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ABSTRACT 

Novel manufacturing techniques that have arisen during the last decades have permitted 
to improve both the manufacturing quality and performance of laminates parts. Despite these 
improvements, such manufactured parts are not flaw-exempt, since uncertainty in the fabrication 
processes and in the material properties are still present. At the same time, numerical models that 
allow to describe the ground truth designs have been developed. Nevertheless, some defects have 
not been studied yet. This work aims to analyze the influence of spatially varying microscale 
defects on the mechanical performance of variable stiffness plates at both microscale and 
macroscale level.  Attention has been paid to the usage of component-wise and layer-wise 
modeling, based on the Carrera Unified Formulation, to study the stochastic response of the 
micromechanical stresses and the macroscale buckling performance, respectively. 
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INTRODUCTION 

Automated fabrication techniques, such as Automated Fiber Placement (AFP) [1], have 
broadened the manufacturing possibilities of laminated structures. Apart from improving the 
quality of the produced parts, new families of composites have been conceived, namely Variable 
Angle Tow (VAT) composites. Such structures broaden the design space thanks to their 
capabilities of redistributing the stresses to desired regions, which may allow weight reduction. 

However, every manufacturing process is subjected to the uncertainty that arises from 
different factors. Uncertainty in the micromechanical properties can be one of those. Recent 
works have addressed this phenomenon. For instance, Dey et al. [2] imposed uncertainty in the 
material elastic properties at the micro and macroscale level. It was demonstrated that 
considering such stochasticity at the microscale broadens the stochastic structural response. 

There exist several fashions in which randomness in material properties, laminae 
thickness, etc., can be imposed. During the last years, stochastic fields [3] have been used to 
impose variability. These fields are commonly generated by means of the Karhunen-Loève 
Expansion (KLE) [4] thanks to their capabilities of combining them with metamodeling 
techniques. For instance, Guimaraes et al. [5] used KLE to generate variability in the fiber 
volume fraction (FVF) of tow-steered composite plates. Moreover, they employed Polynomial 
Chaos Expansion (PCE) [6] as regression metamodel to compute aeroelastic sensitivity statistics. 

In this manuscript, Carrera Unified Formulation (CUF) [7] is used to model VAT plates. 
CUF has been used to analyze a variety of mechanical problems, such as micromechanics [8],
rotor dynamics [9], and hygrothermal analyses [10]. In recent years, CUF has also been extended 
to the analysis of VAT plates, as shown in the papers by Vescovini and Dozio [11] and Viglietti 
et al. [12]. Additionally, manufacturing-induced mesoscale uncertainty on VAT components has 
been studied in [13] and [14]. Following this research path, this work aims to investigate how 
microscale uncertainty propagates through the scales of VAT laminates and how this uncertainty 
affects the microscale stresses, as well as macroscale stresses and the structural buckling 
response. 

The manuscript is organized as follows: (i) first, a description of the high-order finite 
elements is made; (ii) then,  uncertainty modeling and quantification procedures are depicted; 
(iii) afterward, the results are gathered and explained; (iv) finally, some concluding remarks are 
included. 

UNIFIED FINITE ELEMENTS

In the framework of CUF [7], the 3D field of displacements can be expressed as a 
summation, following Einstein notation, of  arbitrary expansion functions  and the vector 
of the generalized displacements . In the case of one-dimensional beam theories, as in the 
case of this work, the displacements field is expressed as: 

(1)
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where  is the number of expansion terms. Several families of expansion functions can be 
utilized as , being the most common the Taylor expansion (TE), Lagrange expansion 
(LE), and Hierarchical Legendre expansion (HLE). The last two expansions are the ones used in 
this work to describe, respectively, the macroscale structure and the microscale UC. In this 
fashion, a layer-wise (LW) approach is used to analyze the laminated parts. For the 
micromechanics, a component-wise (CW) approach is obtained by coupling HLE with the 
blending function method (BFM) [15] to precisely describe the geometry of the curved 
boundaries present in the micromechanical model. 

The Finite element method (FEM) is then used to study the structures involved in this 
paper. Therefore, the generalized displacements can be expressed as: 

(2)
 

in which  is the total number of beam nodes,   are the one-dimensional shape 
functions and are the nodal unknowns. 

