×4 in the case of Ren and Beards [170].

In short, the general FBS framework provides an insight into the various IRC
methods. It is almost impossible to go into details of each method, the mathematical
links and major contributions of the research papers were outlined based on the six
elements of general joint identification approaches (Section 5.1).
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Fig. 5.7 Process flow of Inverse Receptance Coupling

5.3 Inverse Substructuring

Inverse substructuring (IS) is a class of methods suitable for dynamic identification
of isolator properties connected between two substructures. These methods assume
a certain form of the underlying mathematical quantities such as stiffness (refer to
Section 5.1.3) to identify the joint element(s).

The vibration isolators or resilient elements are used to isolate the structure borne
noise and vibration. They can be found in many engineering disciplines including
auto-mobile engine mounts, resilient supports for buildings, flexible couplings for
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Fig. 5.8 Substructures A and B to be coupled through a resilient joint connection ZJ

shipboard machinery and small isolators for domestic products [174]. Like other
frequency based methods discussed herein, the preferred quantity, used for describing
the resilient elements is also frequency dependent dynamic stiffness, denoted here
by ZJ such that

ZJ =

ZJ
j j ZJ

jk

ZJ
k j ZJ

kk

 . (5.48)

Even though the IS methodology is based on the work by Zhen et al. [59, 175],
the FBS framework presented in Chapter 2 is used, as done throughout this chapter.
In order to mathematically identify ZJ from an assembly, let us create a coupled
system by the primal coupling procedure presented in Example 1 of Section 2.2.2.1
for two substructures. In this case, three substructures or three dynamic stiffness
matrices have to be considered, as shown in Fig. 5.8. The two connecting elements
in the figure can be considered to be resilient. Let ZA and ZB be defined as:

ZA =

ZA
rr ZA

r j

ZA
jr ZA

j j

 , ZB =

ZB
kk ZB

ks

ZB
sk ZB

ss

 (5.49)

Note that the order of the internal s and interface k DoF in the partitioned matrix ZB

is reversed for didactic reasons. The three stiffnesses ZA, ZJ and ZB are assembled
by first putting them in a block diagonal matrix Z = diag(ZA, ZJ, ZB) and the
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localisation matrix L, namely

uA
r

uA
j

uJ
j

uJ
k

uB
k

uB
s

︸ ︷︷ ︸
u

=



I 0 0 0

0 I 0 0

0 I 0 0

0 0 I 0

0 0 I 0

0 0 0 I


︸ ︷︷ ︸

L



qr

q j

qk

qs

︸ ︷︷ ︸
q

(5.50)

with q as the primal DoF set. The assembled dynamic stiffness ZAJB is then obtained
by:

ZAJB = LT ZL,

ZAJB =



ZA
rr ZA

r j 0 0

ZA
jr ZA

j j +ZJ
j j ZJ

jk 0

0 ZJ
k j ZJ

kk +ZB
kk ZB

ks

0 0 ZB
sk ZB

ss


.

(5.51)

In the dynamic stiffness (or impedance) space, the coupling leads to summation
of the dynamic stiffnesses corresponding to the boundary. The above equation can
be written as a sum of three matrices

ZAJB =



ZA
rr ZA

r j 0 0

ZA
jr ZJ

j j 0 0

0 0 0 0

0 0 0 0


+



0 0 0 0

0 ZJ
j j ZJ

jk 0

0 ZJ
k j ZJ

kk 0

0 0 0 0


+



0 0 0 0

0 0 0 0

0 0 ZB
kk ZB

ks

0 0 ZB
sk ZB

ss


(5.52)

or in a compact form
ZAJB = Z̄A + Z̄J + Z̄B (5.53)
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where the overbars indicate the quantities with additional zero blocks. The isolator
stiffness Z̄J can thus be found by subtracting Z̄A and Z̄B from Z̄AJB, or

Z̄J = ZAJB − Z̄A − Z̄B (5.54)

If ZA, ZB and ZAJB are calculated by inverting their respective FRF matrices
YA, YB and YAJB, respectively, then this approach would be similar to impedance
modelling or the classical frequency based coupling methods (discussed in Chapter 2),
since the inversions of the full FRF matrices lead to inaccuracies [40]. Furthermore,
it requires measurement of the full assembly AJB and full substructure A and B.
Since one needs to determine ZJ , only connection DoF ( j and k) can be sufficient.
Let us assume that one has YAB

j j and YAB
kk from which the corresponding stiffness can

be obtained, and likewise for substructures, then the following equation is sufficient
for the identification:

ZJ =

ZA
j j +ZJ

j j ZJ
jk

ZJ
k j ZJ

kk +ZB
kk

−

ZA
j j 0

0 ZB
kk

 . (5.55)

Even with this, the substructure stiffnesses are still needed. It is remarked
that up until now, no assumption has been made about the resilient element. In
fact, if the assumption about the resilient elements being massless compared to the
substructures, are asserted, then the dynamic stiffness matrix of the element would
have the off-diagonal terms equal to the diagonal terms in magnitude. This special
property then provides a basis for the in-situ substructuring [176, 10, 174, 11]. The
isolator dynamic stiffness then becomes

ZJ =

−ZJ
jk ZJ

jk

ZJ
jk −ZJ

jk

 , (5.56)

since ZJ
j j = −ZJ

jk = −ZJ
k j = ZJ

kk and the reciprocity condition is applied. This
property leads to the dynamic stiffness of the full system to become

ZAJB =

ZA
j j −ZJ

jk ZJ
jk

ZJ
jk −ZJ

jk +ZB
kk

 (5.57)
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Fig. 5.9 General process flow for in-situ Inverse Substructuring

By using only the cross terms, the isolator’s dynamic stiffness can be obtained.
ZAJB is calculated from the inverted measured FRFs and just by inspecting its off-
diagonal terms, the isolator dynamics can be identified i.e. ZAJB

jk = ZJ
jk. The in-situ

identification does not require any substructure measurement. Its process flow is
described schematically in Fig. 5.9. This type of identification becomes possible
when the connection DoF in the assembly are accessible for measurement. Some
expansion techniques can be used to obtain a full set of interface FRFs [92].

IS has, indeed, gained a lot of popularity and successful applications have
been shown in the literature, see for example, [176, 10, 177]. In describing the
interface dynamics, rotations have also to be considered in IS. Haeussler et al. [11]
in their experimental study of the resilient joints used a virtual point type interface
including translations and rotations. They have also investigated the negligible mass
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assumption and the cross-coupling effect of different translational and rotational
coordinates in their 12×12 system for the isolator. Other than identifying the isolator
properties, FRFs of passive subsystem also need to be predicted or decoupled (see
[7] on in-situ decoupling). An application to non-resilient joint systems has also
been shown by Wang et al. [178]. In [179], linear inverse sub-structuring method
is extended for non-linear systems, which can be applied to predict the FRFs of
non-linear substructure only from the system-level FRFs of the coupled non-linear
system.

5.4 Substructure Decoupling

Joint identification by Substructure Decoupling (SD) approach consists in removing
(decoupling) the effect of substructures from their assembled system. SD is more
general than IRC and IS, primarily due to the fact that it does not assume any a
priori joint model. Thus, the identification methods in this class can be regarded as a
black-box type identification.

Using the FRF matrices of the coupled system, the substructures’ FRF are
decoupled by their fictitious FRFs (preceded by negative signs). In Section 2.2.3, the
decoupling process was demonstrated to identify one substructure from an assembly
of two whilst neglecting any joint effects. It was seen there that the interface in
this process may very well encompass the internal DoF set, the so-called extended
interface. In fact, it can be argued that, other than the inherent ill-conditioning
problem, the different formulations of the extended interface stem from the inability
to account for compliance at the actual joint in substructure decoupling. Those
interface formulations may improve substructure results in some applications but
cannot be generalized [37]. By using SD, the joint between two jointed substructures
can also be found in a similar way as done in Section 2.2.3.

In order to find the joint dynamics, we begin again by the three-filed formulation
as below:

u = Y(f+g)

Bu = 0

BT λ =−g

where Y = diag(YAJB,−YA,−YB) . (5.58)
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The substructures receptances YA,YB are decoupled by the negative signs. The
equations can be (dis-)assembled by the LMFBS approach, as per Section 2.2.2.2 to
yield the following joint equation

ȲJ = Y−Y BT(B Y BT)−1 BY (5.59)

In this identification of joint ȲJ , the following signed Boolean matrix can be
used, assuming YAJB is primally coupled.

B =

uAJB
r uAJB

j uAJB
s uAJB

k uA
r uA

j uB
s uB

k −I 0 0 0 I 0 0 0

0 0 −I 0 0 0 I 0

(5.60)

The compatibility is applied on the internal DoF in order to decouple their effect and
obtain the joint dynamics. Since ȲJ is the result of a dual coupling, attention should
be paid to the size of ȲJ . In order to understand this, let NA, NB be the number of
DoF (internal + boundary) in A and B, respectively, and NJ be the number of DoF on
either side of the joint, then the total number of DoF for primally coupled AJB are
NAJB = NA +NB. From Eq. (5.59), the size of N̄J = NAJB +NA +NB = 2NA +2NB.
In fact, one only needs to retain NJ rows and columns from ȲJ and so the final joint
FRF matrix is denoted by YJ .

The SD process for a typical joint identification purpose is depicted in Fig. 5.10
indicating its generality as compared to IRC and IS. However, a great limitation in
the joint identification by the SD method is that it assumes that the joint dynamics are
explicitly present in the coupled system, represented here by YAJB, unlike the inverse
receptance coupling which exploits the implicit dynamics YAB. If the interface
DoF are not accessible in the assembly, SD based joint identification seems quite
challenging. Several works by D’Ambrogio and Fregolent [35, 36, 56, 37, 180] and
Voormeeren et al. [50] fall in the category of substructure decoupling or also called
direct decoupling. However, these works targeted one of the two substructures as
their main identification object instead of explicitly finding the joint. In terms of joint
identification, the SD approach has only recently gained some attention including
the work presented in this thesis. Expansion based strategies are needed to express
the explicit joint effects, as shown in Fig. 5.10.
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In fact, the very first numerical application of joint identification by SD can be
attributed to Klaassen and Rixen [163]. However, they used the SEMM method to
create a coupled system that consists of the explicit joint DoF. The experimental
test-case joint of this thesis –the blade-root joint– has been investigated by this
approach. The SEMM based substructure decoupling method will be explained in
the next section and its results will be presented in Chapter 6 and 7. It will be seen
that this approach enabled to identify a large joint system representative of the type
of interfaces involved in this joint.

5.5 SEMM based Substructure Decoupling

In Chapter 3, the SEMM method was already explored to create an expanded
substructure model. In the substructure decoupling of Section 5.4, it was pointed
out that a coupled model YAJB with explicit joint dynamics is needed to enable a
joint identification. Keeping this as our goal, this section presents how SEMM can
be used on assembly level to predict an expanded assembly model YS,AJB from the
expanded sub-models YS,A and YS,B. The method is iterative in nature, since it
requires successive coupling and decoupling procedures to determine the joint. The
method was originally proposed by Klaassen and Rixen [163] on a numerical truss.
Its first practical application on the blade-disk assembly was presented by Saeed et
al. [70]. The following subsections stipulate the step-by-step approach.

