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Abstract. The fundamental derivation of macroscopic model equations to de-

scribe swarms based on microscopic movement laws and mathematical analyses
into their self-organisation capabilities remains a challenge from the perspective

of both modelling and analysis. In this paper we clarify relevant continuous
macroscopic model equations that describe follower-leader interactions for a

swarm where these two populations are fixed. We study the behaviour of the

swarm over long and short time scales to shed light on the number of leaders
needed to initiate swarm movement, according to the homogeneous or inhomo-

geneous nature of the interaction (alignment) kernel. The results indicate the

crucial role played by the interaction kernel to model transient behaviour.

1. Introduction. Collective movements describe the tendency of a group of indi-
viduals to coordinate their motion in a manner that generates net flow of the entire
population. Examples range from cells to animals, from migrating cell clusters dur-
ing development and cancer invasion [20, 23] to shifting bird flocks and fish shoals;
the latter extend to the kilometre-spanning shoals formed from hundreds of mil-
lions of herrings [22]. A point of recent interest concerns the potential division of a
population into “leaders” and “followers” and, consequently, how leaders influence
swarm dynamics. Clearcut leadership could result from experience, age or prior
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knowledge: the presence of older birds improves path efficiency in migrating cranes
[25]; post-menopausal orcas adopt leading positions during pod foraging [7]; only the
“househunting” scouts know the final destination of a new honeybee nest [31]. Sub-
tler leaders arise within superficially identical populations, such as the presence of
faster or “braver” individuals in fish shoals and bird flocks [30, 26]. Leader/follower
statuses also occur in a host of cellular systems, ranging from collective movements
of aggregated amoebae to sprouting blood capillaries during development, physiol-
ogy and disease [23].

Most theoretical descriptions of collective migration have employed agent/particle-
based approaches, e.g. [9, 10, 11, 12, 35], see also [4]. Despite the plethora of models,
they typically share a so-called set of “first principles of swarming” [8]: specifically,
particle trajectories governed by a combination of repulsion (preventing collisions),
attraction/cohesion (preventing dispersal) and alignment of direction/velocity ac-
cording to neighbour positions, each operating over specified interaction ranges.
Models based on these features reproduce a wide variety of collective migration
phenomenologies, e.g. see [4]. In the context of follower-leader systems, a key find-
ing has been that swarms can be efficiently guided by a small number of anonymous
(i.e. not clearly distinct from the crowd) informed individuals [9]. These individuals
influence their neighbours, which in turn influence further followers and knowledge
is relayed through the swarm. Surprisingly, as the swarm population increases a
diminishing fraction of leaders is needed to achieve the same level of guidance effi-
ciency [9]. Follower-leader alignment strategies have also been incorporated within
other swarming studies. For example, in [21] a “transient leadership” model was
considered to imitate bird flocks while “hierarchical leadership” was studied in [32]
within the framework of a Cucker-Smale model.

Beyond agent-based models, a plethora of continuous models have been proposed,
for example see [6, 16, 17, 24, 28, 34]. In common with their individual-based coun-
terparts, movement is governed by a set or subset of attracting/repelling/aligning
interactions, typically generating integro-differential equations of parabolic (e.g.
[24, 28]) or hyperbolic (e.g. [6, 16]) form. While these models gain analytical
tractability, their connection to individual-level behaviour is, inevitably, blurred.

The principal objective of the current paper is to clarify a relevant form of partial
differential equation system to describe follower-leader interactions within swarming
populations. Specifically, we focus on swarms that are clearly divided into two
distinct subpopulations: a leader population with knowledge of the destination,
and an unaware follower population. A paradigm for this form of follower-leader
system is provided by honey bee swarms. Prior to swarming, a small proportion
of scouts search the environment for a new nest, eventually arriving at a consensus
for the nest location [31]. Successful translocation of the swarm subsequently relies
on this small population of knowledgeable bees leading the uninformed colony to
this new location. Scout bees appear to transmit their information by performing a
sequence of nest-directed streaks through the upper swarm [2, 31, 19], a behaviour
that is believed to accentuate their visibility to followers. Inevitably, such behaviour
quickly brings scouts to the leading edge, so a shift in behaviour would be necessary
to prevent losing contact with the swarm. One proposal, suggested in [31], is slowly
travelling backwards, perhaps along the bottom or sides to minimise their influence,
before streaking again. This suggests that leaders switch between active and passive
states, e.g. as proposed in [5], where in the former they attempt to maximise their
influence on the swarm orientation and in the latter it is minimised.
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Taking inspiration from this and other follower-leader systems, we begin with an
underlying particle description for movement that is based on a relatively minimal
set of assumptions. Specifically. we propose velocity alignment interactions that
could lead to coherent and guided swarm movement. We subsequently examine
possible hyperbolic and parabolic scaling limits. We discuss the plausibility of
these macroscopic models, their relevance in the context of follower-leader systems
such as the bee swarms described above, and the new modelling challenges raised.
We further present some preliminary simulations, indicating the extent to which
the model can describe leader-follower behaviour.

2. Swarm description. We assume a swarm attempting to reach some target
destination and divided into two main subpopulations: followers (f) and leaders.
Leaders are assumed to have knowledge of the target while the followers are com-
pletely uninformed. The leader population is further subdivided into those engaging
as active leaders (a) and those behaving passively (p). Active leaders are defined as
that fraction of the leader population who are moving in the direction of the tar-
get, and can potentially engage in behaviour designed to communicate directional
information regarding the target. Passive leaders are assumed to move away from
the target, e.g. towards the back of the swarm where they can reengage in active
leader behaviour. We remark that the total number of leaders is considered to be
small, hence we can describe the leaders as a discrete system (it is noted that for bee
populations around 3%-5% of the total swarm is believed to be a leader [31], while
for fish a minority of informed individuals is known to lead a shoal to food [30]).
Transitions are only allowed to occur between passive and active leaders, i.e. there
is no transition between follower and leader type. Transitions will be motivated by
the objective of maintaining contact with the swarm, i.e. an active leader that has
moved to the leading of edge of the swarm changes behaviour to avoid outruning the
swarm, while a passive leader moving backwards similarly switches back. Notably,
though, we do not explictly incorporate an “attractive” or “cohesive” response into
individual behaviours, i.e. where individuals are attracted towards higher swarm
density regions.

