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Abstract: The online estimation of battery state of health (SOH) is crucial to ensure the reliability of the
energy supply in electric and hybrid vehicles. An approach for enhancing the generalization of SOH
estimation using a parallel layer extreme learning machine (PL-ELM) algorithm is analyzed in this
paper. The deterministic and stable PL-ELM model is designed to overcome the drift problem that is
associated with some conventional machine learning algorithms; hence, extending the application of
a single SOH estimation model over a large set of batteries of the same type. The PL-ELM model was
trained with selected features that characterize the SOH. These features are acquired as the discrete
variation of indicator variables including voltage, state of charge (SOC), and energy releasable by
the battery. The model training was performed with an experimental battery dataset collected at
room temperature under a constant current load condition at discharge phases. Model validation
was performed with a dataset of other batteries of the same type that were aged under a constant
load condition. An optimum performance with low error variance was obtained from the model
result. The root mean square error (RMSE) of the validated model varies from 0.064% to 0.473%,
and the mean absolute error (MAE) error from 0.034% to 0.355% for the battery sets tested. On the
basis of performance, the model was compared with a deterministic extreme learning machine (ELM)
and an incremental capacity analysis (ICA)-based scheme from the literature. The algorithm was
tested on a Texas F28379D microcontroller unit (MCU) board with an average execution speed of
93 µs in real time, and 0.9305% CPU occupation. These results suggest that the model is suitable for
online applications.

Keywords: state of health; parallel layer extreme learning machine; artificial intelligence; im-
proved generalization; automotive; hybrid vehicles; electric vehicles; batteries; online application;
energy reliability

1. Introduction

The choice of lithium-ion battery in several applications, especially in the automotive
industry, is mainly influenced by the high energy density per weight. Moreover, the large
number of charge/discharge cycles, and reduced memory effect influence this choice.
Aging is a limiting factor in the operational life and the amount of energy that can be
delivered by lithium-ion batteries, which has an impact on the reliability.

Battery aging reflects on the capacity loss affected by the loss of active electrode
material, which is the loss in the storage medium. Greater loss is linked with the storage
content, which is the loss in active lithium [1]. Graphite anode operates at a low potential
of about 1.5 V, which is outside of the electrochemical stability window for the electrolyte
component. As a result, reductive decomposition of the electrolyte occurs, accompanied
by irreversible lithium-ion consumption [1,2]. The result of the decomposition is a film
plating known as the solid electrolyte interface (SEI) at the interface between the electrolyte
and the electrode. This plating protects the electrolytes against further decomposition and
the charged electrode against corrosion [3]. The operational phase of the lithium battery is
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associated with the intercalation and deintercalation of lithium into the electrode particle
layer. This results in volume change, especially on the graphite anode (about 10%) [1]. The
dilation of the graphite particle anode breaks the SEI, exposing a fresh graphite surface on
which SEI is rebuilt. Consequently, the capacity of the battery is reduced. SEI formation is
predominant at the beginning of cycling, but it is also seen as cycling progresses.

Battery energy reliability is a key concern in hybrid and electric vehicle applications;
monitoring battery aging is crucial in such applications. Although different authors
used different electrochemical indicators such as potential change and impedance rise
for measuring battery aging, the state of health (SOH) indicator has remained the most
commonly used. SOH is based on the capacity measurement over the life of a battery to
account for the capacity fading and hence aging. Accurate estimation of SOH is essential
for battery usage optimization and proper risk management.

Generally, SOH prediction strategies are broadly classified into model-based strate-
gies and data-based strategies. The model-based designs often exist as electrochemical
or empirical models [4,5]. The electrochemical model exploits the knowledge of the in-
ternal properties of the battery or the general intrinsic behavior to derive a white box
that represents the battery [6]. The parameters and states of the model have a one-to-one
relationship with the internal properties of the physical battery. On the other hand, the
states and the parameters of the empirical model do not necessarily have a one-to-one
relationship with the internal properties. The empirical models are associated with low
computational complexity and perform satisfactorily, especially within the scope of the
experiment applied for the parameter fitting. Equivalent circuit models are popular choices
for empirical model, exploiting lumped-parameter circuit elements such as resistors, in-
ductors, and capacitors to represent the battery dynamics [7]. Onboard performance of the
empirical models is, however, often affected by cumulative measurement errors, capacity
degradation over the usage life, environmental parameter variation, and sensitivity to
initial conditions [8,9]. For SOH estimation, [10] proposes a model-based voltage-capacity
approach that implements incremental capacity analysis (ICA). The application of capacity
fading, internal battery internal resistance [11], physics-based modeling [12], dual adaptive
H infinity filter (AHIF) combined with a strong tracking filter (STF) [13], and a recur-
sive least square multi-timescale estimator [14] are some of the model-based approaches
reported for SOH estimation.