5.5.1 Coupled numerical model

In order to create a numerical model of a single component, one could refer to a finite
element software, as was done in Chapter 3. When one wants to create a numerical
model of two connected substructures, it can be done by either coupling them rigidly
or by adding some finite dynamic flexibility whose actual value is not known a priori.
Since the expanded models of A and B (YS,A and YS,B, respectively) were generated
by SEMM, they shall be used as a basis for the coupled system’s numerical model,
denoted here by YN,AJB. What remains to be done is adding the finite dynamic
flexibility, called the guessed joint accelerance (or receptance, mobility) YJ

n. So, the
coupled numerical accelerance YN,AJB can be written as:
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YN,AJB
n = f bs(Y,B) with



Y = diag(YS,A,YJ
n,YS,B)

B =

uA
r uA

j uJ
j uJ

k uB
s uB

k[ ]
0 −I I 0 0 0

0 0 0 I 0 −I

(5.61)

where the index n = 1,2, . . . indicates the iteration number. The joint needs to be
updated at every iteration and as a result, YN,AJB

k would also be updated.

5.5.2 Coupled experimental model

The measured FRFs on the coupled system Yexp,AB contain joint dynamics implicitly.
From this experimental model, an overlay model Yov,AB is taken as a subset and
coupled with the numerical model YN,AJB

k , according to Eq. (3.30). Note that
this overlay model remains the same at each iteration. Obviously, the location of
measurements on AB should be coherent with the DoF in the numerical model. The
FRFs of the assembled system shall be coupled with YN,AJB which is a combination
of two sub-models YS,A and YS,B. Hence, the measurement locations on AB must
correspond to the locations on A and B.

5.5.3 Coupled hybrid model

With the above coupled numerical and overlay models, the hybrid model is generated
from Eq. (3.30) such that

YS,AJB
n = semm(YN,AJB

n ,Yov,AB) . (5.62)

The hybrid model is also updated iteratively. Since YN,AJB
n has a guessed linear joint

(or no joint can also be a tentative solution) at n = 1 which may be far from the
actual one, so there may exist a high expansion error |YN,AJB

n −Yov,AB|.
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Fig. 5.11 The SEMM method at n-th iteration applied to an assembled system for joint
identification. The quantities in the coloured blocks (2,4 and 6) are updated at each iteration
k. The sign (+) indicates coupling of substructures.

5.5.4 Identifying the joint

With the above models, it is now possible to decouple the joint dynamics by Eq. (5.63)

YJ
n+1 = f bs(Y,B) with Y = diag(YS,AJB

n ,−YS,A,−YS,B) (5.63)

YJ
n+1 is then substituted in Eq. (5.61) to update the numerical model YN,AJB

n+1 , to
subsequently generate an updated hybrid model YS,AJB

n+1 in Eq. (5.62) and, thereafter,
to decouple the joint YJ

n+2. The iterative process is graphically illustrated in Fig. 5.11.
At each iteration, the updated joint improves because this is the only part that is
updating the numerical model YN,AJB. The process is repeated until the expansion
error ε = |YN,AJB

k −Yov,AB| between the numerical and the experimental model is
reduced below a given threshold. It should be noted that:

1. The initial guess of YJ
n at n = 1 can be a blank joint i.e. the substructures can

be left uncoupled [163, 70].

2. YJ
n+1 obtained by LMFBS equation has all the rows and columns correspond-

ing to the DoF of both the coupled and uncoupled models. It is necessary to
retain only the independent entries [56].
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3. The method converges faster by using weighted pseudo-inverses with higher
weights assigned to the boundary DoF in Eq. (5.62). This aspect will be
discussed in Section 5.5.6 and Chapter 7.

5.5.5 Interpretation

To identify the joint dynamics between two substructures A and B, we assume that
we have trustworthy expanded models of the substructures, namely YS,A and YS,B.
To couple these sub-models, we make a first estimate of the interface dynamics
YJ

1 to build a first estimate of the assembly YN,AJB
1 which will be improved with

measurements on the assembly Yov,AB by the SEMM procedure YS,AJB
1 . An im-

proved estimate of the joint YJ
2 is then evaluated from this updated assembly model

by decoupling substructures A and B. The new joint estimate YJ
2 is then used to

create a new assembly model YN,AJB
2 that is again updated YS,AJB

2 with the same
measurements Yov,AB and from which a further estimate of the joint dynamics YJ

3 is
obtained by decoupling A and B. This iterative procedure can be repeated, assuming
it converges to a joint for which the discrepancy between the model of the assembly
and the measurements are minimized.

5.5.6 Weighted pseudo-inverses

It is interesting to point out that, when integrating the measured information in
the parent model for the assembly, the inverses in Eq. (3.29) can be computed as
weighted pseudo inverse. A diagonal weighting matrix W having different weights
w for the DoF set is defined by

W = diag(wi,wb) (5.64)

where wi and wb correspond to the weights of internal and boundary DoF as before.
Dropping the superscript of the coupled parent model’s accelerance for clarity, the
right-side pseudo inverse in Eq. (3.29) is then given by

Y+
cg = W YT

cg ( Ycg W YT
cg )

−1, (5.65)
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and the left-side pseudo inverse

Y+
ge = ( YT

ge W Yge )
−1 YT

ge W . (5.66)

Recall that g = {i,b} is the global DoF set and c,e ∈ i are the DoF set where
measurements are performed. The above expressions hold if Ycg has full row rank
and Yge has full column rank. In case of rank deficiency or ill-conditioning, the
inverses can be computed by singular value decomposition with the smallest singular
values truncated.

The weighted pseudo inverses help expand the dynamics to the unmeasured
DoF in a weighted least squares sense. Particularly, the physical boundary DoF ub

are assigned a higher weighting factor because these are the DoF to be identified
in the process. This results in a decrease in the subsystem internal effects and an
improvement of the convergence, as will be shown in Chapter 7.

5.6 Other identification classifications

In Sections 5.2, 5.3 and 5.4, many linear joint identification methods based on the
proposed classification of IRC, IS and SD have been reviewed. It will be unfair to
claim that other methods in literature also fall in these three classes. In fact, there
may exist numerous other methods which use various other special techniques. They
may not be put in these classes simply because they use a different formulation. One
such method is by Hanss et el. [181] which uses fuzzy-valued parameters to model
the uncertainty and variability of the model parameters identified from the measured
data. It is also remarked that in almost all the the discussed identification methods,
the uncertainty has not been accounted for obvious reasons of additional effort
and absence of a robust and practical uncertainty framework suitable for inverse
FRF problems. Some recent works for forward problems have been developed by
Voormeeren et al. [49], Meggitt et al. [182] and Trainotti et al. [183].

Besides the jointed structures can easily become non-linear thus introducing yet
another challenge in the identification process. For this purpose, parametric models
are proposed to represent the non-linearity and energy dissipation due to slip in the
joints [184]. Two review articles by Gaul and Nitsche [185] and Ibrahim and Pettit
[141] provide a good primer on friction damping and non-linear identification in
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bolted joints. For state-of-the-art in non-linear identification, one can refer to the
recent review article by Noël and Kerschen [186].

5.7 Summary

This chapter is about the identification of a joint between two substructures. The
joint identification being an inverse-problem consists in determining a set of joint
parameters from the dynamics of the assembled system to account for the difference
that exists between the assembled system and the substructures. The first section
puts forth the basics of a general joint identification approach and introduces the
essential elements including substructure and assembly dynamics, joint model and a
mathematical framework. Based on the mathematical treatment and the approach,
three classifications of joint identification are suggested, namely inverse receptance
coupling (IRC), inverse substructuring (IS) and substructure decoupling (SD). These
three classes of methods are reviewed from a mathematical point-of-view. The
differences among all three are also presented in the form of their process flows.

The IRC methods, being the most popular in the tooling industry, have been
extensively applied by many researchers. It has been demonstrated by the FBS
approach that the different approaches stem from the same set of equations – usually
one to two equations, and rarely three equations. The main differences in the
approach are found in the treatment of rotational coordinates and fitting methods.
The identified joint systems have been very small. The mathematical derivation for
the joint also differs if the joint model is quasi-static or inertial.

The IS class of methods is more suitable to resilient elements where vibration
isolation between a source subsystem and a receiver subsystem is the main objective.
Using the FBS approach, it is shown that they use primal assembly of dynamic
stiffnesses, instead of FRFs. They also employ a special topology of the dynamic
stiffness by assuming massless isolators. Thus, the off-diagonal terms in the assem-
bled stiffness matrix become a property of the isolator. Consequently, the isolator
dynamic stiffness is found from in-situ assembly measurements whilst avoiding any
substructure measurements.

A more broad and general class of joint identification is by SD which do not
require any a priori joint model knowledge. These methods decouple the substruc-
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ture’s internal dynamics from the assembly model. However, due to the need of a full
coupled matrix with explicit presence of the joint dynamics, they require expansion
methods. Therefore, their applications have been limited.

Based on the SD method, the SEMM based decoupling is discussed in detail
towards the end of this chapter. This method expands the measurements on a coupled
system in order to obtain the explicit joint dynamics. This enables one to identify a
joint by substructure decoupling which is more suitable to inaccessible interfaces
and large joint systems. This method will be applied to the test-subject of this thesis
in the following chapters.



Chapter 6

On the Interface Description of the
Blade and the Disk

Part of the work described in this chapter was previously published in [62, 69, 71].

In Chapter 5, the joint identification method based on the SEMM expansion was
presented. As with any joint identification method, the interface dynamics (measured
or expanded) have to be adequately described. This implies that not only the transla-
tions but also the rotational DoF should be included in the interface. In the SEMM
expansion, a numerical model that consists of only translations is usually generated
by a Finite Element method (or its reduced form), as shown in Chapter 3 and 4.
Alongside, an experimental model is also required that consists of the translational
FRFs due to the reasons discussed in Chapter 5. The resulting expanded model
by SEMM also consists of only the translational FRFs. Therefore, the rotational
information at the interface is yet to be derived. The rotational dynamics can possibly
be extracted from the limited expanded translational FRFs1 in the expanded model.

Even if an interface consists of translations and rotations, their number and
positions always have to be explored in an experimental setting due to uncertainty of
the contacting DoF in the assembly. In order to understand and physically observe
the variability at the interfaces, the static contact under a fixed pre-load was studied

1Despite being full rank, the condition number of a SEMM expanded model increases when extra
numerical DoF (to be expanded on the interface) are included, as shown in Section 3.6.2. Therefore,
the number of DoF to be expanded have to be limited. Whilst there are no hard guidelines on this
number as yet, one is supposed to make a judgement call on this matter.
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Fig. 6.1 Testing the static contact conditions on three different blades on the VITAL bladed-
disk. The left and right pictures of each blade correspond to the two contacting sides
[187].

on the VITAL bladed-disk [187]. Strips of changeable colour were installed on three
blades (blade number 10, 11 and 12) when subjected to a certain pressure. The strips
were carefully glued on these blades which were then assembled in their respective
disk-slots by tightening the bolts. After carefully removing them, the variable and
unpredictable patterns were observed on the blades, as depicted in Fig. 6.1. In all the
three cases shown, a strong inhomogeneity of the blade attachment is clearly evident.
Its effect on the structural dynamics of the whole assembly can then be considered
to be more pronounced.

The above study indicates that it is of paramount importance that one determines
in advance a certain number of interface DoF on more representative locations.
This is usually achieved by performing sensitivity tests and knowing to what extent
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Fig. 6.2 A single blade and disk assembly showing the node locations. In this section, the
indicated nodes o and i correspond to response (output) and force (input), respectively.