An obviously important quantity in the model is the position of the swarm with
respect to the destination or target. Given a generic member located at xk, its
distance to the target at xtarget is denoted by Itarget(xk(t)) = |xk(t)− xtarget|. We
fix a corresponding field b ' ∇Itarget within the domain outside the target, such
that −b defines the direction for the leaders to the target. Specifically, we choose
b = ∇Itarget to be divergence free at the target and tangent to the boundary of the
domain. As |x| → ∞, we impose b(x)→ ∇Itarget.

Following the approach in [1], we define σ̄i(x, t, θ, τ), for i ∈ {f, p, a}, as the
microscopic densities of followers, passive leaders and active leaders at position x,
time t, moving in direction θ for some time τ . Integrating with respect to the

microscopic quantity τ , we denote σi(x, t, θ) =
∫ t

0
σ̄i(x, t, θ, τ)dτ as the density of

each subpopulation at position x, time t and moving in direction θ and we call it
a mesoscopic density. Subsequently integrating over θ generates the macroscopic
densities

ρi(x, t) =

∫ t

0

∫
S

σ̄i(·, θ, τ)dθdτ , (1)

where S = {θ ∈ Rn : |θ| = 1} is the unit sphere in Rn and the measure dθ
is normalized so that the surface area |S| = 1. Dropped subscripts are used to
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denote total population densities, i.e. σ̄ = σ̄f + σ̄p + σ̄a, σ = σf + σp + σa and
ρ = ρf + ρp + ρa.

Each subpopulation follows a random walk process, described according to a set
of rules minimally chosen to describe a generic swarm behaviour but restricting
excessive complexity. Motivation behind some of these choices can be found by
paradigm examples, such as bee swarms, although we are not aiming to describe a
specific system.

Follower behaviour is described by the following set of assumptions.

1F. Trajectories comprise of straight line motions interrupted by (effectively) in-
stantaneous reorientations, where the new direction of motion is randomly
chosen. This movement is called a velocity-jump process [27]. Individuals
stop (i.e. reorient) with a rate given by a fixed parameter β.

2F. At each reorientation, with probability ζ ∈ (0, 1) it selects a new direction of
motion η, taken to be symmetrically distributed with respect to the previous
one according to

k(θ; η) = k̃(|η − θ|) .

Because k̃ is a probability distribution, it is normalized to
∫
S
k̃(|θ−e1|)dθ = 1

where e1 = (1, 0, ..., 0). The turn angle operator T : L2(S)→ L2(S) is defined
as

Tφ(η) =

∫
S

k(θ; η)φ(θ)dθ . (2)

Trivially, k̃ could be a uniform distribution; more generally, a bias according
to the previous orientation would incorporate an element of persistence of
orientation, so we consider k̃(|η − θ|).

3F. With probability 1− ζ the follower instead aligns with the orientation of the
local population, which is defined by

Λ(x, θ, t) =
J (x, t)

|J (x, t)|
, J (x, t) =

∫
Rn

∫
S

K(|y − x|)σ(y, t, θ)θdydθ . (3)

Here K is an interaction kernel. If the flux J (x, t) = 0, we assume that
Λ(x, θ, t) takes the value θ [14]. A generalisation of the above would be to
choose something of the form:

Λ(x, θ, t) =
J (x, t)

|J (x, t)|
, J (x, t) =

∫
Rn

∫
S

K(|y − x|) (λfσf + λpσp + λaσa) dydθ ,

(4)
where λf,p,a ≥ 0 would reflect the capacity of followers to differentiate be-
tween the various subpopulations during its orientation. A choice λa � λf,p
would assume active leaders are considerably more conspicuous than the other
populations and dominate the orientation behaviour, for example through en-
gaging in specific movement behaviour or issuing vocal commands; a choice
λp = 0, on the other hand, would assume passive leaders make themselves
“invisible” to the followers. We note that the limitations of the above homo-
geneous choice will be discussed in Section 5. In particular, an inhomogeneous
variant, given by Λ(x, t) = νJ (x, t), where ν is a relaxation frequency that
depends on the norm of J (x, t), will subsequently be considered in Section 6.

4F. Followers move with a fixed speed cf .
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Figure 1. Illustration of switching between streakers and passive
leaders.

For the leaders dynamics, we simplify the bias random walk process by assuming
the turning distribution to be highly concentrated into choosing a specific move-
ment: (i) a flight towards the target for the active leaders, (ii) a flight in the opposite
direction for passive leaders. The limiting case of small randomness follows the dis-
crete model proposed in [5], and is predicated on the assumption that leaders have
enough knowledge of the target to produce highly directed movements

The dynamics of passive leaders are then specified by the following rules:

1P. No alignment according to other individuals.
2P. Passive leaders move in the direction c, in the opposite direction to the target.
3P. Passive leaders move with a speed cp.
4P. Transitions between active and passive leader take place at the front and rear

edges of the swarm, as described below.

Finally, active leaders move according to:

1A. Given their knowledge of the target, they move as ballistic particles in direc-
tion −b (towards the front of the swarm as represented in Figure 1), with a
fixed maximum speed given by ca. Thus, no randomness is assumed.

2A. Transitions between active and passive leader take place at the front and rear
edges of the swarm, as described below.

3A. Active leaders move with a speed ca.

We note that movements into orientations outside −b are not permitted for active
leaders within this model. Microscopic densities can then be inferred as singular
distributions, where the local macroscopic density is concentrated into orientation
−b: i.e., σa(x, t, θ) = ρa(x, t)δ(θ + b) where δ is the Dirac delta function.