On the other hand, artificial intelligence models are the prevalent conventional data-
driven approaches for estimation problems. A host of methods that apply artificial intelli-
gence for SOH estimation have been proposed in the literature. The authors in [15] estimate
SOH with a back-propagation neural network classifier using variations in the voltage,
state of charge (SOC), and energy state of the battery as feature variables. A time-series
momentum back-propagation neural network algorithm is adopted with battery internal
resistance and voltage variation as feature variables for SOH estimation in [16]. Estimation
of SOH with a multilayer perceptron algorithm is investigated in [17]. Moreover, the
authors in [18] estimate SOH using a group method for data handling (GMDH) polynomial
neural network. Although artificial intelligence neural network models have numerous
advantages, their solutions often lead to optimization problems, which can result in local
minima. Models optimized at local minima are suboptimal.

A host of methods exist in the literature for extracting features that show a correlation
with SOH. In [19], they characterize SOH using a exploited importance sampling (IS)
strategy. The drawback is that it requires the battery charges or discharges to be sufficient
for the feature variables to be extracted. ICA [20] and incremental voltage analysis (IVA) are
other useful strategies, but their sensitivity to noise limits their application [4,21]. Real-life
applicability is a concern for most of the approaches adopted in the literature. Other feature
extraction strategies can be found in [10,18,22]. An alternative approach using a discrete
variation of selected indicator variables as the feature variable is adopted in this work [15].

The production process of the lithium-ion battery is not fully mature. The cell-to-cell
variation in the battery pack amounts to a variation in the distribution of cell parameter
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variables [23]. This variation influences the pattern of aging. A model is required that,
when trained with a set of battery dataset, will accurately predict the SOH of other batteries
of the same type. However, it is often the case that many trained SOH prediction models
experience deviation or drift when applied to unobserved batteries of the same type.
In traditional machine learning algorithms, the training and test data are required to
be identically distributed [19]. Such drift is often attributed to the wide variation in the
distribution of cell parameter variables.

Some authors adopt transfer learning approaches for solving the drift problem [19].
Transfer learning via domain adaptation [24] transfers shared knowledge across the dis-
tribution of a known source battery and the distribution of a different but related target
battery. The goal is for the source battery to acquire some knowledge from the solution
task and use the knowledge to improve the estimation on the target battery. Minimization
of the distance between these distributions, however, results in a high computational
problem [24]. A procedure for SOH estimation using transfer component analysis (TCA) is
demonstrated in [19]. Aside from the high model complexity and the high computational
demand associated with domain adaptation approaches, the estimation model requires
continuous learning each time a prediction is required. These drawbacks make it unsuitable
for online automotive applications.

A less complex model based on ICA is proposed by [25] for enhancing generalization
across batteries of the same type. The ICA model uses the concept of regional capacity
and regional voltage to estimate SOH within the domain of incremental capacity analysis.
A couple of papers report attempts to estimate SOH with extreme learning machine
(ELM) [26,27]. The high prediction accuracy and learning speed of ELM makes it an elegant
tool for applications where computational resources are a constraint. The ELM model can,
however, be affected by the drift problem. The parallel layer extreme learning machine
(PL-ELM) [28] proposed in this paper serves as a suitable alternative for SOH estimation
with improved accuracy.

An extensive analysis and comparison between the original ELM and PL-ELM is re-
ported in [28]. Some variants of the multiple layer ELM adopted for solving regression and
classification problems include parallel layer perceptrons (PLP) ELM [29], and multiparallel
extreme learning machine with excitatory and inhibitory neurons (MEI-ELM) [30]. Others
are reported in [31,32].