(frequency bandwidth), a reasonable prediction can be made. These aspects are
mainly the objective of this chapter for the blade and the disk coupling interfaces. To
characterize these interfaces, two sensitivity studies are performed in the following
sections: a numerical translational DoF based analysis in Section 6.1 and a test-
based mix of translational and rotational DoF analysis based on the virtual point
methodology in Section 6.2.

6.1 A numerical investigation of the blade-disk inter-
face

This section presents a numerical analysis on a single blade connected with the disk
of Fig. 6.2 by perturbing the interface between the blade and the disk. The coupling
of the two components is achieved by the LMFBS coupling method described in
Section 2.2.2 without any joint effects. That is, a rigid coupling is realized by
coupling different DoF to be shown later.

The disk as a stand-alone substructure is constrained at the centre whereas the
blade is not constrained. Both the disk and the blade in this study are made of Steel
with Young’s modulus E = 206 GPa and density ρ = 7800 kg/m3. The numerical
models are generated in ANSYS using solid brick elements. All the DoF in this
type of element are translational. A sufficient mesh refinement is performed to
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Fig. 6.3 An indicative set of nodes on the interface of the blade. The disk has the same set
of nodes, generated from congruent meshing. Each node has three DoF. (a) All the finite
element nodes on the interface are selected as master nodes for Craig-Bampton reduction. (b)
An example of the nodes to be considered for coupling the blade and disk for the interface
sensitivity analysis.

achieve convergence of the lower modes. Since a full disk computational model
is required instead of a sector, a model order reduction was done according to the
Craig-Bampton method [13] by selecting the whole interface (490×3 = 1470 DoF)
and an internal node (1×3 = 3 DoF) as the master DoF and a set of fixed interface
modal coordinates. The different node labels are indicated in Fig. 6.2. The blade
finite element model was also reduced by selecting the same set of master DoF as
on the disk. An indicative set of master DoF set is shown in Fig. 6.3. From the
reduced system matrices, the FRF models are calculated by using the subsets of
normal modes (SNM) [28, 111].

The FRFs obtained by keeping different number of normal modes in the modal
superposition method revealed some interesting findings. Fig. 6.4 shows the drive-
point FRF of the disk substructure (at i-th DoF in X-direction in Fig. 6.2) constructed
by different normal modes. The solution required high number of modes at least up
to 100 for the non-resonance response, as seen clearly in Fig. 6.4. If the disk FRFs are
generated with 20 normal modes and subsequently coupled with the blade (having
the same number of modes) according to the LMFBS method, then the reconstructed
coupled response in Fig. 6.5 looks quite noisy. The response is captured well around
the resonances but the remainder part has a lot of spurious peaks. Note that all
the interface DoF are used in the coupling of FRFs; the only deficiency in the
substructure FRFs comes from the lack of sufficient number of modes.
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In Rixen [48], the effect of measurement inaccuracies was investigated theoreti-
cally covering mainly three important factors: namely, pole-shifting, inconsistent
modal content and measurement noise. These phenomena can cause spurious peaks
in the coupled system which can be wrongly interpreted as modes of the coupled
system. In the present case of the spuriousness in Fig. 6.5, we have investigated only
one factor i.e. inconsistent modal content. By including a small number of modes to
describe the disk substructure, the calculated FRFs are not true FRFs, as indicated by
the moving anti-resonances. Since anti-resonances are local to each FRF, in contrast
to the resonances as global properties, the modal content is perturbed in the disk
for the selected set of 20 modes. Consequently, the spurious peaks are observed
in the coupled blade-disk system in Fig. 6.5. This problem can be compared to an
experimental substructure when the modal residuals (upper) are too significant to
ignore. The resulting coupling will be detrimental, as shown here for the numerical
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case. For more mathematical details on this subject, the readers should refer to Rixen
[48].

In the discussion to follow, 100 modes are included to compute the blade and
disk FRFs. From these FRF models, we select only a few nodes to couple the blade
and the disk in order to predict the response of the reference system, as indicated
in Fig 6.3. The intent is to simulate an experiment in which only a few DoF can be
measured. So by doing this, it will be estimated which and how many translational
DoF should at least be considered to define a proper interface. Since there are
numerous DoF at the interface, the rotations are implicitly included in the coupling
process [66].

By consecutively including one, two, three and four number of nodes per side of
the interface (i.e. there are two sides of the interface and 3 DoFs per node), the FRFs
reconstructed for the coupled system using the LMFBS method are shown in Fig.6.6.
The interface nodes are also shown to the left of each sub-figure. The comparison is
made with the reference FRF which is calculated by coupling all the interface DoF,
as it was done in Fig 6.5.

The results improve by successively increasing the number of nodes or DoF.
Clearly, 1 interface node per side (6 DoF for the total interface) are not enough in
Fig. 6.6(a). By considering 2 interface nodes per side (12 DoF – Fig. 6.6(b)), the
coupling has improved up to 1200 Hz. Since the damping is not included, differences
in the amplitude peaks at resonances are ignored. The first high modal density region
between 600 Hz to 760 Hz is very well approximated even with just two interface
nodes per side. It is further seen quantitatively in Table 6.1 that mode 3, 4 and 5 have
a small error of less than 2% with just 2 nodes per side. This implies that the choice
of nodes gives nearly rigid behaviour of the interface for these frequencies. The high
frequency region, of course, would need more DoF for a better reconstruction. The
choice of number of interface nodes depends on the modes of interest.

For the case of 2-node interface of Fig. 6.6(b), a further sensitivity is done
against the distance between the two nodes which is presented in Fig. 6.7. The
relative error is high if the two nodes are closely spaced. It starts decreasing as
the distance increases, however, an increasing error can be noticed if the nodes are
placed at the edges especially for the first mode. The FRF shown earlier in Fig. 6.6(b)
corresponded to the location that had the lowest error.
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(b) 2 interface node per side
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(c) 3 interface node per side
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Fig. 6.6 FRFs obtained by the LMFBS method on the bladed-disk by considering different
nodes per side. Each node is described by 3 DoFs.

6.1.1 Remarks on the numerical sensitivity analysis

From this analysis on a numerical test system, it is evident that the final coupled
response (without a joint model in between) is highly sensitive to the location and
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Table 6.1 Relative error in natural frequencies of the coupled blade and disk by the LMFBS
method.

Nodes per side Mode1 Mode2 Mode3 Mode4 Mode5

1 15.9% 55.4% -2.4% -3.7% 17.7%

2 -8.8% -5.2% -0.2% -1.4% -1.5%

3 -6.1% -3.4% -0.2% -1.1% -1.2%

4 -4.5% -2.7% -0.2% -0.8% 1.1%

5 -4.1% -2.2% -0.2% -0.6% -0.8%
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Fig. 6.7 Relative error in modal frequencies for 2-interface nodes per side as a function of
distance between the nodes. fre f is the reference frequency of the reference system.

number of DoF. Since these DoF are selected in a non-collinear way (no three DoF
fall on a line for more than 1 node-per-side cases), the rotational effect is implicitly
included in the interface [66]. Hence, a better coupling system response is observed
for two or more nodes-per-side cases. This means that this type of interface in which
only two sides are considered, at least two nodes-per-side (or 12 translations) must
be measured for a reasonably representative coupled system. On an actual system, a
12×12 FRF matrix should be constructed for each substructure. For this case, the
nodes should neither be right at the edge nor in the middle of the interface. This study
thus gives a great insight on how to approach this type of interface experimentally. It
should also be remarked that only two sides of this interface are considered in the
numerical tests. The actual interface has also the third side for fastening purpose, as
will be seen later. One can thus anticipate a bit more complex interface behaviour in
an experimental setting to be discussed in the next section.
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Fig. 6.8 The process for inspecting and validating an interface through the SEMM decoupling
method

6.2 An experimental investigation of the blade-disk
interface

An interface provides the links or paths through which the dynamic coupling between
substructures is established. The more accurately they are measured or expanded,
the more accurate will be the coupled system’s predicted dynamics (also for the
decoupling or joint identification). Therefore, it is essential that the interface is
described appropriately.

In this section, different cases of interface coupling of the actual blade and
disk are studied. Since there is some compliance at the interfaces in the actual
blade-disk, a rigid coupling of the blade and disk cannot produce the response of
the reference assembled system (measured). A joint model has to be inserted in
between the two substructures. The SEMM based decoupling method, as presented
in Section 5.5 is then used to identify the joint. A detailed discussion on the method
and its convergence is done in Section 7. Furthermore, to make the comparison of
interfaces fair, the identified joint dynamics are not compared with each other as the
joint system and size, depending on the interface type, would be different. Instead,
the identified joint (converged) for each interface type is recoupled to the blade and
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Fig. 6.9 Assembly of the blade and disk. Due to limited data acquisition system channels
availability, the assembly measurements were carried out in two steps. The picture of
the assembly shown is one of those steps in which the sensors are mounted on the blade.
The arrows represent the locations of reference FRF measurements for validation. The
measurement locations of sensors and impacts are identical to those on the single blade and
disk.

disk and compared with the reference FRF measurements which were not used in
the identification process. This process is depicted schematically in Fig. 6.8.

6.2.1 Measurements on the assembly

Since this process requires a set of measurements on the assembly, in addition to the
individual substructures (already shown in Chapters 3 and 4), an actual measurement
campaign had to be conducted. The measurements on the assembly presented here
were a part of campaign-2 discussed in Section 3.5 and 3.6. In order to identify the
joint using the SEMM decoupling method, the assembly AB should have the same
measurement locations as on the substructures A and B. Therefore, all the sensor
and impact locations of Fig 3.8 are retained whilst performing measurements on the
assembled blade and disk.

Figure 6.9 shows the sensors (triaxial accelerometers) and impacts positions for
reference (validation) measurements. The key details regarding the experimental
setup and the different models are consolidated in Table 6.2.
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Table 6.2 Measurement channels and models details for the joint identification

Description Blade A Disk B Assembly AB

Number of response channels (α) 15 15 30

Number of impacts (β ) 18 19 37

Experimental validation channels – Figure 6.9

Total internal DoF (γ = α +β ) 33 34 67

Size of experimental FRF matrix Yov 14×18 14×19 27×36 2

Number of Boundary DoF 3 27 27 –

Size of numerical FRF matrix 60×60 61×61 – 4

Size of hybrid FRF matrix (before VP transformation) 60×60 61×61 –

6.2.2 Translational DoF interface

In the numerical models of the blade and disk, some translational DoF on the mating
surfaces are selected as representative boundary DoF (Figure 6.10b and 6.10c) which
are then expanded over in their respective hybrid models. Since the expansion is
done by virtue of measurements on the internal DoF, it is assumed that these DoF can
properly represent the interface DoF. However, it is not true for any arbitrary set of
interface DoF, because different interface DoF combinations will produce different
effects (as discussed in Section 6.1 and to be discussed next).

It is seen in Figure 6.10 that the blade-root joint has three mating sides. A total of
27 translational DoF (9 nodes) are selected on these sides, indicated in Figure 6.10b
and 6.10c. The nodes are shown only on the blade. Of course, a corresponding set
is also selected on the disk interface. Among these nodes, multiple combinations
can be tried. We examine only two cases of 12 DoF per substructure (24×24 joint
model) here:

Case 1: Coupling of the DoF at nodes {1,3,4,6} – two physical nodes on the left
and two on the right side, as shown in Figure 6.11a.