In the extensive literature of CUF, it has been demonstrated that the governing equations 
that lead to the computation of the equilibrium state can be obtained by adopting an adequate 
recursive notation for the expansion of the kinematics. In this manner, in the FEM framework, 
the stiffness arrays can be obtained easily, and the accuracy of the analysis can be fine-tuned 
opportunely. 

In  this work, the authors report the explicit equations that allow one to obtain the linear 
stiffness matrix by means of the Principle of Virtual Displacements (PVD) 

(3)

where  denotes the fundamental nucleus of the linear stiffness matrix, and the  operator 
represents the integral over the volume of the element. Then, the assembled global stiffness array 
is obtained by looping through the indices .

The linearized buckling problem is also analyzed in the present paper. For the sake of 
brevity, the governing equations of that problem are not reported here, but can be found in [16]. 

MICROMECHANICAL MODELING 

Composite structures can be conceived as an ensemble of microstructures periodically 
distributed over the st
represents the essential building block that contains the necessary information to identify the 
material properties. An illustration of the RUC is available in Figure 1. The macroscopic 
properties are defined in the global reference system 
reference frame is denoted by . Micromechanical analyses can be twofold: (i) 
first, they can be used to calculate the effective properties of the heterogeneous material 
represented by the RUC as input of the equivalent homogeneous material properties in the 
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higher-scale analysis; (ii) retrieve the displacements, strains and stresses fields over the RUC 
from the outputs of the macroscale structural analysis at particular points. 

 

Figure 1. Representation of a period heterogenous material and the associated RUC, along with the global and 
local reference frames.

Micromechanical analyses assume that the RUC is much smaller than the macroscopic 
structure, such that , where is a scaling factor that characterizes the dimensions of the 
RUC. In micromechanics, the material properties provided by the RUC analysis at the 
microscale are intrinsic properties of the material chosen for the structural analysis. That is, they 
do not depend on the macroscale structural problem. 

In this manuscript, the micromechanical problem is solved by employing the Variational 
Asymptotic Method (VAM) and the Mechanics of Structure Genome (MSG), initially derived in 
[17] and [18]. These are then coupled with CUF, as explained in the work by de Miguel [8], to 
obtain the homogenized material properties of the RUC. For the sake of brevity, the governing 
equations of the mentioned methods are not reported in this work, but they are available in the 
cited papers. 

UNCERTAINTY MODELLING AND QUANTIFICATION

STOCHASTIC FIELDS 

Uncertainty might appear at the different scales of a laminated component. Therefore, it 
is essential to understand how it affects the mechanical performance of the studied component to 
enhance the design process. Uncertainty is modeled through stochastic fields generated using the 
KLE [4] and is included in the numerical model. In this way, a generic two-dimensional random 
field can be expressed as: 

(4)

in which is the mean value of the field,  are 
independent Gaussian random variables, and  and  are the eigenvalues and 
eigenfunctions solution to a Fredholm integral problem, which depends on the selection of a 
correlation function . Equation (4) is then truncated up to  terms to generate the random 
fields.  For further knowledge on this topic, the reader is referred to [19]. 
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POLYNOMIAL CHAOS EXPANSION 

One of the most used techniques to study stochastic processes is the Monte Carlo (MC) 
method, in which several parameters, whose influence we want to address, are modified between 
runs, leading to different results. However, MC is a computationally intensive procedure that 
requires a vast amount of simulations to provide a good characterization of the desired outcomes. 
For that reason, numerical techniques such as Polynomial Chaos Expansion (PCE) can be 
utilized to mitigate the computational cost. Following this surrogate approach, the desired output 
magnitude can be expressed in terms of convenient independent variables as: 

(5)

where  are the coefficients of the PCE, and  are the orthonormal polynomial set that 
constitutes the PCE and depends on a set of independent random variables , which are the 
ones used to generate the stochastic fields. In this manuscript, PCE is used to address the 
uncertainty regarding the inner stress state and the critical buckling loads. Additional literature 
concerning PCE can be found in [20]. 