Suppose a Gaussian-type curve for the swarm profile. Physically, the transition
rate from active to passive leader, Rap, should be localised to the front edge of a
swarm: in a region where (∇ρf ,b) > 0, as illustrated in Figure 1. As follower
densities decrease, i.e. ρf → 0, Rap should be bounded away from zero: Rap ≥
r0 > 0 as ρf → 0, where r0 is the minimal conversion rate outside the swarm.
The rules for transition rate from passive to active leaders, Rpa, follow a similar
description. Transitions should be concentrated to the rear edge of the swarm, i.e.
where (∇ρf ,b) < 0. Again, as follower densities decrease we require Rpa ≥ r0 > 0.
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Figure 2. Illustration of different swarm shapes.

For more complicated swarm profiles, e.g. dual peaked as in Figure 2, let cs/r0

define a length scale on which the density of active leaders (and hence also that of
passive leaders) varies. If the spacing between the two peaks is sufficiently larger
than cs/r0 then active leaders consider the blobs as separate swarms and there are
separate fronts and backs for each swarm. For peaks spaced below this distance, the
majority of active leaders fly towards the leading edge before converting to passive
leaders and it can be considered a single swarm with a single leader population.

We note that while a change from passive to active leader involves transition into
a population with fixed orientation, an active to passive change demands transition
into a population whose orientation is distributed over the unit sphere. We define
Rap =

∫
S
R̄ap(θ)dθ and similarly for Rpa.

2.1. Microscopic description. Following the swarm description given in Section
2, the population densities satisfy systems of integro-differential equations as follows.
For the active leaders we consider{

(∂τ + ∂t − cab · ∇) σ̄a(·, τ) = −Rapσ̄a(·, τ) ,

σ̄a(·, τ = 0) = Rpa
∫ t

0

∫
S
σ̄p(·, θ, τ)dθdτ ,

(5)

where (·) denotes the space and time dependence (x, t). The left hand side of the
first equation describes the movement of the individuals towards the nest, for time
τ , while the right hand side gives the density of active leaders that change to passive.
The density of active leaders that start a new run, at τ = 0, is given by passive
leaders switching to active. This is described by the second equation.

Note that the vector field (∂t, ∂τ , cab ·∇) in (5) is transversal to the hypersurface
{τ = 0}, so that the second equation provides the necessary initial conditions.

The passive leaders obey the following system{
(∂τ + ∂t + cpc · ∇) σ̄p(·, τ) = −Rpaσ̄p(·, τ) ,

σ̄p(·, τ = 0) = Rap
∫ t

0

∫
S
σ̄a(·, θ, τ)dθdτ .

(6.a)
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Including some randomness in the movement of the passive leaders we can write
the system (6.a) as follows{

(∂τ + ∂t + cpθ · ∇) σ̄p(·, θ, τ) = −Rpaσ̄p(·, τ)− βσ̄p(·, θ, τ) ,

σ̄p(·, θ, τ = 0) = R̄ap(θ)
∫ t

0

∫
S
σ̄a(·, η, τ)dηdτ +B(θ)

∫ t
0

∫
S
βσ̄p(·, η, τ)dηdτ .

(6.b)
The passive leaders in this case also move according to a velocity jump process as
described in 1F, with the same stopping rate β. The new direction of motion η
is given by the turn angle operator B(η). To be more specific, we define B(η) =
pT (η) + (1− p)Tρf where p ∈ (0, 1) and we fix Tρf = (b · ∇ρf )∇ρf . The first term
in B(η) describes the random movement where a new direction of motion is taken
arbitrarily, in this case it only depends on the final direction. The second term
describes a vector field pointing in the direction of the back of the swarm, where
the switch between passive and active leaders occurs. The analysis of equation (6.b)
is postponed to Section 3.6.

For the followers we consider the approach in [18] and then we have{
(∂τ + ∂t + cfθ · ∇) σ̄f (·, θ, τ) = −βσ̄f (·, θ, τ) ,

σ̄f (·, η, τ = 0) =
∫
S
Q(η, θ)

∫ t
0
βσ̄f (·, θ, τ)dτdθ ,

(7)

where
Q(η, θ) = ζk̃(|η − θ|) + (1− ζ)Φ(Λ · η) . (8)

Φ(Λ·η) is the distribution of the new aligned direction and satisfies
∫
S

Φ(Λ·η)dη = 1.
Integrating with respect to τ the systems (5) and (6.a) we obtain, for ρa(·) =∫ t

0
σ̄a(·, τ)dτ and ρp(·) =

∫ t
0
σ̄p(·, τ)dτ , respectively,

∂tρa − cab · ∇ρa = −Rapρa +Rpaρp , (9)

∂tρp + cpc · ∇ρp = −Rpaρp +Rapρa . (10)

Similarly, integrating system (7) with respect to τ and using the definition of T
given in (2) we obtain

∂tσf + cfθ · ∇σf = −βσf + ζβTσf + (1− ζ)βΦ(Λ · θ)ρf . (11)

3. Macroscopic PDE description. As shown in the previous section, the densi-
ties ρa(x, t), ρp(x, t) and σf (x, t, θ) satisfy the following system of kinetic equations,

∂tρa − cab · ∇ρa = −Rapρa +Rpaρp , (12)

∂tρp + cpc · ∇ρp = −Rpaρp +Rapρa , (13)

∂tσf + cfθ · ∇σf = −βσf + ζβTσf + (1− ζ)βΦ(Λ · θ)ρf . (14)

We control that the population of the followers (14) is conserved:

∂t

∫
S

σfdθ + cf

∫
S

θ · ∇σfdθ = −β
∫
S

σfdθ + ζβ

∫
S

Tσfdθ + (1− ζ)βρf = 0 ,

(15)

since
∫
S

Φ(Λ · θ)dθ = 1 and
∫
S
Tdθ = 1 by definition.