2One sensor channel had unusually high noise and it had to be discarded, therefore, the exper-
imental FRF matrices are one channel short for the blade and disk and two channels short for the
assembly. However, one response channel and one input channel was additionally left out for the
validation in the assembly.

3These DoF are inaccessible and expanded over. Some or all of the boundary DoF are then used
to represent the interface.

4The size of the coupled system depends on the interface type and the formulation in FBS (primal
or dual).
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(a)

(b) (c)

(d) (e)

Fig. 6.10 Different representations of interface DoF on the blade. (a) Assembled blade and
disk depicting the connection (b) Left and right surfaces on the blade interface with three
translational DoF per node. (c) Another view of the blade interface indicating additional
three nodes on the bottom surface. (d) One virtual point interface formed by transforming all
the translational DoF on nodes 1 through 9. There are six DoF per virtual point. (e) Two
virtual point interface.

Case 2: Coupling of the DoF at nodes {1,4,7,9} – one physical node on the left,
one on the right and two on the bottom, as shown in Figure 6.11b.

Remark 2. Identification Rank: Since measurements on the assembled system have
a rank of 27 (see Table 6.2), one can identify a joint with the same maximum rank.
However, one or more channels are kept for validation and we allow for some over-
fitting, the maximum rank of the joint system is set to be 24. That is, a 24×24 joint
FRF matrix is identified.

The reconstructed FRFs in blue in Figure 6.11 are obtained by recoupling the
identified joint YJ with the hybrid model of the blade YS,A and disk YS,B. Note YJ

is retrieved after the convergence criterion has been met, as outlined in Section 5.5.
Clearly, the interface of Case 1 has a lot of spurious effect even though it follows
the shape of the reference FRF (orange colour in Figure 6.11a), even though this
interface configuration resembled the one in Fig. 6.6. This means that by considering
only two sides of the interface, the joint is not properly identified. Note that the
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(b) Interface nodes set {1,4,7,9}

Fig. 6.11 FRFs on the coupled blade-disk by considering only translational DoF at the
interface. The reference FRF is measured at the locations shown in Figure 6.9.

reference FRF corresponds to the DoF not included in the identification procedure,
also discussed in the footnotes of Table 6.2.

In Case 2, the third (bottom) side of the interface is taken into account through
nodes 7 and 9. The reconstructed FRF (Fig. 6.11b) overlaps the reference FRF well
until 2000 Hz with the exceptional spurious peaks around 250, 600 and 800–1000
Hz. The response near anti-resonance of 600 Hz is also not accurately predicted.
The reconstructed FRF of Case 2 is certainly better than that of Case 1 because
the bottom side is thought to be a key location where the bolts are connected and
push the blade to fit the other two surfaces of the disk. The interface seems to be
better described by these locations and it gives an idea to consider these locations for
further analysis. However, an interface defined by only the translational DoF of the
two bottom nodes (7 and 9) would not be sufficient i.e. the other sides should also be
considered.
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Fig. 6.12 The measured internal translations are expanded as translations on the interface
(blue) which are further transformed to virtual translations and rotations (orange).

6.2.3 Virtual point interface

In an interface defined only by the translational DoF, the selection of the correspond-
ing nodes is an arbitrary choice of the user in terms of location (and numbers of
nodes) involved in the identification. Therefore, many combinations are possible and
it is not easy to understand what is the most promising combination. This problem
can be overcome by creating a virtual interface characterized by both translations
and rotations. All the measured or expanded translational DoF can then be used and
projected to the virtual interface by least-squares [153]. Consider the hybrid model,
for example, of the blade YS,A with the expanded dynamics on all the translational
DoF uA

b in Fig. 6.12. The boundary translations uA
b relate to the virtual displacements

(translational and angular) qA by:{
uA

i

uA
b

}
=

[
I 0
0 RA

u

]
︸ ︷︷ ︸

RA

{
uA

i

qA

}
(6.1)

where RA
u is called the interface displacement modes (IDM) matrix and contains the

position vectors and orientations of the translational DoF uA
b (sensors in general or

expanded translations in our case) with respect to the virtual point(s). For the sake
of completeness, let us construct the IDM matrix. Consider that there are p nodes
corresponding to the expanded translations uA,p

b and they are to be transformed to
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v number of virtual coordinates qA,v. Each p-th node consists of three translations
{uA,p

b,x , uA,p
b,y , uA,p

b,z } in the local coordinates {x,y,z} and each v-th coordinate consists

of six DoF – three translations {qA,v
X , qA,v

Y , qA,v
Z } and three rotations {qA,v

θX
, qA,v

θY
, qA,v

θZ
}

– with respect to the global coordinates {X ,Y,Z}. Then the following kinematic
relationship can be established:


uA,p

b,x

uA,p
b,y

uA,p
b,z

=


ep

x,X ep
x,Y ep

x,Z

ep
y,X ep

y,Y ep
y,Z

ep
z,X ep

z,Y ep
z,Z




1 0 0 0 rp
Z −rp

Y

0 1 0 −rp
Z 0 rp

X

0 0 1 rp
Y −rp

X 0





qA,v
X

qA,v
Y

qA,v
Z

qA,v
θX

qA,v
θY

qA,v
θZ



+


µ

A,p
x

µ
A,p
y

µ
A,p
z



(6.2)
where the matrices above can be expressed in a compact form, in the order of
appearance:

uA,p
b =EpT R̄A,pv

u qA,v +µ
A,p

uA,p
b =RA,pv

u qA,v +µ
A,p

(6.3)

The orientation of the local node belonging to the expanded translations is contained
in Ep = {ep

x , ep
y ;ep

z }, whilst rp
⋆ are the distances among the local coordinates of the

sensor (or the expanded translations) and the virtual point coordinate. As a result
of the transformation, any residual (the non-rigid motion about the virtual point or
other inconsistencies) ends up in the residual vector µA,p.
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The IDM matrix RA,pv
u can then be extended to include other interface translations

and virtual coordinates:

RA
u =



R1,1
u

R2,1
u

R3,1
u

R4,2
u

R5,2
u

R6,2
u

. . .

Ru
Np,Nv



A

(6.4)

Eq. (6.3) can now be written to include the IDMs of substructure A as:

uA
b = RA

u qA +µ
A (6.5)

The residual µA is shown in [8, 188] to be minimized in a least quadratic sense
if the right hand side of Eq. (6.1) is calculated as follows:{

uA
i

qA

}
=
(
(RA)T RA)−1

(RA)T︸ ︷︷ ︸
TA

u

{
uA

i

uA
b

}
(6.6)

and ensuring that Np > Nv i.e., there are more channels than the VP coordinates. The
matrix TA

u is the desired transformation matrix for obtaining in the least square way
an interface which is spatially described by translations and rotations.

In order to obtain the virtual forces and moments mA from the applied transla-
tional forces fA, a similar transformation TA

f can be derived. This force transformation
matrix is the result of a constrained minimization problem [188]. If the DoF are
collocated, as obtained by the hybrid models and Fig. 6.12 then

TA
u = TA

f = TA (6.7)

The new hybrid FRF matrix ȲS,A with the virtual interface is calculated by

ȲS,A = TA YS,A (TA)T . (6.8)
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(b) Two virtual points

Fig. 6.13 FRF of the blade-disk assembly coupled by the virtual interface descriptions. The
reference FRF is measured at the locations shown in Figure 6.9.

In continuation of the previous two cases of translational interface in Sec-
tion 6.2.2, we again consider two different configurations of virtual interface in
which the expanded translational DoF are transformed to the VP(s) shown in Fig-
ure 6.10d and 6.10e, respectively. Note that the VP position can be defined even
outside the structure, as long as the condition of rigid transformation holds. The
following two new cases are presented for the virtual interface:

Case 3: One virtual point (3 translations and 3 rotations per substructure). The joint
is characterized by a 12×12 system, unlike Case 1 and Case 2.

Case 4: Two virtual points (6 translations and 6 rotations per substructure). The
joint is characterized by a 24×24 system.

The respective reconstructed FRFs are plotted in Figure 6.13. In the FRFs of Case
3 (Figure 6.13a), not a good agreement is observed between the reconstructed and
reference FRFs. This shows that an interface with 6 virtual DoF despite a least
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squares contribution from all the translational FRFs is not sufficient to capture the
coupled system dynamics accurately.

The FRF obtained for Case 4 (two VPs) is shown in Figure 6.13b. The re-
constructed FRF has certainly better agreement than that of Case 3. It is of more
interest to compare this reconstructed FRF with that of Case 2 with translational DoF
(Figure 6.11b). With the two VP interface (Case 4), the identification resulted in

i. a significantly reduced spurious effect up to 1100 Hz,

ii. a better amplitude estimation on the resonances,

iii. a good approach on the two anti-resonances around 150 and 600 Hz, and

iv. slightly increased spurious effects between 1300 to 2000 Hz.

The prediction beyond 2000 Hz is poor for both the cases. For practical purposes of
low to medium frequency range, the two VP interface (Case 4) is considered to be a
good choice and will be used in the subsequent joint identifications in Chapter 7.

6.3 Summary

This chapter elaborates part of the detailed working before being able to identify
a joint in dynamic substructuring. The task is to find the right set of DoF on each
substructure which would predict the assembled structure’s response, when coupled
on those DoF. Due to the variability of the contact – especially that of a blade-root
shown in the beginning of the chapter – the task becomes a bit more challenging. In
order to understand how such an interface would behave, firstly, a numerical study
is performed on the blade and disk assembly in which only translational DoF are
considered on the condensed numerical models. The coupling on limited number of
DoF is performed to simulate a measurement. It was found out that at least 12 DoF
per substructure are required for a reasonable accuracy.

Secondly, an experimental sensitivity analysis of the interface is performed on
the actual blade and disk. Since this involves measuring on an assembly wherein
some compliance exists on the interface yet to be calculated (the so-called joint), the
joint identification has to be performed. However, due to different joint sizes and
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models, the validation is done by recoupling the identified joint with its substructures
and comparing with the reference measurements on the assembly. In this test-based
validation, two translations-only interfaces and two virtual interfaces are created.
The mathematical approach to construct the virtual interface is also discussed in
detail. The interface on the dove-tail root with coupling on three sides is shown not
to be well-represented with only translational DoF. A single virtual interface is also
not found suitable. The two-point virtual interface effectively predicts the validation
FRF, thereby, presenting itself as the representative interface. The same will be used
in further joint identification in Chapter 7.



Chapter 7

Identifying the Blade-root Joint

Part of the work described in this chapter was previously published in [69, 71, 189].

This chapter presents and evaluates the joint identification strategy based on substruc-
ture decoupling and SEMM methods (see Section 5.5). The blade and disk test-case
of Chapter 3 and Chapter 4 are assembled and tested. We recall that in the previous
chapters, the following were discussed:

1. How to generate substructure models and expand the experimental measure-
ments to inaccessible boundary DoF in Chapter 3.

2. How to reduce some effect of noise and unavoidable measurement and mod-
elling errors by using singular value truncation in the substructure models in
Chapter 3.

3. How to identify any uncorrelated measurements with the expanded models
and thus further improve the substructure quality in Chapter 4.