Although PL-ELM is not a new concept, its advantages in terms of its low complexity
and computational efficiency, especially for SOH estimation, can be useful for researchers.
An improved version of PL-ELM obtained with deterministic parameters offers a mix of
stability and good nonlinearity handling. As a contribution, this paper demonstrates the
application of a deterministic PL-ELM algorithm as an alternative solution to the drift
problem. A SOH estimation model developed with this approach showed an improved
generalization across a large set of similar batteries. This algorithm was trained and
validated with the NASA prognostic center of excellence (PCoE) dataset to demonstrate
this application [33]. The results are compared with the ICA-based algorithm for a constant
current profile.

2. Methodology

PL-ELM was developed from the building blocks of ELM. The concept of PL-ELM
is that with two parallel layers, two independent projections to the feature space are
developed. Each of the projections are nonlinearly activated and they combine through a
product. This generates a more powerful nonlinear mapping than just using one activation
function, and the prediction capacity is enhanced [28–31]. Since ELM is based on adjusting
only the linear parameters using the least squares estimate (LSE), the PL-ELM network
provides more freedom for proper adjustment [29]. By assigning the weights and biases
deterministically, a stable PL-ELM model is obtained.
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2.1. Deterministic Extreme Learning Machine

ELM is a training method for a single hidden layer feedforward artificial neural
network [34]. Contrary to the traditional neural network that results in an optimization
problem with a slow iterative training process, ELM is a fast noniteration trained model,
with no issue of local minima as there is no optimization problem.

According to [35], the weights and biases of a single layer feedforward network (SLFN)
can be assigned randomly given that the activation function is infinitely differentiable.
ELM can also be used to train SLFN with nondifferentiable activation functions [36]. If the
number of neurons on the hidden layer is less than the number of measurements, input
weights can be randomly assigned. The output weights, which form the only unknown
parameter, can then be determined analytically. ELM computes the estimated model output,
yk by solving Equation (1).

yk =
m

∑
j=1

Φj,k g(
n

∑
i=1

wi,jxi + bj) (1)

where wi,j and bj are the input weight and bias, respectively, and i and n are the respective
index and number of neurons on the input layer. The number of neurons corresponds to
the number of feature variables, j and m are the respective index and number of neurons
on the hidden layer, and k is the index of neurons on the output layer corresponding to the
number of outputs. g( ·) is a sigmoid activation function and Φj,k is the output weight.

Many activation functions including; hyperbolic and cosine activation functions exist
in the literature. With an equal number of input neurons, a sigmoid activation function
(SAF) returns an enhanced dataset discrepancy or separation when compared with a host
of existing activation functions [36]. Also, increasing the number of input neurons (with
independent characterizing feature variables) improves the discrepancy of the dataset. For
the hidden layer output matrix represented as H = g(wi,jxi + bj), Equation (1) can be
re-written as Equation (2).

HΦ = y (2)

It is necessary to compute the unknown Φ such that an estimated value ŷ approximates
the true y. The work of [36] highlights the variants of ELM defined on the basis of the
output weight Φ̂, including backpropagation tuning ELM (tELM) and regression-based
ELM (rELM). In this work, Φ̂ is developed based on the generalized Moore–Penrose
inverse method.

Φ̂ = H+ y (3)

where H+ is the generalized Moore–Penrose inverse matrix.
In the original ELM, the input weights and biases are assigned randomly. Although

the estimated result may occasionally track the reference, the learning process is not
deterministic and lacks repeatability. The resulting model can be unstable [36] under
certain conditions. This is based on the fact that the randomly assigned input weights and
biases have infinite possibilities. In addition, it has been shown that the input weights and
the hidden layer biases do not necessarily have to be tuned when assigned and that the
output layer matrix can remain unchanged [35]. Therefore, a deterministic ELM is designed
by assigning the weights and biases using Equation (4). This increases the likelihood of
having different values of Hj while limiting the weight within the distribution range of −1
to 1 [36]. The bias is distributed within the range of 0 to 1.