In the following subsections we study the macroscopic behaviour of the above
systems by considering different scaling limits. In Subsection 3.2 we study a hy-
perbolic limit of the system (5)-(6.a)-(7), where the leaders are considered to be
discrete. Then, in Subsection 3.3, a hyperbolic limit of system (5)-(6.b)-(7), where
a random component of the movement is included for the case of passive leaders.
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Later, in Subsection 3.4 we consider a diffusion limit of the system (5)-(6.a)-(7)
and in Subsection 3.5 a diffusion limit for the system (5)-(6.a)-(7) assuming the
population of leaders is “slow” compared to the followers by scaling ca, cp. Finally,
in Subsection 3.6 we develop a diffusion limit of the system (5)-(6.a)-(7) for slow
leaders and including noise in the movement of passive leaders.

3.1. Properties and asymptotic expansion of operators. In the following
sections we consider

T ε = T 0 + εT 1 +O(ε2) , Φε = Φ0 + εΦ1 +O(ε2) and Bε = B0 + εB1 +O(ε2) .

Moreover, we have that ∫
S

T 01 dθ + ε

∫
S

T 11 dθ = 1 ,

so that ∫
S

T 01 dθ = 1,

∫
S

T 11 dθ = 0 ,

and similarly∫
S

Φ0dθ = 1,

∫
S

Φ1dθ = 0 ,

∫
S

B01 dθ = 1,

∫
S

B11 dθ = 0 . (16)

In Section 3.2 we further show that∫
S

θΦ0(Λ · θ)dθ = zΛ0 ,

∫
S

θB0dθ =

∫
S

θB1dθ = 0 .

3.2. Hyperbolic limit. In this section we investigate the macroscopic dynamics of
the swarm over short time scales. Consider the following scaling (x, t) 7→ (x/ε, t/ε)
where ε = τ̄ /T � 1 and T is the macroscopic time. The transition rates Rεap, R

ε
pa

are multiplied by a factor of ε meaning that the switching rates are large enough to
be observed at the macroscopic spatial scale. Then we write

ε∂tρa − εcab · ∇ρa = −εRεapρa + εRεpaρp , (17)

ε∂tρp + εcpc · ∇ρp = εRεapρa − εRεpaρp , (18)

ε∂tσf + εcfθ · ∇σf = −βσf + ζβT εσf + (1− ζ)βΦε(Λ · θ)ρf . (19)

For the case of the follower population and using the expansions (76) for σf , T ε,
Φε and ρεf from Appendix A we can rewrite (19) as

ε∂t(σ
0
f + εσ1

f ) + εcfθ · ∇(σ0
f + εσ1

f ) =− β(σ0
f + εσ1

f ) + ζβ(T 0 + εT 1)(σ0
f + εσ1

f )

+ (1− ζ)β(Φ0 + εΦ1)(ρ0
f + ερ1

f ) . (20)

For ε0 we obtain

σ0
f = (ζ + (1− ζ)Φ0(Λ · θ))ρ0

f . (21)

Here we considered that T 0σ0
f = ρ0

f (see Appendix C for properties of the operator

T ).
Substituting (21) into (19) and integrating with respect to S gives

∂tρ
0
f

∫
S

(ζ + (1− ζ)Φ0(Λ · θ))dθ + cf

∫
S

θ · ∇(ζ + (1− ζ)Φ0(Λ · θ))ρ0
fdθ = 0 . (22)
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In the left hand side we use again
∫
S

Φ0(Λ · θ)dθ = 1 and,
∫
S
θΦ0(Λ · θ)dθ = zΛ0

where z is given by (81). Hence the conservation equation for the followers reads

∂tρ
0
f + cfz(1− ζ)∇ · (ρ0

fΛ0) = 0 . (23)

Next we need to find the mean direction ρ0
fΛ0. Following the same analysis as in

[15, 18] we substitute the expansion for σ0
f given in (21) into (19) and multiply by

θ · v, where v ∈ Rn is orthogonal to Λ0. Integrating over S then gives(
∂t

∫
S

θΨ(θ)ρ0
fdθ + cf

∫
S

θ · ∇(Ψ(θ)ρ0
f )θdθ

)
· v = O(ε) . (24)

Here Ψ(θ) = ζ+ (1− ζ)Φ0(Λ · θ), O(ε) includes ζβ
∫
S
θT 1σ0

fdθ, (1− ζ)β
∫
S
θΦ1ρ0

fdθ

and −β
∫
S
σ1
fdθ, and letting ε→ 0 in the right hand side we obtain(

z(1− ζ)∂t(ρ
0
fΛ0) + cf

∫
S

θ · ∇(ρ0
fΨ(θ))θdθ

)
· v = 0 .

Using the fact that v ⊥ Λ0, we can reformulate the above expression in terms of
the orthogonal projection P⊥ = 1− Λ0 ⊗ Λ0 onto Λ0

⊥,

P⊥

(
z(1− ζ)∂t(ρ

0
fΛ0) + cf∇ · ρ0

f

∫
S

(θ ⊗ θ)Ψ(θ)dθ
)

= 0 . (25)

For the first term of the above expression we can write

z(1− ζ)P⊥(ρ0
f∂tΛ

0 + Λ0∂tρ
0
f ) = z(1− ζ)ρ0

f∂tΛ
0 , (26)

since 〈∂tΛ0,Λ0〉 = 1
2∂t|Λ

0|2 = 0, i.e., Λ0 ⊥ ∂tΛ
0. For the second term we must

compute the integral
∫
S

(θ ⊗ θ)Ψ(θ)dθ, where we use θ = cos(s)Λ0 + sin(s)Λ0
⊥ in

polar coordinates for n = 2 and spherical coordinates for n = 3 as in [15]. Finally,
we obtain

ρ0
f (z(1− ζ)∂tΛ

0 + C1Λ0 · ∇Λ0) + C2P⊥∇ρ0
f = 0 , (27)

where we have used Λ0
⊥ ⊗ Λ0

⊥ = 1 − Λ0 ⊗ Λ0. Here C1 = cf (1 − ζ)a3 and C2 =
cf (1− ζ)1a1 + cf1πζ for, a3 = a0 − a1 and

a0 =

{∫ 2π

0
Φ0(cos(s)) cos(s)2ds , if n = 2 ,

2π
∫ π

0
Φ0(cos(s)) cos(s)2 sin(s)ds , if n = 3 ,

(28)

a1 =

{∫ 2π

0
Φ0(cos(s)) sin(s)2ds , if n = 2 ,

π
∫ π

0
Φ0(cos(s)) sin(s)3 sin(s)ds , if n = 3 .