4. What method, out of many, would be suitable for joint identification, specif-
ically, for the blade and disk connection. Due to the complexity of the sub-
structures and the interface, the substructure decoupling method using SEMM
expansion is a suitable method, as outlined in Chapter 5. Although the method
by Tol and Özgüven [3] was applied on a test-geometry of two beams in [62]
as part of this research, the challenges of that method were discussed therein
from a practical point of view.
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5. What form of the interface one should use for the blade-root connection in
Chapter 6. Out of many possibilities, the 2-virtual point interface including
translational and rotational DoF was found the most appropriate.

To this end, the method and the substructure models are available. The coupled
sub-models will now be used to identify the joint. This chapter is organized as:
Section 7.1 creates a dummy assembly by inserting simulated joint values to test
the SEMM based substructure decoupling method, referred as SEMM decoupling,
hereafter. Section 7.2 discusses the actual joint identification between the blade and
disk when the disk was fixed at its centre. In Section 7.3, the constraint is removed
from the assembly to discuss important aspects that had a noticeable influence on
the joint identification such as the disk constraint itself, the correlated SEMM, the
curve-fitting challenges and the singular value filtering in substructures.

7.1 A dummy coupled system

In this section, the SEMM decoupling method is verified by using the blade and disk
expanded models (YS,A and YS,B) and coupling them with a joint system to create a
dummy or simulated assembly denoted by YAJB,d . The so-created dummy assembly
is shown in Fig. 7.1 and the joint parameters are given in Table 7.1. Since the joint
parameters are input by the user and so known in advance (Table 7.1), it is relatively
easy to check if the method is able to identify the joint.

Table 7.1 Parameters of the dummy joint

Translational Rotational

Stiffness 1×107 N/m 1×104 Nm/rad

Damping 1×103 Ns/m 1×102 Nms/rad

Mass 5 g 5 gm2/rad

As shown in Fig. 7.1, between the two components’ expanded models YS,A and
YS,B, the dummy-joint FRF model YJ,d is introduced to create a dummy-coupled
model that we then used to generate simulated measurements instead of the actual
experimental measurements of the full-system. This ensures that measurement and
expansion errors are the same for both the coupled and uncoupled models. If the
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Fig. 7.1 A simulated assembly model by using dummy joint values of stiffness, damping and
mass. Rotational spring (left of the translational spring) and rotational damper (right of the
dashpot) are also sketched. The red dots indicate the joint mass. The joint size is 24×24 in
order to couple with 2 VP interface (12×12) on either side. Since the disk expanded model
YS,B is from campaign-1 in which the disk was fixed at the center, the constraint is shown by
triangles.

internal DoF can observe the dynamics at the boundary – a minimum requirement
for the SEMM decoupling approach – then our proposed iterative strategy should
be able to identify the interface dynamics. The reverse formulation is also true: if
the joint is properly identified, then the internal DoF fully observe and control the
boundary DoF and the decoupling step itself is validated. The dummy joint is a
simple one-to-one mass-spring-damper system with the parameters1 in Table 7.1.

Fig. 7.2 shows the identified dummy dynamic stiffnesses along the frequency
axis for translational and rotational DoF. The actual dynamic stiffness of the dummy
joint is calculated from the parameters in Table 7.1, whilst the identified stiffness
is calculated by inverting the identified FRF matrix. In each figure, there are two

1The mass in the joint parameters of Table 7.1 exists to easily create a non-singular system. In
order to obtain the accelerance matrix, the dynamic stiffness is to be inverted which is singular without
the mass. The mass may be considered to be present in the true joint if there are un-modelled fasteners
in the substructures.
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Fig. 7.2 The reference and identified dynamic stiffness of the dummy joint for: (a) Trans-
lational DoF (b) Rotational DoF on one of the two virtual points depicted on the blade in
Fig. 7.3a. The identified stiffness plots are obtained after three iterations. In the first iteration,
no initial guess was used i.e. the substructures were left uncoupled.

joint identification plots for different weights of weighted pseudo-inverses discussed
in Section 5.5.6. The effect of the weights on convergence will also be discussed
in the coming Section 7.2.1. Focusing on the identified stiffness for the case of
wb = 1×108 (with all the other DoF assigned wi = 1), the figure shows that, with



7.1 A dummy coupled system 143

the exception of spurious effects, the dynamic stiffness of the dummy joint can be
identified. The spurious effects are spread across the whole frequency band but
pronounced in the region between 0 to 500 Hz in which the disk expanded model
has some discrepancies. In this region, it is assumed that the boundary dynamics
are not uniquely observed. The same is true for frequency regions near 1200 and
2100 Hz where sub-system resonances of the blade are observed in the FRF of
Fig. 3.10. Recall that the disk was fixed at its centre and it largely affected the
expansion. In these resonance regions, the identification can be influenced by the
internal subsystems. Its reason and a way to mitigate it are discussed below.

In fact, by the method outlined in Section 5.5, the dummy-coupled system’s
dynamics are to be expanded on its coupled parent model and subsequently, the
joint is to be identified. The expansion occurs uniformly (if no weightings are
assigned to ub) all over the DoF through the SEMM interface (Fig. 3.4 in Chapter 3).
When talking about the SEMM interface, the pseudo-inverses that pre- and post-
multiply in the SEMM equation (3.29) should be kept in mind, since their role is
pivotal in the expansion. This is where the subsystem’s internal influence comes into
play, including resonances2 and noise in the hybrid models i.e. through the pseudo-
inverses in Eq. (3.29). If one of the subsystem is near resonance, the expansion
would occur through the ill-conditioned matrices and hence the errors propagate
also to the interface which are later identified and dubbed as the joint. Forcing the
SEMM method to observe only the interface could easily rectify this problem, e.g.
by inclusion of a stronger weight towards interface DoF ub, or by ignoring internal
DoF altogether through the weighted pseudo-inverses. By doing so, the internal
subsystem’s resonances or errors are not expanded to the interface or the joint.

The dummy joint of Fig. 7.2 with wb = 1 × 108 has identified some of the
characteristics that belong to the internal subsystem, as discussed above. By further
suppressing the weight of internal DoF would reduce the influence of those errors.
This is evident by the identified joint with wb = 1×1010 shown as the black stiffness
line. The spurious errors throughout the frequency band have decreased and localized.
Further increasing wb would suppress more the internal subsystem influence but
could also significantly deteriorate the numerical conditioning of the pseudo inverses
in Eq. (3.29). The spurious errors are, nevertheless, easily recognizable in this test.

2Note that the internal subsystem influence does not apply to a single substructure being expanded
by SEMM because it is not composed of subsystems. This is also why the weightings were not
discussed before in Chapter 3. However, there is no restriction on using them on a single substructure.
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Fig. 7.3 The measurements setup for the assembly impact test campaign: (a) the blade
hanged by wires (b) the disk fixed at its centre (c) the coupled blade and disk with the same
constraint conditions as the disk. This is campaign-1, as discussed in Chapter 3. The blade
and disk are reprinted here.

7.2 Experiments on the assembly: the fixed disk

In the previous section, the assembled system was created from a numerical joint.
This section discusses the actual assembly obtained by joining the blade in its root in
the disk. The blade is attached with the disk using two bolts. One of the bolts has a
pin which also aligns the blade to its correct position. The bolts are tightened to a
torque of 10 Nm. The assembly is shown in Fig. 7.3. On the assembled system, five
tri-axial accelerometers are positioned on the blade and five on the disk. The impact
positions were indicated in Fig. 3.8. The individual blade and disk, as tested, are
also reprinted alongside in Fig. 7.3 from campaign-1 in Section 3.5. It was briefed
in Section 5.5 that the sensor and impact positions should remain unchanged in the
assembly as well as the single components. A side advantage of this is that the sensor
mass effect, if significant enough to cause changes in the dynamic behaviour of the
components and the assembly, can be removed in the decoupling process.

It is assumed that the coupled system behaves linearly since the energy of the
impacts is not so high to introduce slip in the interface. Therefore, the SEMM
approach for assembling and decoupling as proposed here is thus licit. The interface
between the blade and disk is modelled by using virtual points (VPs). For this
test-case, two VPs are considered on each substructure [62] where each VP consists
of three translations and three rotations. The two VPs are depicted on the blade-root
in Fig. 6.10e. Thus, the joint is represented by a 24×24 DoF system.



7.2 Experiments on the assembly: the fixed disk 145

0 200 400 600 800 1000

iteration number n

10
1

10
2

10
4

10
6

||
(Y

A
J
B

,p
a

r

c
e

) n
 -

 Y
A

B
,o

v
||

1 10
0

1 10
4

1 10
8

1 10
10

1 10
14

Fig. 7.4 Effect of weights on the convergence of Euclidean norm of the expansion error
between the coupled parent model and the measured overlay model. The physical boundary
DoF ub are weighted whilst computing the pseudo inverses, as per Eq. (5.65) and Eq. (5.66).

7.2.1 Convergence

Before investigating the joint, the convergence of the method is discussed in this
section. The convergence plot (Fig. 7.4) is obtained from the assembly measurements
from which the coupled SEMM model is created. We recall from Section 5.5.6 that
the assembled system’s SEMM model can be computed by the weighted pseudo
inverses in Eq. (5.65) and (5.66). This helps in faster convergence of the joint prop-
erties by assigning higher weights to the physical boundary DoF ub and expanding
the measured dynamics in a weighted least squares sense.

Fig. 7.4 shows Euclidean norm of the expansion error at each iteration step n
for different weights wb assigned to the physical boundary DoF ub. The weights of
the remaining DoF set are, by default, set to 1. When no weighting value is used
for ub, the convergence is not ensured even after 1000 iterations. This means that
the measured dynamics are being expanded equally in all DoF. Thus, the joint or
boundary DoF updating and the identification takes more iterations. If SEMM is
forced to expand or observe only the boundary DoF, a higher weight is assigned
to them. Evidently, the method converges faster when a high weighting value is
used for ub in Fig. 7.4. To test the method’s convergence, the weights as high as
wb = 1×1014 are used. It took only 3 iterations to convergence at this weight. This
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Fig. 7.5 The agreement of the FRF before and after identification. The solid validation line
is a measured FRF of the full-system labelled ’Reference’ (on the circle marked DoF in the
right figure, where the triads of blue markers indicate an accelerometer and green markers
indicate impacts). The blue dotted line indicates the coupled results (with the joint identified
by the SEMM procedure). The dash-dotted black line is the would-be rigid coupling (without
joint).

implies that SEMM has ignored the internal DoF almost entirely and focused the
expansion to the boundary and thus it converged to a hybrid model with minimum
expansion error. Such high weightings, though guarantee the method’s convergence,
were avoided in the joint identification presented so far and hereafter due to possible
numerical issues.

The choice of weights was wb = 1×108 for the presented results, unless other-
wise stated, due to the fact that the order of stiffness is between 107 −108.

7.2.2 Identification of the actual joint

Using the assembly measurements, the method is applied to the identification of
the actual joint in this section. In the following discussion on the actual joint
identification, the presented results are, obviously, extracted from a converged
system. The identification process was validated in two different steps.