Figure 2. Flow-chart depicting the multiscale uncertainty process. 
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To conclude this section, a flow-chart explaining how the uncertainty is propagated 
throughout the scales is shown in Figure 2 and explained herein. First, a set of independent 
Gaussian random variables is generated in order to obtain the different random fields influencing 
the laminated structure. These random variables are the input of the FE model. Once the FE 
simulation is running, a specific value of FVF is assigned to each integration point. The FVF 
provides the elastic properties of the material by means of polynomial functions that relate, for 

 modulus with the fiber content of the UC. Then, with the elastic properties, 
the material stiffness matrix is obtained. Afterward, this matrix has to be rotated into the global 
reference frame of the structure. For doing so, the local fiber orientation is used to compute the 
rotation matrix, available in the book by Reddy [21]. Finally, the global material stiffness matrix 

is used to compute the fundamental nucleus , then the global stiffness array is assembled, 
and the stochastic structural response is obtained.  

NUMERICAL RESULTS 

In this work, a four layered balanced and symmetric VAT plate is studied. A compressive 
pressure  kPa is applied at one of the edges, while the opposite edge is clamped. The 
remaining two edges are free to deform. The fiber orientation considered is ,
according to the notation introduced by Gürdal and Olmedo [22]. The elastic material properties 
are enlisted in Table I. Note that since a multiscale procedure is considered, fiber and matrix 
constituents are shown separately. The homogenized properties of the composite material when 

 are reported in Table I too. 

Table I. Elastic properties of the constituents of the composite material and homogenized material properties for 
a fiber volume fraction . Longitudinal, transverse and shear modulus are expressed in GPa. 

Constituent
Fiber 235.0 14.0 28.0 5.60 0.20 0.25

Matrix 4.80 4.80 1.79 1.79 0.34 0.34
143.17 9.64 6.09 3.12 0.252 0.349

Once the material properties and boundary conditions were set, and after verifying the 
present numerical model against commercial software ABAQUS [23], a mesh convergence was 
carried out for both internal stress distribution and buckling loads. The mesh was chosen so that 
a good balance between accuracy and computational time was achieved since the latter 
influences the duration of the MC analysis. 

STOCHASTIC MULTISCALE STRESS RESULTS 

In this section, the microscale stress state is analyzed. Particularly, the location of the point of 
interest, referred to as point , is . The micromechanics stress state is retrieved 
by imposing the macroscale strain tensor and the FVF at point  for each analysis. An example 
of the local stress field recovery is shown in  

Figure 3. In it, the stresses over the fiber and transverse shear are represented. As expected, 
both the fiber and matrix present longitudinal compressive stresses. Moreover, and due to the 
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differences in the elastic properties of the components, a notable difference concerning the order 
of magnitude between the stresses at the fiber and the matrix regions is appreciated.

Figure 3. Local stress field recovery.  (left) and  (right). 

Figure 4. Representation of the cartesian and cylindrical reference frames at the RUC

Then, the micro stress tensor is rotated into a cylindrical coordinate system, represented in 
Figure 4, to show the distribution of stresses in the vicinities of the fiber-matrix interface. Note 
that the Cartesian longitudinal axis ( ) coincides with the longitudinal axis of the cylindrical 
reference frame. For the sake of brevity, the rotation matrix between cartesian and cylindrical 
reference frames is omitted but can be found in the book by Lekhnitskii [24]. 

The local stress distribution over the fiber domain is represented in Figure 5. The axial stress 
 is practically constant over the arc length and in perfect agreement with the stress 

distribution shown in Figure 3
illustrated and show a symmetric and antisymmetric stress distribution, respectively. On the one 
hand, shear stresses do not present a large variability, as the shaded blue region in Figure 5 
shows. On the other hand, the longitudinal stress distribution presents a variability up to  kPa. 
However,  and for all the local stress tensor components, a narrow 95% confidence interval is 
appreciated. These values, evaluated at point  and local circumferential coordinate ,
are enlisted in Table II. The vast COV presented by is due to the low mean value.
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Figure 5. Representation of the fiber local stresses in the cylindrical reference system.   Axial stress  (left on 
top), and shear stresses  (right on top) and (bottom).

Table II. Microscale stress statistics at point  and local coordinate  over the fiber domain. 