(29)

The final system of equations is given as

∂tρ
0
a − cab · ∇ρ0

a +R0
apρ

0
a −R0

paρ
0
p = 0 , (30)

∂tρ
0
p + cpc · ∇ρ0

p −R0
apρ

0
a +R0

paρ
0
p = 0 , (31)

∂tρ
0
f + cfz(1− ζ)∇ · (ρ0

fΛ0) = 0 , (32)

ρ0
f (z(1− ζ)∂tΛ

0 + C1Λ0 · ∇Λ0) + C2P⊥∇ρ0
f = 0 . (33)

Unlike in the parabolic limit (50)-(53) in Subsection 3.4, we now obtain transport
equations for the leader populations, which no longer adjust instantaneously to the
swarm of followers.
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3.3. Hyperbolic limit for passive leaders with noise. Defining the macro-

scopic density ρp(x, t) =
∫ t

0

∫
S
σ̄p(·, η, τ)dηdτ , we study now the hyperbolic limit of

(6.b) where, after integrating with respect to τ and using the boundary condition
σ̄p(·, η, τ = 0) we write

ε∂tσp + εcpθ · ∇σp = εR̄εap(θ)ρa − εRεpaσp − βσp + βBερp . (34)

Following the same procedure as before we consider in this case the expansions
(82) and (83) for σεp, ρ

ε
p, R̄

ε
ap and Rεap, and from (34) we obtain

ε0 : σ0
p = B0ρ0

p , (35)

ε1 : −βσ1
p = ∂σ0

p + cpθ · ∇σ0
p − R̄0

apρ
0
a +R0

paσ
0
p − βB0ρ1

p − βB1ρ0
p

= B0∂tρ
0
p + cpB

0θ · ∇ρ0
p − R̄0

apρ
0
a +R0

paB
0ρ0
p

− βB0ρ1
p − βB1ρ0

p . (36)

The next step is to compute the term ∂tρ
0
p. For that, we integrate (34) with respect

to θ and we have

ε∂t(ρ
0
p+ερ

1
p)+εcp∇·

∫
S

θ(σ0
p+εσ1

p)dθ = ε(R0
ap+εR

1
ap)(ρ

0
a+ερ1

a)−ε(R0
pa+εR1

pa)(ρ0
p+ερ

1
p) .

(37)
Here we have used (16). With (37) and since

∫
S
θB0dθ = 0, we obtain

∂tρ
0
p = R0

apρ
0
a −R0

paρ
0
p .

Substituting the above expression in (36) we finally obtain

σ1
p =
−1

β

(
B0R0

apρ
0
a + cpB

0θ · ∇ρ0
p − R̄0

apρa − βB0ρ1
p − βB1ρ0

p

)
, (38)

and hence, σp = B0ρ0
p + εσ1

p +O(ε2). Going back to the conservation equation (37)
we can write now

∂tρ
0
p −R0

apρ
0
a +R0

paρ
0
p = 0 . (39)

Computing the term −εcp∇ ·
∫
S
θσ1

pdθ using (38) we obtain that

−εcp∇ ·
∫
S

θσ1
pdθ = ε(∆(Dpρ

0
p)−∇ · (R0

apρ
0
a)) , (40)

where Dp =
cp
β

∫
S
θθTB0dθ and R0

ap =
cp
β

∫
S
θR̄0

apdθ, which shows that the diffusion

term only appears for higher orders of ε. The hyperbolic system of equations reads
as

∂tρ
0
a − cab · ∇ρ0

a +R0
apρ

0
a −R0

paρ
0
p = 0 , (41)

∂tρ
0
p −R0

apρ
0
a +R0

paρ
0
p = 0 , (42)

∂tρ
0
f + cfz(1− ζ)∇ · (ρ0

fΛ0) = 0 , (43)

ρ0
f (z(1− ζ)∂tΛ

0 + C1Λ · ∇Λ0) + C2P⊥∇ρ0
f = 0 . (44)
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3.4. Diffusion limit. Next we turn to determining macroscopic equations that
describe the interactions between the three different populations over long time
regimes. We introduce a parabolic scaling (x, t) 7→ (x/ε, t/ε2), where ε is defined
in the sense of Section 3.2.

Equations (12), (13) and (14) then become

ε2∂tρa − εcab · ∇ρa = −εRεapρa + εRεpaρp , (45)

ε2∂tρp + εcpc · ∇ρp = εRεapρa − εRεpaρp , (46)

ε2∂tσf + εcfθ · ∇σf = −βσf + ζβT εσf + ε(1− ζ)βΦε(Λ · θ)ρf . (47)

Note that we have also scaled the alignment kernel Φε(Λ · θ).
The conservation equation (15) for the follower population is

∂tρf + ncf∇ · wf = 0 , (48)

where wf = 1
n

∫
S
θσfdθ. The next step is to compute the mean direction wf . We

follow the steps in Appendix A and, using asymptotic expansions for the terms σf ,
ρf , T ε and Φε we can re-write the conservation equation (48) as

ε2∂tρ
0
f + ε2cf∇ ·

∫
S

θσ1
fdθ = 0 .