In the first step, here called self-validation, all the measured FRFs are included in
the overlay model of the assembled disk and blade Yov,AB. It is called self-validation
because the recoupled system after the identified joint YJ is compared with the same
measurements from which it was originally identified. The resulting agreement
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check between the measured and the recoupled FRFs (YS,A,YJ and YS,B) should be
a trivial comparison which is shown in Fig. 7.5. Ideally, the FRF of the recoupled
system labelled as ’Coupled with Joint’ should overlap the reference measurement at
all frequencies which is however not the case. Note that the FRF labelled ’Reference’
was measured on the circle marked DoF in the same figure and was included in the
identification procedure. This shows that, in the joint identification process, the self-
validation step is not so trivial. Indeed, it is assumed that the only difference between
the coupled and uncoupled models was the existence of joint dynamics. Theoretically
this may be true, but practically other differences exist between the coupled and
uncoupled measurements, and the method can not discriminate between them. This
is the reason why the joints are generally noisy, and sensitive to measurement and
expansion bias errors [2, 170].

In Fig. 7.5, the dotted curve named as ’Rigid Coupling’ is the FRF obtained by
rigidly coupling the blade and the disk models (YS,A and YS,B), without any joint
between them. From the comparison of the ’Rigid Coupling” and the ’Reference’
FRFs, it can be noted that they are poorly overlapping. This confirms that there is a
significant contribution of the joint flexibility YJ to the dynamics of the assembled
system, which cannot be modelled just with a rigid connection between the blade
and disk.

In the second step of the validation, here called on-board validation, we kept out
some FRFs from the measured FRFs of the assembled system (disk plus blade) in
order to use them only as reference for validation. This approach is the same as for
SEMM validation on the single component blade or disk in Chapters 3 and 4. This is
more restrictive than the self-validation step since the measured FRFs considered as
’Reference’ are not included in the procedure of the joint identification, but they are
kept only for validation purposes. In the actual systems, this is the only check to test
the veracity of the identification [37].

In Fig. 7.6, the FRF obtained after recoupling YS,A,YJ and YS,B, is labelled as
’Coupled with Joint’ and compared with the reference measurement performed at
the circled marked DoF. The comparison of these two FRFs is acceptable but, as
expected, not so good as in Fig. 7.5. The recoupled FRF is more noisy than the
’Reference’ one and its amplitude is higher throughout the frequency band. However,
the resonance frequencies are well captured and it can be noted that the FRF of the
first mode is also well identified.



148 Identifying the Blade-root Joint

0 100 200 300 400 500 600 700 800 900 1,000
10−2

10−1

100

101

102

Fig. 7.6 The on-board validation of the joint. The solid validation line is a measured FRF
of the full-system. This FRF (on the square marked DoF in the right figure, where the
triads of blue markers indicate an accelerometer and green markers indicate impacts) has not
been used to identify the joint. The blue dotted line indicates the coupled results (with the
joint identified by the SEMM procedure). The dash-dotted black line is the would-be rigid
coupling (without joint).

The dotted curve named as ’Rigid Coupling’ is completely different from the
’Reference’ even for the first mode. This validation process, therefore, leads to two
main conclusions:

1. inserting a joint, after identifying it, between the blade and the disk models is
better than rigidly coupling them, since the obtained FRFs are more similar to
the measured FRFs of the assembled system,

2. the set of chosen measurements are suitable to identify the joint in the fre-
quency range around the first mode, whilst they do not lead to an accurate
reconstruction of the FRFs of the jointed system, both in amplitude and in
frequency, for a wider frequency range.

7.2.3 The identified joint

The identified joint is a 24×24 DoF system, as mentioned before. Fig. 7.7 shows
the plots of dynamic stiffness of one of the translational and rotational DoF versus
the frequency. As expected, there are spurious effects which are typical of the
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Fig. 7.7 The identified dynamic stiffness of the actual joint for: (a) translational DoF (b)
rotational DoF

identification process [3]. Their presence indicates that some measurement or
expansion errors have propagated in the identified joint.

If the only contribution of the joint was the spring stiffness, then the dynamic
stiffness of Fig. 7.7 would be a frequency independent line - known as a 0th order
line. The identified joint dynamic stiffness does not have a straight horizontal line
(constant spring stiffness), however, it can be easily seen that a curve can be fit on it.
This applies to the dynamic stiffness of both the translational and of the rotational
DoF.

The damping effects should be visible at higher frequencies. If the interface
exhibits a viscous damping, a frequency dependent contribution is expected which
becomes dominant at higher frequencies. In the case of structural damping, this
relation is not as straightforward. Regardless of the type of damping in the joint, its
effects should be derivable from the imaginary part of the complex FRF. Unfortu-
nately, due to the limited damping contributions these effects are under the noise
floor of the identification procedure, which makes fitting the damping parameters
inappropriate.

7.3 Experiments on the assembly: the free disk

In the previous section, the identified joint had marginal success in predicting the
reference measurements. The main reason of this is the disk constraint which seemed
to corrupt not only the disk substructure but also the blade-disk assembly. It was



150 Identifying the Blade-root Joint

(a) (b)

Fig. 7.8 Experimental setup of the blade coupled to the disk. Due to limited number of
sensors and channels in the data acquisition system, the campaign was conducted first by
(a) mounting the sensors on the blade and the dummy masses on the disk and then by (b)
mounting sensors on the disk and the dummy masses on the blade. Each dummy mass value
is equivalent to the sensor’s nominal mass. The sensor and impact positions were preserved
exactly as Fig. 3.8.

then decided to get rid of this constraint since it posed serious modelling challenges
as well as expansion errors.

In this section, the same blade and disk assembly are retested without the central
constraint on the disk, as shown in Fig. 7.8. The free constraint is realized by flexible
strings on which the coupled system is suspended. Note that the disk-alone also had
be tested in the free condition. Since this new test-campaign was performed at the
AERMEC lab of Politecnico di Torino (in contrast to the previous one at Applied
Mechanics chair of Technical University of Munich), the setup and the acquisition
systems were different. Therefore, this was referred to as campaign-2 in Section 3.5
and will so be done here.

Due to limited sensors and measurement channels availability, the tests on the
assembly had to be done in two steps to cancel the sensor mass effect. In the first
measurement step, the sensors were mounted on the blade while dummy masses
equivalent to sensor mass were placed on the disk. In the second step, the sensors
and the masses were swapped.

The impact tests were carried out on the new assembly with the same sensor and
impact positions as in campaign-1. The set of FRF measurements on the assembly
is denoted by Yexp,AB. Similar to the approach of on-board validation, one row and
column of this measured matrix was not used in the identification. So, the size of the
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Fig. 7.9 FRF on the coupled blade and assembly. The reference measured FRF is Yexp,AB
2,27

indicated also on the right with square markers. The FRFs have been smoothed for clarity.

overlay model Yov,AB is 27×36 (see Table 6.2). Particularly, the experimental FRF
used for validation is Yexp,AB

2,27 .

7.3.1 Effect of constraint removal on joint identification

After identifying the joint from the new assembly measurements in campaign-2,
and recoupling it with the substructure models, the plot of Fig. 7.9 is obtained
together with the reference FRF. A significant improvement is clearly evident from
the recoupled FRF when compared with those in Fig. 7.6. By looking just at the
FRF of Fig. 7.9, it can be noticed that both the recoupled FRFs (standard and
correlated) are almost overlapped to the reference curve in the regions close to
the peak resonances. This proves our hypothesis that the constraint influenced the
identification adversely. In fact, constraint modelling has remained a huge research
challenge, even after decades of research on model updating methods [186, 160].
The removal of constraint and the resulting improvement provides certain confidence
that one can identify the joint and predict other measurements by using the SEMM
decoupling method. It should be noted from Fig. 7.9 that the non-resonance regions
are poorly predicted, thus, necessitating further investigation.
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7.3.2 Effect of correlated SEMM models on joint identification

In Chapter 4, we developed a new method of filtering those measurements or DoF
do not correlate well with the corresponding numerical models. Their effect on a
substructure level was also examined by the experimental results. The correlation
analysis revealed on the free blade and free disk components (see Table 4.2) that

• channel 4 and input channels 4 and 17 had low correlation on the blade;

• channel 27 and input channels 30 and 31 had the lowest correlations on the
free disk.

These channels were then removed from the experimental FRF matrices and new
expanded models were generated, called as correlated SEMM models. The previous
expanded models are referred as standard SEMM models. The joint identification is
then performed with the correlated models and then recoupled back to predict the
validation FRF. The accelerance FRFs so-obtained with both correlated and standard
SEMM (Fig. 7.9) are shown in Fig. 7.10 together with the reference. By looking
just at the FRF of Fig. 7.10, it can be noticed that the correlated SEMM is almost
overlapped to the reference curve in the regions close to the peak resonances. It
outperforms the prediction of the standard SEMM. By close observation, using the
correlated SEMM, gives a general improvement in the regions of small amplitudes
(ranges 220–740 Hz, 300–500 Hz, 800–900 Hz) where the FRF estimated by corre-
lated SEMM is closer (than the one obtained by standard SEMM) to the reference
FRF. Even though the results have been shown for the frequency up to 1200 Hz, a
better agreement was achieved even beyond 1200 Hz and up to 3000 Hz.

By looking in detail at the values of the peaks’ amplitude in Table 7.2, one
may observe that the values predicted by the correlated SEMM at resonance are in
general better than the standard SEMM (except for mode 4 where the difference
is negligible). In particular, the amplitude values predicted by correlated SEMM
are much better for the first two peaks i.e. below 600 Hz. This improvement is
given by the correlated SEMM, instead of standard, in the model of the disk, and
this was particularly effective for the disk in 0-600 Hz range (see Fig. 4.7). From
Table 7.2, it can be seen that, using the correlated SEMM, it is still advantageous
in high frequency modes (3 to 5) even if the difference with standard SEMM is not
always as evident as for modes 1 and 2. In these high frequency regions, other factors
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Fig. 7.10 FRF on the coupled blade and assembly. The reference measured FRF is Yexp,AB
2,27

indicated also on the right with square markers. The FRFs have been smoothed for clarity.

such as interface definition and singular value filtering can also play an important
role in better predicting the coupled system’s dynamics.

7.3.3 The joint and fitting

So far, we have examined the on-board validation by recoupling the identified joint
to its substructures. For actual systems, this is the only viable check as argued by
D’Ambrogio and Fregolent in [37] during identification of their known mass by
substructure decoupling method. They noted that it was quite straightforward to
detect errors in case of the known mass; however, it would not be the case if the
system to be identified is unknown. They went on to assert that the only check that
can be performed is to couple the predicted FRFs of the unknown subsystem with
those of the known subsystem (to form the mathematically coupled system) and to
compare it with the reference measured FRF on the assembly.
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Table 7.2 Peak value comparison for the FRFs reconstructed by the standard SEMM and
correlated SEMM methods. All amplitudes are in m/s2/N.

Mode Frequency Experiment Standard SEMM Correlated SEMM
(Hz) Amplitude Amplitude % Difference Amplitude % Difference

1 191.3 59.3 48.6 -18.0% 60.3 1.7%

2 530.0 44.7 91.4 104.6% 48.5 8.5%

3 691.1 33.6 25.5 -24.2% 41.5 23.3%

4 1111.1 298.3 99.0 -66.8% 89.7 -69.9%

5 1138.9 14.4 8.3 -42.7% 12.2 -15.5%

It is, however, important to see also the joint obtained from the above tests for
its behaviour and physical interpretation. The identified joint accelerance FRFs are
shown in Fig. 7.11 belonging to selected few DoF, both bad and good in relative
terms. Recall that these are only four of the 24×24 system. The first two plots are
for the translational DoF (Fig. 7.11a and Fig. 7.11b), and the other two are for the
rotational DoF (Fig. 7.11c and Fig. 7.11d). It is seen in the figures that despite some
noisy behaviour, which is typical after a decoupling procedure (see Chapter 5), the
joint seems to follow a trend.