wi,j =
1
2
[(−1 +

2
n

i) + (−1 +
2
m

j)]; bj =
j

m
(4)

2.2. Deterministic Parallel Layer Extreme Learning Machine

To develop the PL-ELM model, a second nonlinear layer is introduced in parallel with
the hidden layer of the deterministic ELM. The additional parallel layer helps to improve
the nonlinearity handling. Adopting PL-ELM is justifiable since it is possible to achieve
model improvement in terms of accuracy with only a little increase in model complexity.
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The weights of the second component of the PL-ELM are also assigned deterministically but
with a low-discrepancy sequence (LDS) [28,37]. Some families of LDS have been developed
to efficiently generate a sequence of points deterministically [28]. An LDS tries to maintain
the discrepancy of the resulting points within [0, 1]n as small as possible, and provides
a favorable asymptotical rate of convergence of the discrepancy itself. The weights and
biases of the first component of PL-ELM are assigned with Equation (4), while the weight of
the second component is assigned with Halton’s LDS [28] but with zero bias. The structure
of PL-ELM is shown in Figure 1.

Figure 1. Parallel layer extreme learning machine architecture [28]. The weights and biases of the upper layer are assigned
with Equation (4). The lower layer is weighted with Halton’s low-discrepancy sequence (LDS) and zero biased.

β and γ are the nonlinear sigmoid activation function (SAF) of the two parallel ELM
layers. The output weight, Φ̂ matrix is to be computed. The overall hidden layer output
matrix, H (Equation (6)), is the Hadamard product (element-wise product) of the individual
parallel hidden layer output matrices, H1 (Equation (7)) and H2 (Equation (8)) for N distinct
samples (xk, yk ); xk ∈ Rn. Considering SLFN, with m hidden neurons, the output of the
network is evaluated as

yk =
m

∑
j=1

Φj β(vjxk)γ(wjxk + bj) f or 1 ≤ k ≤ N (5)

where vj and wj are the weight matrices for the respective parallel input layers and bj is the
bias. Equation (5) can then be written compactly in form of Equation (2), where

H = H1 ∗ H2 (6)

H1 =

 β(v1x1) . . . β(vmx1)
...

...
...

β(v1xN) . . . β(vmxN)

 ∈ RNxm (7)
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H1 =

γ(w1x1 + b1) . . . γ(wmx1 + bm)
...

...
...

γ(w1xN + b1) . . . γ(wmxN + bm)

 ∈ RNxm (8)

The objective is to obtain Φ̂ as in Equation (3) such that the error between the esti-
mated and the measured output is minimum (Equation (9)). Φ̂ is obtained by the least
square method.

‖ HΦ̂−Y ‖ = min
Φ ‖ HΦ−Y ‖ (9)

2.3. Experimental Dataset Description

The analysis was conducted with 2Ah capacity lithium-ion datasets provided by
the prognostic center of excellence (PCoE) at NASA’s Ames Research Centre for fault
prediction and diagnostic studies [33]. The experiment was conducted at room temperature,
completely cycling different batteries until their end-of-life (EOL). The term battery and
cell are used interchangeably in this paper. Each cycle involved a complete charging and
discharge of the battery. Charging was carried out in a constant current (CC) mode of 1.5 A
(about 0.75 C-rate) until the battery voltage reached 4.2 V and then continued in a constant
voltage (CV) mode until the charge current dropped to 20 mA. Discharge of batteries B0005,
B0006, B0007, and B0018 was done at a constant current (CC) load of 2 A (that is a 1 C-rate)
until the battery voltage reached the minimum allowable voltage.

2.4. State of Health (SOH)

In lithium-ion batteries, the performance is affected by both storage time and usage—
phenomena known as calendar aging and cycle life aging, respectively. The cycle life is the
maximum number of cycles or the maximum operating time for a specific set of operating
conditions. The computation of SOH is based on capacity fading as in Equation (10). A
fully charged battery has a releasable capacity, Cmax that can be different from the rated
capacity, Crate. Cmax decays with storage time and usage of the battery. These can be used
for evaluating battery SOH [38].