Finally, we obtain

∂tρ
0
f − cf∆(Dfρ

0
f ) +∇ · (zΛ0

W ρ
0
f ) = 0 , (49)

where zΛ0
W =

∫
S
θΦ0(Λ0

W · θ)dθ, Df =
ζcf

β(1−ζ)
∫
S
θθT dθ, z is given by (81) and W

is the total mean direction of the whole population.
The system describing the macroscopic densities of followers and leaders, in the

diffusion limit, reads as follows

−cab · ∇ρ0
a +R0

apρ
0
a −R0

paρ
0
p = 0 , (50)

cpc · ∇ρ0
p −R0

apρ
0
a +R0

paρ
0
p = 0 , (51)

∂tρ
0
f + cf∇ · wf = 0 (52)

wf = −∇Dfρ
0
f + ρ0

fzΛ
0
W . (53)

Note that the evolution of the swarm is determined by the movement of the followers.
There are no time derivatives in the equations for the densities of the leaders, which
adjust instantaneously to the movement of the followers. Technically, the time
derivatives in the system (45), (46), (47) scale as ε2, so that the leader’s movement
is determined at order ε by convection and the transition between their active and
passive states.

3.5. Diffusion limit for slow leaders. We consider the situation where ca, cp,
Rεap and Rεpa are all of order ε, in particular the leaders move slowly compared to
the followers.

Equations (12), (13) and (14) then become

ε2∂tρa − ε2cab · ∇ρa = −ε2Rεapρa + ε2Rεpaρp , (54)

ε2∂tρp + ε2ncpc · ∇ρp = ε2Rεapρa − ε2Rεpaρp , (55)

ε2∂tσf + εcfθ · ∇σf = −βσf + ζβT εσf + (1− ζ)βΦε(Λ · θ)ρf . (56)
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The system describing the macroscopic densities of followers and leaders, in the
diffusion limit, reads as follows

∂tρ
0
a − cab · ∇ρ0

a +R0
apρ

0
a −R0

paρ
0
p = 0 , (57)

∂tρ
0
p + cpc · ∇ρ0

p −R0
apρ

0
a +R0

paρ
0
p = 0 , (58)

∂tρ
0
f + cf∇ · wf = 0 (59)

wf = −∇Dfρ
0
f + ρ0

fzΛ
0
W . (60)

3.6. Random movement for passive leaders. We start from the mesoscopic
equation (34) obtained from (6.b). Introducing the diffusive scaling as in Subsection
3.4 we get

ε2∂tρa − ε2cab · ∇ρa = −ε2Rεapρa + ε2Rεpaρp , (61)

ε2∂tσp + εcpθ · ∇σp = ε2R̄εap(θ)ρa − ε2Rεpaσp − βσp + βBερp , (62)

ε2∂tσf + εcfθ · ∇σf = −βσf + ζβT εσf + ε(1− ζ)βΦε(Λ · θ)ρf . (63)

Note that the speed ca, as well as the switching rates Rεap, R
ε
pa and R̄εap(θ) are

scaled as ε2. The conservation equation for the passive leaders (62), is then

ε2∂tρp + ε2cp∇ ·
∫
S

θσpdθ = ε2Rεapρa − ε2Rεpaρp , (64)

where

ρp =

∫
S

σpdθ and wp =
1

n

∫
S

θσpdθ . (65)

Following the steps described in Appendix B we find an asymptotic expansion for
σp, using (84) and (85), as follows

σp = B0ρ0
p + εσ1

p +O(ε2) ,

where σ1
p is given by (85). Computing the mean direction term ∇ ·

∫
S
θσ1

pdθ as in
(88) we finally obtain, for the passive leaders with random movement,

∂tρ
0
p − cp∆(Dp+T)ρ0

p = R0
apρ

0
a −R0

paρ
0
p , (66)

where

Dp =
pcp
β

∫
S

θθTT 0(θ)dθ , and T =
(1− p)cp

β

∫
S

θθTT 0
ρf
dθ .

Hence the final system is given by

∂tρ
0
a − cab · ∇ρ0

a +R0
apρ

0
a −R0

paρ
0
p = 0 , (67)

∂tρ
0
p − cp∆(Dp+T)ρ0

p −R0
apρ

0
a +R0

paρ
0
p = 0 , (68)

∂tρ
0
f + cf∇ · wf = 0 (69)

wf = −∇Dfρ
0
f + ρ0

fzΛ
0
W . (70)

4. Numerical solution. As an example of the macroscopic dynamics we illustrate
the time evolution of the swarm dynamics for the system (67) - (70) in a one dimen-
sional domain x ∈ (0, L), with Neumann conditions imposed at the boundary. The
system is solved numerically using a simple finite difference scheme on a sufficiently
fine equidistant mesh. More precisely, for the leaders we couple a Lax-Wendroff
discretisation for the transport equation (67) to a Crank-Nicolson time stepping
for the diffusion equations (68), (70) in a way that conserves the total number of
leaders.
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Initially we co-localise leaders and followers in (0, L) = (0, 15), setting initial
distributions proportional to a Gaussian of width 0.6 and centre x = 3, with a
total density of 3 for active and passive leaders, respectively 100 for the followers.
This reflects certain real world follower-leader systems, where leaders form a fairly
small fraction (e.g. [31]). The time evolution of the swarm is illustrated for model
parameters cab = 6, cp(Dp+T) = cfDf = 1 and Λ0

W as in (4) which is determined
by the leader population alone (formally, λ → ∞). The conversion rates between
active and passive leaders are taken to be

R0
ap = R0

(
exp(− ρ0f

Θ maxx∈(0,L) ρ
0
f

)− exp(−1/Θ)
)

when ∂xρ
0
f > 0 and R0

ap = 0 otherwise, respectively,

R0
pa = R0

(
exp(− ρ0f

Θ maxx∈(0,L) ρ
0
f

)− exp(−1/Θ)
)

when ∂xρ
0
f < 0 and R0

pa = 0 otherwise. For illustration we use a cut-off fraction of

Θ = 0.2 and strength R0 = 75.
Figure 3 shows the resulting evolution of the densities of followers (black), ac-

tive (blue) and passive (red) leaders. For purposes of illustration the density ρ0
f of

followers is divided by a factor 100. The follower and leader populations initially
move together as a localised swarm. In the current model the follower population
becomes less localised with time, because the diffusion in the current model (70)
is not compensated by localising mechanisms. The leader populations widen cor-
respondingly. Note that the fraction of active leaders quickly decreases to a small,
but stable fraction, as passive leaders are slow to diffuse to the back of the swarm,
where they become active again. This is confirmed by the corresponding percent-
ages of active, respectively passive leaders shown as a function of time in Figure
4. Because of the steep gradient in the conversion rates R0

pa and R0
ap, active and

passive leaders remain in the centre of the swarm, with passive leaders generated
at the front.