This behaviour is representative of a system with high stiffness, low damping
and low mass i.e. a stiffness dominant line on a logarithmic scale [51]. The fluc-
tuations are due to the measurement and modelling errors, which propagate in the
hybrid models. It can be observed that the accelerances obtained by the correlated
SEMM exhibit slightly less fluctuations than the ones obtained by standard SEMM.
Correlated SEMM in fact removes the channels that introduce more variability in the
identification. However, the fluctuations still remain because the measurement noise
cannot be completely removed.

It can be noticed in the translational accelerance (Fig. 7.11b) and in the rotational
one (Fig. 7.11c) that around 100 Hz, the accelerances from standard SEMM have
a kind of a hump. This could be interpreted as an internal resonance of the joint.
However, the hump disappears in the corresponding accelerance identified by the
correlated SEMM, confirming that it was due to some spurious, non-physical effects
which were eliminated by the correlated SEMM.

At this point, the accelerance FRF with irregular pattern in Fig. 7.11a and
Fig. 7.11c are discussed further by examining their imaginary part plotted in Fig. 7.12b
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Fig. 7.11 The decoupled joint accelerance on two translational DoF (a) and (b) and two
rotational DoF (c) and (d) for both standard SEMM and correlated SEMM.

and Fig. 7.12d, respectively, on a linear scale. The objective of this exercise is to see
if it is possible to curve-fit the highly fluctuating accelerance and if correlated SEMM
provides better insights than standard SEMM. Before that, one of the accelerance
FRF of a 2-DoF oscillator is briefly recapitulated through its both real and imaginary
parts in Fig. 7.12a. Even though the blade-root joint system is defined by multiple
DoF, each DoF on blade is coupled only to the corresponding DoF on the disk
interface. Therefore, the 2-DoF oscillator is considered a suitable demonstration
for the purpose. Additionally, the frequency range shown in Fig. 7.12a is such that
the system is far from its resonance. As seen in the figure, the real part is negative
and grows in amplitude with frequency. It would change its sign at the resonances
(at 2251 Hz and 3899 Hz). The imaginary part remains positive and would grow
gradually depending on the damping coefficient and the model. Here, only the
proportional damping is used for the demonstration.

The imaginary part of the identified joint in Fig. 7.12b and Fig. 7.12d has
fluctuations about the horizontal axis. The sign changes are non-physical, but
they are to be expected in the identification process due to errors [3]. By careful
examination, it can be seen that correlated SEMM has produced relatively less
fluctuations compared to standard SEMM both in the real and imaginary parts. After
performing a curve-fitting procedure based on rational fractional polynomials (RFP)
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Fig. 7.12 (a) Real and imaginary parts of a two DoF oscillator’s accelerance (Y11). The mass,
stiffness and damping parameters are m1 = m2 = 0.05 kg, k1 = k2 = k3 = 1×107 N/m and
c1 = c2 = c3 = 3×10−5k1 N.s/m, respectively. The undamped natural frequencies are: 2251
Hz and 3899 Hz. The shown frequency range is far from the resonance. (b) Imaginary part of
the identified joint accelerance of the translational DoF in Fig. 7.11a. (c) Fitting results with
a readjusted vertical scale. (d) Imaginary part of the rotational joint accelerance Fig. 7.11a.
(e) The close-up view for the curves fitted to both the standard and correlated SEMM.

[190] to the entire joint system, the RFP fitted-curves are plotted in Fig. 7.12b both
for standard and correlated SEMM. The figure’s vertical scale has been adjusted.
The fitted curve to the standard SEMM is estimating mostly the negative imaginary
values which is non-physical. On the other hand, the curve fitted to the correlated
SEMM is positive in the entire range implying that some errors have been removed
by the correlated hybrid models.
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On the rotational FRF’s imaginary part in Fig. 7.12d, the same RFP fitting method
provided the similar results. However, other fitting procedures could also be tried.
The linear least squared (LSQ) fit [191] to the joint accelerance data is shown in the
same figure. The region in the rectangle is zoomed-in and replotted in Fig. 7.12e.
Again, a good fit is obtained for the correlated SEMM. Whereas the correlated
SEMM seems to have decreasing imaginary part – again not physical.

In spite of the fact that the correlated SEMM produced better fits, as observed
on the two FRFs of Fig. 7.11a and Fig. 7.11c, one needs to bear in mind that this
joint system is large and has high fluctuations. Whereas in the past, the identified
joints were limited to small systems under simplified motion and assumptions. To
note a few examples of stiff joints, a 2× 2 spring-damper system was identified
quite recently in [3], and a 4×4 spring-mass-damper system in [170]. This was also
discussed at length in Chapter 5.

More importantly, the fitted joint must be able to predict the assembly response.
For our more realistic joint system compared to the others in the cited literature, it
would require curve-fitting to every FRF (a total of 576×2 curves including real and
imaginary parts) in the joint accelerance whilst maintaining good matrix conditioning
and symmetry. With such a large system, it is in itself a challenging task. Also,
due to the used SEMM formulation which allows to avoid the drive-point FRFs, the
expanded models become non-reciprocal [117]. As a result, the joint system does
not essentially remain symmetric adding another hurdle to the curve-fitting. In fact,
in our experience, various curve-fitting procedures could not predict the assembled
response.

Note that the joint accelerance of Fig. 7.11 is coupled as such without any fitting
to the respective substructures due to the above-cited difficulties. This type of on-
board validation, as already discussed, predicts the reference FRFs (not included in
the identification) in the same measurement campaign by recoupling the identified
joint with the respective substructures.

7.3.4 Effect of singular value truncation on joint identification

In Section 3.6.2, the substructure SEMM models were inspected for their condition
number by truncating the smallest singular values (SV) while computing the pseudo-
inverses of the substructure numerical models. Of course, by doing so, the condition
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Fig. 7.13 Effect of singular value filters on the recoupled system after joint identification.
The filters are applied separately to the blade and disk. The reference FRF is measured at the
locations shown in Fig. 6.9.

number decreases but can one reap any benefit from it in the joint identification
context? This is what we investigate in this subsection.

The SV filtered hybrid models of the blade and disk are used to identify the joint
with the two VP interface. To see a significant effect, two SVs are filtered in each
hybrid sub-model at a time i.e. if the SVs are filtered in the blade, the disk model
is kept as such and vice versa. The corresponding validation FRFs are shown in
Fig. 7.13a and Fig. 7.13b. The unfiltered FRF is also shown for comparison. The
predictions are much better here because an FRF between two different DoF is being
considered now compared to the previous subsection. This can happen because
through the identified joint, a different set of internal DoF can be better observed (or
controlled). Conversely, another DoF set may not be better observed.

Since a good agreement up to 1100 Hz was observed with the unfiltered models
in Figs. 7.13, the attention is given to the frequency range greater than 1100 Hz.
In the reconstructed FRF of Fig. 7.13a, the identification by filtering in the blade
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Fig. 7.14 The condition number of the experimental, numerical and hybrid FRF matrices of
(a) the blade and (b) the disk. In each hybrid model, the condition number by truncating two
singular values is also plotted.

has improved between 1500–2000 Hz. It overlaps well with the reference FRF. The
resonances around 2700 Hz is also better estimated. The identification after the
anti-resonance of 2100 Hz is also improved in comparison with the unfiltered FRF;
however, it still has some spurious effect. The low amplitude regions like these are
likely to get affected by the measurement errors. Despite this, it can be confidently
said that the removal of the two lowest SVs in the blade hybrid model has appreciably
improved the joint identification.

The SV filtering in the disk hybrid model has instead slightly degraded the
identification in the high frequency range, as evident in the FRF of Fig. 7.13b. In
order to understand the reasons, the condition number plots of the disk models are
seen in Fig. 7.14b. The disk’s hybrid model’s condition number is nearly of the same
order as that of the numerical model and it is not as high as in the case of the blade
(Fig. 7.14a). By looking at the 2 SV truncated condition number of the disk, there
is a considerable change in the condition number pattern from its unfiltered hybrid
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model. This implies that the lowest filtered SVs are not very small and insignificant
to be truncated. That is why, their filtration altered the disk hybrid dynamics.

From the above analysis, it is proposed that the SV filters should be deployed in
the hybrid sub-models based on their condition number before and after filtering. If
the condition number pattern of the filtered hybrid models is significantly different,
the filtering may not affect positively on the joint identification.

Remark 3. The SV filter is applied only to the substructures here i.e. whilst comput-
ing the hybrid FRF models of the blade and disk. One might consider to apply the
same filter to the assembly’s hybrid model in Eq. (3.29). If the SV filters are applied
to the assembly, then recalling the iterative nature of the decoupling method, the
assembled system’s dynamics in the hybrid model are updated at each iteration due
to two factors: the updated joint and the modified substructures (due to filtered SVs).
As a result, convergence is not guaranteed for the joint identification. From another
perspective, the system which we aim to identify is being modified at every iteration
of the identification. This makes the filtration unwarranted on the assembled systems.

7.4 Summary

This chapter concerns the results of the joint identification after all the theoretical
basis was provided in the previous chapters including the identification methods and
the individual substructure interface modelling. The substructure models were then
used to identify the joints (prepared in previous chapters) from different assembled
systems of the blade and disk system in this chapter. In order to test the SEMM
decoupling method’s ability to find the joint, a dummy coupled system was created
by inserting a numerical joint between the blade and disk in Section 7.1. Despite
measurement errors, the joint could be identified in a broad frequency range.

Then the actual assembly was used in which the disk was held fixed (Section 7.2).
The method’s convergence by varying weights of the pseudo-inverses was studied
which showed a good convergence rate with higher weights assigned to the interface
DoF. The self- and on-board validation after a joint identification were demonstrated.
In the presence of large expansion errors, with the fixed disk both in the assembly
and alone, the success seemed marginal. The joint had a lot of spurious effect.
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Since the disk support seemed to hinder the joint identification, the disk was then
left free of the support in Section 7.3. By doing so, the method did show great success
in predicting the validation FRFs. The next test was to see whether the correlated
SEMM models would augment the joint identification or not since they are thought
to remove the erroneous or uncorrelated channels. A significant improvement was
witnessed in the prediction including the non-resonance regions and amplitudes
at resonances. Some of the joint accelerance plots were also discussed wherein a
behaviour of low mass and high stiffness system was observed in the joint despite
high fluctuations in values. Challenges related to fitting or parameter finding were
also discussed even though correlated SEMM had more meaningful fitting curves.
Finally, effect of singular value filtering in substructures was seen to improve further
the results, especially filtering in the blade.



Chapter 8

Conclusions and Future Directions

8.1 Brief overview of the current work

One of the main challenges in predicting the dynamic response of the built-up
systems is the presence of joints. Whilst they connect various components together,
they introduce uncertainties and make the dynamic response prediction extremely
challenging. The aim of this work is to investigate dynamic substructuring methods
which can enable us to identify the blade-root interface (connection) dynamics by
experimental measurements on a realistic blade and disk system.

Considering that in a typical dove-tail connection of a blade-root, it is not
possible to measure directly on the interfaces, the dynamics at the interface have to
be predicted by measurements at accessible points away from the joint. Dynamic
expansion methods then become a necessity.