SOH =
Cmax

Crated
100% (10)

Considering one of the datasets (B0005), the EOL of the battery was reached after
170 cycles. The SOH that describes the aging of the battery until the EOL is shown in
Figure 2 for the charge and discharge phases. The good fit outcome of Figure 2 depicts
the similarity of SOH in the charge and discharge phases. This suggests that the SOH
estimation is comparable for the both phases.

Figure 2. Similarity of state of health (SOH) in the charge and discharge phases. SOH of B0005 is
shown to decrease with the number of cycles.
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2.5. Characterization and Feature Selection

The training of the PL-ELM requires suitable inputs or feature variables obtained from
the characterization of the SOH of the battery. The feature variables used in this model
are the discrete variation of internal indicators and operational indicators of SOH. The
internal indicators are characteristics that are inherent in the battery such as the SOC, the
energy, and the capacity of a battery. The internal indicators are often measured offline.
For online implementation, internal indicators can be reasonably estimated using suitable
algorithms. Operational indicators such as terminal voltage, current, and temperature
are readily available from the battery management system (BMS) and easily accessible
at run-time.

The indicators used in this work consist of the combination of the internal and the
operational indicators, and they include voltage [V], SOC [%], and energy [Wh] releasable
by the battery, as shown in Table 1. The variation of the discrete points of the indicator
variables were obtained at 90 s interval and were used as input to the SOH estimation
model. This variation in the variables (∆V, ∆SOC, ∆E) helps to capture the dynamics that
exist in the indicator variables while training the SOH estimation algorithm. The choice of
the discrete point variation interval was based on model tuning for accuracy.

Table 1. Model feature and output variables.

Indicator Variable Model Train Features Unit

Training Feature

Voltage (V) 4V [V]
State of Charge (SOC) 4SOC [%]

Energy (E) 4E [Wh]

Model Output

State of Health (SOH) [%]

The experimental dataset consists of the measured battery terminal voltage and the
corresponding current delivered based on request. The terminal voltage of the lithium-ion
battery acquired directly from the experiment can be shown to be modeled according to the
Thevenin equivalent model of Equation (11). The corresponding equivalent circuit model
is shown in Figure 3.

v(t) = OCV(SOC(t))− vC(t)− i(t)R0 (11)

Figure 3. Equivalent circuit that describes the dynamic voltage of a lithium-ion battery [39].

This kind of resistor-capacitor (RC) circuit highlights the presence of a resistive
component—the last term on the right-hand side of Equation (11). The presence of this
component demonstrates that the energy state of the battery is not conserved. Hence, with
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storage time and usage of a lithium-ion battery, capacity fading or aging occurs. The open
circuit voltage OCV is the equilibrium voltage or the rest voltage of the battery, and it
is intrinsically a function of SOC. vC models the dynamic voltage, which is the voltage
across C1 in the RC-circuit. To demonstrate the capacity fading/aging, a two dimensional
voltage–capacity plot of the experimental dataset is shown in Figure 4.

Figure 4. (a) Voltage vs. capacity plot: the output of a constant current discharge profile. Each curve represents a single
cycle. The arrow is the reverse direction of aging across cycles. (b) The data points are taken at a 60 s interval to obtain the
variation of voltage used as the feature variable.

As the lithium-ion battery ages, the maximum and minimum voltages of the battery
are reached quicker during charge and discharge, respectively, as a consequence of the
degraded charge/energy capacity. The degraded capacity results from the consumed active
electrode and results in a faster voltage polarization. The battery SOC is an important
battery parameter upon which many variables and other parameters are dependent. SOC
is commonly defined as the percentage of the maximum possible charge that is present
inside a rechargeable battery. Thus, the SOC serves as the fuel gauge for batteries. SOC
can be expressed as the ratio of current capacity and the capacity releasable at the end
of discharge, as in Equation (12). Since SOC is not directly measurable at run-time, it is
estimated by a BMS algorithm [40].

SOC(t) = SOC(to)−
∫ t

o I(t)
C

dt (12)

SOC(to) is the initial SOC while C is the releasable capacity computed by coulomb
count. Accurate measurement of SOC is necessary to minimize cumulative error. The
algorithm demonstrated in [40] can be helpful to achieve this. Similar to the computation
of battery releasable capacity by coulomb count, the deliverable energy is computed by
integration of the product of voltage and current over time. For a constant discharge current,
the equation for energy (E) computation, is shown in Equation (13).