5. Discussion of macroscopic equations. The macroscopic equations in the
hyperbolic limit, (30) to (33), capture the behaviours depicted in Figures 1 and 2
on hyperbolic time scales. Active leaders follow a transport equation (30), while
passive leaders are transported in the opposite direction to that of the active leaders
with its respective velocity. At the front of the swarm, the lower bound R0

ap ≥ r0

forces ρa to decay exponentially fast to zero over a characteristic length scale ca
r0

, as
active leaders convert into passive leaders. As passive leaders reach areas of large
R0
pa, corresponding to the rear of the swarm, they convert into active and head

once again to the swarm front. Here the characteristic length scale is
cp
r0

. Note
that the movement of active and passive leaders depends on followers only through
the transition rates R0

ap and R0
pa: this is logical enough, given that leaders have

knowledge of the target site and should not be swayed by the uninformed. A more
detailed model may also incorporate some influence of the followers on the leader
direction (e.g. due to avoiding collisions), however we have neglected that here for
simplicity.

The equations describing dynamics of the followers, (32) and (33), correspond
to classical equations for swarming particles [18]. The directional movement of
the swarm depends on leaders only through ΛW , and the swarm impacts on the
movement of the leaders only through the switching rates R0

ap and R0
pa as noted
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Figure 3. Evolution of follower and leader populations in model
example.

above. This illustrates a limitation of the homogeneous choice for the alignment
kernel (3): since ΛW is a unit vector, only a single leader is required to direct
the swarm to its target, a result which clearly stretches credulity for very large
swarms. To avoid such pathological cases it is possible to consider inhomogeneous
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Figure 4. Percentage of active and passive leaders as a function of time.

alignment kernels, see Section 6, where the size of the orientation vector ΛW is
taken to increase both with the number of leaders moving along b and with the
strength of the interactions.

A fundamental question concerns whether two follower populations, as in Figure
2, behave as one joint swarm or two separate swarms. Building on the discussion
introduced in Section 2, for the model here the distinction lies with the separation
of the two populations: for separations much larger than ca

r0
, leaders remain con-

fined to their separate follower swarms; for separations smaller than ca
r0

, the leader
populations bridge the gap that separates the peaks to join the swarms together;
active to passive leader conversion occurs predominantly within a single zone at the
swarm front.

Equations (41) to (44), where a heading noise is incorporated for passive leaders,
support the general description above with a few noteworthy modifications. The
passive leaders now undergo an additional undirected diffusion through the swarm,
and hence their dynamics follow an advection-diffusion equation (42) rather than
the transport equation above. The terms of order ε account for secondary effects
in the collective movement.

Describing the swarm on parabolic time scales, however, proves more intricate.
The macroscopic equations indicate some inherent problems in describing both the
advective movement of active leaders and the diffusive movement of the followers.
Unlike the hyperbolic limits, the density of followers in (53) is now observed to
diffuse over parabolic time scales, implying an eventual loss of swarm cohesion.
Further, equations (50) and (51) may not conserve the total number of leaders∫

(ρ0
a + ρ0

p) dx.
Nevertheless, the general shape of the leader population exhibits the form ex-

pected for a swarm. To see this, first note that the distribution of active leaders on
long (parabolic) time scales is constant along the vector field b whenever R0

ap and

R0
pa vanish, i.e. within the interior of the swarm. Further, even within regions of

nonzero R0
ap and R0

pa we note that

−cab · ∇ρ0
a + cpc · ∇ρ0

p = 0 .
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For example, in one dimension this implies that ρ0
p = ca

cp
ρ0
a, independent of the

transition rates R0
ap and R0

pa. Therefore

ca∂xρ
0
a = (R0

ap −
ca
cp
R0
pa)ρ0

a .

The exponential decay of the density in front of the swarm and behind the swarm
easily follows.

When leader populations are assumed to move slowly we derive the parabolic
model (57) to (60). Unlike the first parabolic scaling attempt, this system con-
serves the total number of leaders and the leader populations and the dynamics
follow the transport equations known for hyperbolic time scales. Swarms success-
fully guided through slow leaders have a logical basis, for example consider some
adults attempting to guide a group of small children through a park: the latter
tend to move in a rather chaotic and random way, so the adults are forced to slow
their movements to keep the group intact. The assumption of slow leaders does not
hold, however, for certain other swarming systems, an example being bee swarms
where active leaders are believed to engage in fast streaking behaviour. Fast di-
rected movements prove problematic to handle in the parabolic limit, which can be
attributed to the disparate time scales involved: fast target-directed streaks would
result in an active leader rapidly covering a swarm’s dimension, hence resulting (on
a parabolic time scale) on almost instantaneous transitions from passive to active
and back to passive leader. The slow leader model, can perhaps be regarded as
a characterisation of such systems in which the circular movement of the leaders
(moving to the front of the swarm and back) played out over a number of cycles is
regarded as an effective translational movement of the leader population, now slow
compared to the random movement of the followers. A careful analysis might, by
separating fast and slow scales of the movement, be reduced to this situation. Such
an analysis is beyond the scope of the current work.

Similar conclusions are obtained for the model in Section 3.6, corresponding to
slow streakers and passive leaders which follow a random walk. Here, the transport
equation for the streakers is combined with a diffusion equation for the passive
leaders. The total number of leaders is conserved.

The modelling difficulties in the parabolic limit may be circumvented by pre-
scribing the macroscopic evolution of the leader population, so that all properties
macroscopically expected for the leader population are imposed in a phenomeno-
logical model. It replaces Equations (12), (13) by a deterministic set of equations
for ρa and ρp. In this case, the scaling limit is only performed for the follower pop-
ulation using the arguments in Section 3.4. We again obtain (70) for the followers,
coupled to the prescribed dynamics of the leaders.