The thesis presents first dynamic substructuring methods and representations to
express mechanical systems in a certain domain. The frequency based substructuring
has since long been utilized in test-based analyses with a renewed interest after a
generalized framework was developed by De Klerk et al. [40]. Thereafter, several
dynamic expansion methods in general, and System Equivalent Model Mixing
(SEMM) in particular, were discussed. SEMM, a recent method has the capability to
expand measurements to inaccessible DoF on a substructure whilst possessing full
rank, as opposed to its modal counterpart –SEREP.
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The substructures – blade and disk – were tested and numerically modelled to
undergo the SEMM expansion. The resulting expanded models could predict the
interface dynamics better than the corresponding numerical models. As with any
method, SEMM had some drawbacks. The noise and modelling errors propagate
in the expanded models. In this research work, an upgrade has been proposed
in SEMM that allows to identify the best and least correlated DoF. The newly
developed method is called correlated SEMM. The procedure employs Frequency
Response Assurance Criteria (FRAC). Its effectiveness on the measured blade and
disk in different constraint conditions and from sensor-intrusiveness perspective was
evaluated.

After generating reliable SEMM based expanded substructures, the joint identifi-
cation has to be performed from the measured assembled system. For this purpose,
several identification methods were first analysed and classified into i) inverse recep-
tance coupling, ii) inverse substructuring, and iii) substructure decoupling methods.
This provides an insight to a reader as to where a particular method belongs. The
differences in the approaches are rooted in the treatment of rotations, usage of a set
of coupling equations and joint parameter estimation. Most identification approaches
reviewed herein have been limited to small joint systems. The substructure decou-
pling can be utilized to identify the joint under consideration, but it needed one more
step. That is, even in the assembly, the joint DoF must be explicitly present in order
to decouple the substructures and identify the joint. Again, SEMM was utilized for
this purpose and the SEMM based iterative decoupling strategy was applied to the
blade-disk joint system for the first time in this research.

For the blade-root interface, it was found through numerical and experimental
studies that an interface consisting of minimum 12 DoF per substructure should
be employed. A two virtual points interface, which includes both translations and
rotations, was created.

The SEMM based decoupling strategy was then tested with a dummy-coupled
system which was created by inserting a numerical joint between the blade and disk
substructures. The method produced satisfactory results on the simulated joint. Later,
the actual joint was also identified on the assembly of the same blade and disk (with
the fixed disk). The on-board validation showed some limited success.

Since the fixed constraint posed modelling difficulties, it was then chosen to
model both the structural components (blade and disk) in free conditions (as well
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as their assembly). As a result, a very good agreement between experimental and
identified FRFs was obtained.

The next step was to test the improved substructure models obtained by correlated
SEMM in the joint identification. The validation procedure was then done and
compared by using the standard SEMM and the correlated SEMM approaches.
The recoupled FRF obtained by the correlated SEMM proved to be much more
overlapped to the measured reference FRF than the FRF obtained by standard
SEMM. In particular, the correlated SEMM showed to capture better the FRF plot in
the non-resonance ranges.

Some of the joint accelerance plots were also discussed to inspect their behaviour.
The joint accelerances were indicative of low mass and high stiffness system despite
high fluctuations in values. Challenges related to fitting or parameter finding were
also discussed. The correlated SEMM approach produced physically more meaning-
ful fitting curves. Finally, the effect of singular value filtering in substructures was
seen to improve further the results.

8.2 Contributions to knowledge

Contributions to the literature, based on the work presented in this thesis, can be
summarized as following:

1. A simple experimental test-rig of two Aluminium beams (not discussed in the
thesis) was used to identify the bolted joint by inverse receptance coupling
approach. The challenges faced therein and preliminary blade-disk interface
dynamics were studied in the context of frequency based substructuring [62].

2. An expansion (SEMM) based substructure decoupling method was applied for
the first time to a blade-root connection experimentally which showed the pos-
sibility to identify the joint. Such an interface needed to be described by a large
set of FRFs through rigorous measurement campaigns on the substructures
and the assembly [189].

3. A correlation based strategy was developed and introduced in SEMM to filter
the DoF which are least correlated with the corresponding numerical models.
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Consequently, the quality of the expanded models and interface dynamics was
improved [72, 119].

4. The correlation strategy was further refined and extended to the joint system
of the blade and disk connection [71].

5. Further improvement of the joint identification strategy by incorporating sin-
gular value filtering in substructures and interface parametric studies [69].

6. A mathematical review of various linear joint identification methods in the
literature is presented. Using the general framework of dynamic substructuring
in frequency domain, the methods can be linked and categorized in three
classes of linear joint identification.

8.3 Critical assessment of the approach

Based on the results presented in different chapters and especially in chapter 7, a real
three dimensional and a complex structural system of a blade and disk has been tested
and expanded with SEMM in order to identify the joint. As a general observation,
the results are affected by various factors including the constraint modelling, choice
of internal (measurements) and interface (identification) DoF and the measurement
errors. During this research, some of those factors were heuristically taken in
consideration to reduce their detrimental effect. For instance:

• The presence of hub (constraint) in the disk was removed after its considerable
effect on the identification.

• It was observed during the post-processing that some measurements and
numerical FRFs had high discrepancies. Consequently, a correlation based
strategy was developed. This method, in general, can be very useful in other
applications to identify high or low correlated DoF.

• Even still the substructure models can have noise coming from the measure-
ments whose effect was considered to be reduced by filtering the lowest
singular values.
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Despite some instances given above, there is certainly much more that could be
done. It seems natural that whenever we fix a problem, another one comes up. In this
context and in particular to our approach, the following critical remarks are made:

1. The extended interface formulation of SEMM made it possible to avoid the
drive-point FRFs to produce square FRF matrices suitable for substructure
decoupling. This is a great advantage; however, the resulting hybrid models
are not symmetric. This can pose additional problems in joint identification as
well as in curve-fitting.

2. In the reviewed classifications of inverse methods in this thesis, the identifica-
tion comes out to be frequency-dependent. Thus, the curve-fitting should be
expected in this process. In an attempt to identify the blade-root type complex
joint system, a curve-fitting that could predict a set of reference measurements
was not successful.

3. In almost all the cited test-based identifications (inverse-approaches), no ac-
counts of uncertainty or confidence intervals were provided. One part of this
is due to the fact that the testing becomes cumbersome when many FRFs
have to be measured. The other part is the absence of a robust framework of
uncertainty propagation in the inverse FRF-based problems.

8.4 Future work

The critical assessment in the previous section brings us to suggests the following
for further research.

1. In order to avoid the non-symmetric FRF system, as a result of the extended
formulation of SEMM, a modal filter can be applied to measured FRFs to
produce synthesized FRFs. Although it would introduce other limitations
usually encountered in modal parameter estimation, the SEMM would produce
a symmetric model whilst measuring only a few drive-point FRFs – a trade-off
would have to be made. It can be shown that SEMM would still have sufficient
rank. Furthermore, SEMM being a very useful tool, needs to be investigated
for its optimal basis – both regarding the numerical and experimental models.
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2. The identified joints in this work can be seen to provide a foundation to attempt
more complex systems. Its results can be investigated further to perform curve-
fitting using global optimization techniques.

3. There is a strong need to develop a robust yet practical error (uncertainty)
quantification framework for handling of large FRF-based systems. At the
root of such a framework should be the frequently encountered yet a very valid
question of repeatability in measured built-up systems.

It is thought that in the joint modelling and (linear) identification problems, the last
two recommendations are a pre-requisite for a multi-joint system identification, such
as multiple blade-roots in bladed-disks.
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Appendix A

Dynamic stiffness of the internal
system

Let Z be the dynamic stiffness with the following partitions and the displacement
field on boundary be u2 = 0.Z11 Z12

Z21 Z22

 u1

u2 = 0

=

f1

f2

 (A.1)

The subscripts 1 and 2 denote internal and boundary DoF, respectively. This leads to
the following identity:

f1 = Z11u1 (A.2)

In order to obtain f1 from measurements, we express the following relation with
FRFs Y.  u1

u2 = 0

=

Y11 Y12

Y21 Y22

f1

f2

 (A.3)

From the second equation of the above, we get

Y21f1 +Y22f2 = 0 =⇒ f2 =−Y−1
22 Y21f1 (A.4)
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Substituting f2 in the first of Eq. (A.3) and solving for f1, we have

Y11f1 −Y12Y−1
22 Y21f1 = u1

f1 = (Y11 −Y12Y−1
22 Y21)

−1︸ ︷︷ ︸
Z11

u1 . (A.5)

Comparing it with Eq. (A.2), one can see that Z11 is obtained by condensing the
FRF matrix on the boundary DoF. In other words, Z11 is obtained by constraining
the boundary DoF i.e. u2 = 0. The above equation has a similar structure to the
numerical residual ρN in Eq. (3.21) for the standard interface formulation. So the
modes contained in Z11 or the modes of the internal system with the boundary DoF
fixed may appear in the hybrid model depending on the frequency range and the
choice of boundary DoF.



Appendix B

Constraint Matrix for
Frequency-independent Joint
Parameters

In Section 5.2.2, we discussed the method of Ren and Beards [170] in relation to the
constraints introduced to make the joint parameters frequency independent. In this
appendix, we use slightly different constraint matrix but the approach is similar to
theirs. Let us consider a two mass system of Fig. B.1 connected by a spring with
stiffness k and a dashpot with damping coefficient c. The two masses are denoted by
m1 and m2.

k

c

m1 m2

Fig. B.1 A simple spring mass system representing an inertial joint

The dynamic stiffness Z of this system is expressed as

Z(ω) =

Z11(ω) Z12(ω)

Z21(ω) Z22(ω)

=

k+ iωc−ω2m1 −k− iωc

−k− iωc k+ iωc−ω2m2

 (B.1)
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Given that there are four unknown parameters namely x = {k,c,m1,m2}T , one can
use four equations given by Z11,Z12,Z21,Z22, respectively. Although Zpq depends on
frequency ω , one could uniquely determine the same joint parameters x irrespective
of the frequency value. Since dynamic stiffness identified through inverse receptance
coupling or substructure decoupling methods can have fluctuating values of dynamic
stiffness, it is desired to identify a unique set (best fit) of joint parameters x from
Z(ω1),Z(ω2), . . . ,Z(ωN). Here we shall consider only two frequencies ω1 and ω2

to derive the constraint matrix which can nonetheless be extended to N frequencies.

Similar to Ren and Beards [170], a simple and easy transformation can be
obtained if we first define a vector of dynamic stiffness elements z and a vector of
joint parameters x

z =



Z11(ω1)

Z12(ω1)

Z21(ω1)

Z22(ω1)

Z11(ω2)

Z12(ω2)

Z21(ω2)

Z22(ω2)



and x =



k

c

m1

m2


. (B.2)

The constraint T between x and z can thus be defined as follows:

T =



1 iω1 −ω2
1 0

−1 −iω1 0 0

−1 −iω1 0 0

1 iω1 0 −ω2
1

1 iω2 −ω2
2 0

−1 −iω2 0 0

−1 −iω2 0 0

1 iω2 0 −ω2
2



(B.3)
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The system z = Tx is over-determined and so one can continue to append more
frequency blocks to obtain the joint parameters

x = T+z . (B.4)

where T+ is the generalized inverse of T. The modelling parameters and the size of
the final joint system are left to the user’s choice which would result in a different
matrix T.