E(t) = E(t0)−
∫ t

o
I(t)v(t)dt (13)

The releasable energy, E, provides information about the integrated power that can
be released from the battery. Although E appears to be dependent on the other feature
variables (voltage and SOC), it provides a unique feature as an integral of power. Figure 5a
shows a three-dimensional plot of SOC, voltage, and energy, while Figure 5b shows the
variations in SOC, voltage, and energy.
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Figure 5. (a) A three-dimensional plot of SOC–capacity–voltage for a constant current discharge
profile. Each curve represents a single cycle. The arrow is the reverse direction of aging across cycles.
(b) The corresponding feature variables obtained as variations of SOC, capacity, and energy.

From Figure 5b, it can be seen that the variation of voltage between 300–3000 s (90–10%
SOC) is almost constant. For this reason, SOH discrimination in this zone is poor with only
voltage and SOC. On the other hand, the variation of energy does not show this behavior.
The energy variable thus provides an additional feature for characterizing SOH.

2.6. Summary of Scheme Setup Procedure

The SOH estimation scheme using the PL-ELM algorithm as proposed in this paper is
summarized below.

Model Input: [∆V, ∆SOC, ∆E] ∈ R3×N

Model Output: SOH ∈ R1×N

• The dataset consists of voltage that is acquired by aging the battery with a constant
current profile;

• SOC and energy are extracted from the dataset as described in Equations (12) and (13),
respectively;

• The input of the PL-ELM model is computed as a discrete point variation of the voltage,
SOC, and energy at a 90 s interval, as in Figure 4b;

• The discrete point output is computed as the mean SOH within the same interval;
• The discretized input and output data are used to train the model, defining the parameters

(weight and bias) of the PL-ELM model;
• The number of hidden layer neurons is adjusted to obtain an optimum model, allowing for a

compromise between performance and complexity;
• The designed SOH estimation model is then validated using the dataset of other batteries of

the same type that have been aged under the same current load conditions as in the training.

3. Results and Discussion
3.1. PL-ELM Model Training

The results shown in this section demonstrate the estimation of SOH with deterministic
PL-ELM to enhance generalization over a set of batteries of similar specifications. The result
herein demonstrates that although each battery used in the test had a distinct distribution,
the estimation algorithm performance was optimum over the entire set. In other words, the
designed model is not affected significantly by the drift problem. The PL-ELM estimation
model performance was compared with other methods, including the deterministic ELM
algorithm and an ICA-based algorithm reported in [25]. The performance evaluation
was computed with root mean square error (RMSE) and mean absolute error (MAE)
indices, considering a 99% confidence interval of the errors. This consideration helps
to provide information about the percentage of errors outside the defined error bound.
The performance results were compared with other algorithms in the literature. The root
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mean square error (RMSE) and mean average error (MAE) indices were computed using
Equations (14) and (15), respectively.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (14)

where N is the total number of samples. The quadratic scoring RMSE is desirable to amplify
large errors while diminishing small ones. A linear scoring MAE is defined as

MAE =
1
N

N

∑
i=1
|yi − ŷi| (15)

The inputs to the PL-ELM network or the model training features are the discrete
variation of the indicator variables in Table 1. The structure of the PL-ELM was fixed by
varying the number of neurons at the training phase. The number of neurons chosen was
a compromise between model complexity and accuracy. To fix the model structure, the
number of neurons was varied from 1 to 20, as seen in Figure 6c. It may be sufficient to use
about twelve (12) neurons to obtain an optimal model in terms of complexity. However,
by increasing the number of neurons sufficiently (20 neurons in this case), the estimation
accuracy of the model was improved. The scheme was designed and simulated with Matlab
software, and the total number of 5523 data samples from the B0007 dataset was used
to train the model. Figure 6a shows the result of the training phase of PL-ELM while
Figure 6b shows the normal distribution of the error. Figure 6c shows the performance
based on model complexity when the number of neurons varied.