Mean value COV [%] 95% C.I. Min-max 
range

[kPa] -18.78 6.48 [-18.86,-18.71] [-22.74,-14.53]

[kPa] -0.37 13.94 [-0.369,-0.363] [-0.498,-0.148]

[kPa] -0.48 5.07 [-0.481,-0.478] [-0.547,-0.388]

[kPa] 0.91 6.14 [0.911,0.918] [0.771,1.183]

[kPa] -0.29 221.68 [-0.33,-0.25] [-1.24,4.36]

[kPa] 2.50 11.23 [2.48,2.52] [1.76,3.79]

STOCHASTIC BUCKLING RESPONSE 

After computation of the internal stress state, one can calculate the geometric stiffness matrix 
and solve the buckling eigenvalue problem as depicted in [13]. The first six nominal buckling 
loads are enlisted in Table III.  
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Table III. Nominal buckling loads of the plates without defects.  

[N] [N] [N] [N] [N] [N]
143.59 159.08 216.77 310.22 366.45 407.53

The variability in the buckling loads due to the stochastic fiber volume fraction fields is 
reported in Table IV and Table V. Additionally, the mean value and COV are computed through 
the Monte Carlo outcomes and first- and second-order PCE in these tables. 

Table IV. Mean buckling loads of the defective plates. 

Critical load
Monte Carlo

mean [N]
1st PCE mean 

[N]
2nd PCE mean 

[N]
143.48 143.48 143.49
159.21 159.21 159.21
217.16 217.16 217.16
310.21 310.46 310.48
366.45 366.61 366.62
407.53 407.91 407.93

Table V. .  

Critical load
Monte Carlo

COV [%]
1st PCE COV 

[%]
2nd PCE COV 

[%]
3.14 3.16 3.16
3.07 3.08 3.09
3.20 3.22 3.21
3.11 3.12 3.12
3.27 3.31 3.31
3.11 3.11 3.10

A graphical representation of the statistical moments shown in the tables above is available in 
Figure 6.  

Figure 6. Representation of the first six buckling load PDFs. 
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From Figure 6, it is appreciated that overlapping PDF tails appear for the first and second 
buckling loads in the vicinities of 150 N. Such overlaps are also present between the fourth, fifth 
and sixth buckling loads. It is not known beforehand if this phenomenon implies mode 
switching. To shed some light, Modal Assurance Criterion (MAC) matrix is computed for each 
Monte Carlo sample with the following expression: 

(6)

in which   is the -th sample of the -th eigenvector,  refers to the -th eigenvector of 

the reference solution and  denotes the -th sample of the  component of the MAC 

matrix. The mean value and standard deviation of each term of the MAC matrix are computed 
and represented in a 3D plot in Figure 7. It can be inferred that no mode switching occurs since 
all the terms in the main diagonal of the matrix have a mean value close to one. Nevertheless, 
some out-of-the-diagonal components present non-zero values. This occurs because the defective 
modes have resemblances with the pristine ones. 

CONCLUSIONS 

In this manuscript, a multiscale methodology to study the influence of spatially varying 
FVF over VAT plates has been devised. In it, the spatial variation of FVF is introduced into the 
FE by means of stochastic fields generated with KLE. Therefore, a non-intrusive way of 
considering defects was achieved. Such defects are propagated through the different scales, and 
the structural response of the plate is retrieved. 

Regarding the pre-buckling stress state, significant variability in the macroscale stresses 
is obtained, especially for the in-plane stress tensor components, which is due to the compressive 
state the plate is subjected to. The microscale stress tensor was then retrieved. For the studied 
point of interest, small variability in the stress distribution was obtained, but for the longitudinal 
stress. Additionally, narrow 95% confidence intervals were reported. 

Figure 7. 3D representation of the MAC matrix.
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Concerning the buckling performance, it has been demonstrated that FVF affects the 
value of the buckling load. Indeed, a buckling load COV of around 3% has been found. This 
means that, in a 3  reliability analysis, such critical loads may vary up to roughly 10% when 
microscale uncertainty is considered. Additionally, no mode switching has been appreciated, as 
demonstrated by the MAC matrix statistics. Nevertheless, the defective modes have shown 
resemblances with the pristine buckling modes.  

Future works will focus on the consideration of these uncertainty procedures in the 
optimization of VAT structures and the development of micromechanical models for curved 
RUCs. 
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