Figure 6. The result of parallel layer extreme learning machine (PL-ELM) model trained with B0007 dataset and consideration
of a 99% confidence interval on the error. (a) The result of SOH estimation with 20 neurons. (b) Normal distribution of the
error for 99% confidence interval (c) performance versus model complexity over 20 neurons.

Error estimation was obtained for a 99% confidence interval. The confidence interval
is in the range provided by the error bound (EB). This provides information about the
error deviation. The resulting model error is an approximation of natural distribution. The
percentage out of bound error (%EOB) indicates the percentage of the error that is outside
the 99% confidence interval. In the training phase, only about 1.57% of the training data
points were outside the 99% confidence interval bound at ±0.14% estimation error. The
%EOB for the validation phase is also listed in Table 2.

The RMSE of the trained model performance was computed as 0.046, while the mean
average error (MAE) was 0.034 for twenty (20) neurons in the parallel layer network.
From the performance results for 99% confidence interval shown in Table 2, the difference
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between RMSE and MAE is useful for understanding the error variations in the predictions.
The small difference between the RMSE and the MAE errors indicates low error variance
in the prediction set. It can be seen that even with the low errors deviation in the EB, the
%EOB is minimal.

Table 2. SOH estimation performance comparison between PL-ELM and incremental capacity
analysis (ICA) model in training and validation. The error bound (EB) and out of bound error (%EOB)
information are also provided.

PL-ELM ICA Model

RMSE MAE EB %EOB RMSE

Training B0007 0.046 0.034 (−0.14, 0.14) 1.570 0.66

Validation
B0005 0.362 0.345 ( 0.02, 0.67) 2.037 0.87
B0006 0.473 0.355 (−0.62, 1.31) 3.240 2.49
B0018 0.170 0.158 (−0.04, 0.36) 0.250 -

The model performance is influenced by the choice of the discrete point variation
interval of the input features. The choice of the interval was based on model tuning for
accuracy. The results of the interval variation are not fully reported in this work. However,
it can be shown that too small an interval results in a noisy feature, while too large an
interval results in too much loss of information. In both extreme cases, the model accuracy
is impacted adversely. In this work, a sampling interval of 90 s is believed to be optimum.
Using a 60 s interval increased the training RMSE from 0.046% to 0.053%. On the other
hand, with a 120 s interval, the training RMSE was reduced to 0.043%. However, the
maximum validation RMSE increased from 0.473% to 1.089%.

3.2. PL-ELM Model Validation

The training of the estimation model was done with battery B0007 dataset. The model
was validated with other batteries of the same type: B0005, B0006, and B0018. All the
batteries were aged with a constant current profile of 2 A. The performance of the designed
model was compared with the result obtained with the ICA-based model using the same
dataset as reported in [25]. These performance results are shown in Table 2. From the
comparison, the proposed model shows an improved relative performance.

The variation of RMSE, as shown in Table 2, is in the range of 0.170–0.4736 on the
validation phase. Moreover, the variation of the MAE range is in the range of 0.158–
0.355. Figure 7 shows the validation of the PL-ELM model with batteries B0005, B0006,
and B00018.

Figure 7. PL-ELM model validation: (a–c) model validated with B0005, B0006, and B0018 dataset, respectively.
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It can be seen from Figures 6 and 7 that the aging pattern is different for the individual
batteries despite the fact that they were subject to the same amount of load. The PL-ELM
model can cope with the nonlinearity of SOH for all the batteries with reasonable accuracy.
The nonlinearity handling strength is attributed to the two parallel (or independent) layers
that are nonlinearly activated and projected into the feature space.

3.3. Model Comparison with Deterministic ELM and Demonstration of the Drift Problem

Although ELM is the building block of PL-ELM, it does not have as much nonlinearity
handling capacity as the PL-ELM. ELM may be suitable for systems with fairly low nonlin-
ear behavior. Like many machine learning algorithms, the ELM model often experiences
a drift when the level of dissimilarity between the distribution of the training and the
validation dataset is high. To compare results between ELM and PL-ELM, the experiment
was repeated as summarized in Section 2.6, replacing the PL-ELM with the deterministic
ELM single-layer model. The results of SOH estimation using the ELM model are shown
in Figure 8.

As in the PL-ELM, the ELM model was trained with the battery B0007 dataset and
validated with the B0005, B0006, and B0018 datasets. The training RMSE performance of
the battery was 0.245, while the MAE was 0.191. In the validation, the RMSE was in the
range of 0.501–1.563, while the MAE was in the range of 0.361–0.907. The ELM model
performance is reported in Table 3. The model estimation tends to drift away from the
true SOH across the entire cycle. Although the model results shown here were obtained
for twenty (20) neurons, the drift problem never disappears regardless of the number of
neurons used.

Figure 8. Extreme learning machine (ELM) model training and validation: (a) model trained with the B0007 dataset. (b–d)
Model validated using the B0005, B0006, and B0018 datasets, respectively.

Table 3. SOH estimation performance of deterministic ELM model for training and validation. The
EB and %EOB information are also provided.

RMSE MAE EB %EOB

Training B0007 0.245 0.191 (−0.74, 0.74) 0.615

Validation
B0005 1.117 0.762 (−1.70, 3.22) 1.24
B0006 1.563 0.907 (−3.18, 4.82) 0.19
B0018 0.501 0.361 (−0.79, 1.46 ) 0.89

From the results of Tables 2 and 3, PL-ELM and deterministic ELM can be compared
based on performance. The training RMSE of the deterministic ELM increased from 0.046%
to 0.245% when compared with that of the PL-ELM. The MAE increased from 0.034% to
0.191%. The maximum validation RMSE of the ELM increased from 0.473% to 1.563%, while
the maximum MAE increased from 0.355% to 0.907%. These highlight the improvement in
the performance of the PL-ELM as compared with the ELM. The poor performance of the
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deterministic ELM model is evident in the SOH estimation results and in the large EB in
the validation phase. The model drifting that affects the ELM becomes more pronounced
as the battery ages.

It can be seen from Figures 7 and 8 that degradation/aging distribution varies across
the individual cells, despite the fact that they were subjected to the same load condition and
were of the same cell type. This variation in distribution results from cell-to-cell parameter
variation [23]. In conventional machine learning models, the training and test datasets are
required to be identically distributed [19] to avoid drift. Moreover, conventional neural
network-based models are trained by optimization. The probable resulting models obtained
at some local minima can be suboptimal and may experience drift on other batteries of the
same type.

The model was set up, simulated, and validated using Matlab and Simulink software,
version 2020b. To understand the real-time performance of the model in terms of computa-
tional cost and memory consumption, the algorithm was deployed to a Texas Instruments
Delfino™ F28379D device. The 32 bit duo core MCU was connected to Simulink via serial
connection and a processor in the loop (PIL) model simulation was performed. On the
basis of the simulation, an average execution speed of 93 µs was recorded with 0.9305%
average CPU utilization. This suggests that the model is suitable for online applications.

4. Summary and Conclusions

Reliability of energy supply is a key concern in lithium-ion battery applications, such
as in electric vehicles. The reliability of a lithium-ion battery was analyzed on the basis
of the SOH index. The SOH is computed based on relative capacity across the lifetime
of a battery, otherwise known as capacity fading. In this work, SOH was experimentally
characterized using the voltage, SOC, and energy releasable by the battery.

An approach using deterministic and stable PL-ELM was applied to develop SOH
estimation models. This solution did not lead to an optimization problem. Moreover, the
resulting model showed no drift when applied for the estimation of SOH on other batteries
of the same type under equivalent load conditions.

The PL-ELM model was trained and validated using the discrete variation of the
characterizing or indicator variables as an input to the model. The training and validation
was experimentally possible with the help of the dataset from NASA PCoE. The RMSE
of the validated model varies from 0.046% to 0.473% and the MAE error from 0.034% to
0.355% with a minimum error deviation beyond the 99% confidence interval for the battery
sets tested. An improved relative performance was obtained for the proposed model in
comparison with the other highlighted algorithms.

The model was tested on an MCU board using a PIL simulation with an execution
time of 93 µs in real time and with 0.9305% CPU occupation. On the basis of the low model
complexity, the performance, and the computation efficiency, the model is suggested as
being suitable for online applications.
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