6. Inhomogeneous alignment kernel. While (3) and (4) are common model
equations to relate the mean direction and density, they do not adequately capture
key aspects of the follower-leader interaction. For example, because the mean di-
rection Λ does not depend on the size, but only the direction of J , a single leader
at time 0 can determine the direction of the swarm.

In this section we therefore also consider an alignment kernel given by

Λ∗ = νJ (x, t) , (71)

where we have removed the normalization and J (x, t) is given as in (3). Here we
limit our discussion to the case n = 2. Parameter ν is the relaxation frequency,
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previously assumed constant but in this approach taken to depend on the norm
of J (x, t). Here we study the diffusion and hyperbolic limits of the system for
follower-leader interactions, as previously done in Section 3. In particular, we focus
on the equation for followers (47) and (19) under an alignment given by (71).

The distribution of aligned directions Φ(Λ∗ · θ) in (8) is replaced by

Φ̄(Λ∗ · θ) =
Φ(Λ∗ · θ)∫ 2π

0
Φ(|Λ∗| cos θ)dθ

(72)

such that
∫
S

Φ̄(Λ∗ · θ)dθ = 1.

In the diffusion limit, we replace Φ0(Λ · θ) by Φ̄0(Λ∗ · θ) in equation (80). Noting
that∫

S

θΦ̄0(Λ∗W · θ)dθ = z̄Λ∗W , where z̄ = |Λ∗|
∫ 2π

0

Φ̄0(|Λ∗| cos(s)) cos(s)ds , (73)

for θ = cos(s)Λ∗ + sin(s)Λ∗⊥ we again obtain (49), where in this case we replace
zΛ0

W by z̄Λ∗W .
For the hyperbolic limit, let us first define the right hand side of (20) as

L(σf ) = −βσf + βζTσf + (1− ζ)βΦ̄ε(Λ∗ · θ)ρf .
We know that as ε→ 0 the solution σ0

f = Ψ̄(θ)ρf , where Ψ̄(θ) = ζ + (1− ζ)Φ̄0(Λ∗ ·
θ). The new operator Ψ̄(θ) needs to be a Generalized Collisional Invariant of the
operator L(σf ), as in the following sense [13, 14, 15].

Definition 6.1. A function Ψ̄(θ) is a Generalized Collisional Invariant of Q if it
satisfies ∫

S

L(σf )Ψ̄(θ)dθ = 0 ,

for any σf . Equivalently, σf satisfies P⊥

(∫
S
σf (x, t, θ)θdθ

)
= 0, where P⊥ = Id −

Λ∗ ⊗ Λ∗ is an orthogonal projection to Λ∗.

Note that for the case ζ = 0, i.e. when only alignment is considered, from
Definition 6.1 we conclude that

∫
S
L(σf )Φ̄0(Λ∗ ·θ)dθ = 0, where Φ̄0 can be taken as

the von Mises-Fisher distribution. Then, the analysis in [13] follows. The system
(32)-(33) can be written now as

∂tρf + cf z̄(1− ζ)∇ · (ρfΛ∗) = 0 , (74)

ρf (z̄(1− ζ)∂tΛ
∗ + C̄1Λ∗ · ∇Λ∗) + C̄2P⊥∇ρf = 0 , (75)

where z̄ is given by (73) and, similar to previous derivation, C̄1 = cf (1 − ζ)ā3,
C̄2 = cf (1− ζ)1ā1 + cf1πζ for, ā3 = ā0 − ā1 with

ā0 = |Λ∗|2
∫ 2π

0

Φ̄0(|Λ∗| cos(s)) cos2(s)ds , ā1 = |Λ∗|2
∫ 2π

0

Φ̄0(|Λ∗| cos(s)) sin2(s)ds .

7. Discussion. The capacity of individuals to coordinate their movement to gen-
erate collective movement is a phenomenon that has attracted significant interest,
in both cellular and animal systems. Much of the progress in this area has been fa-
cilitated through modelling studies, particularly via the employment of agent-based
(or particle) descriptions that consider the movement response of each single mem-
ber according to its neighbours. Yet the largest swarms can extend over kilometres
and contain millions (e.g. herrings, [22]) or even hundreds of billions (e.g. desert
locusts, [29, 33]) of members. At such numbers and scales, continuous modelling
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approaches become necessary for their efficiency and increased tractability. Conse-
quently, there is a clear interest in clarifying the relevant form of continuous models
for swarming systems.

Much recent interest has focussed on follower-leader systems, where the popula-
tion is decomposed into a leader population which somehow guides a population of
followers, e.g. honey bee swarms where only scouts know the swarm’s destination.
Inspired by this and similar examples we have formulated a minimal microscopic de-
scription for a population of followers and leaders, deriving the ensuing macroscopic
models under distinct scaling limits. To test the extent to which velocity alignment
by itself can propel a guided and coherent swarm, follower orientation is limited
to the interaction choice (4): alignment according to the velocity direction. Under
both hyperbolic and parabolic scaling, macroscopic models feature drift-terms with
advection in the active leader direction. Thus, alignment to velocity alone yields
translocation of the swarm towards the target.

Under the hyperbolic scaling a pure-drift equation is generated, implying the po-
tential for travelling-pulses with movement of a cohesive colony towards the target
site. The parabolic limit, on the other hand, generates a drift-diffusion equation.
While drift is in the direction of the target site, the additional dispersion leads to
swarm spreading with time. Early stretching of the colony is to be expected, as the
initially tight cluster morphs into a migrating swarm. Once established, though,
swarms generally retain a relatively stable speed and shape: continued dispersal
would be far from optimal, perhaps resulting in population loss or increasing the
risk of predation. This, however, must be viewed in light of our intentionally sim-
ple modelling approach, where we have specifically tested the practicalities of an
“alignment-only” mechanism. Agent-based approaches for modelling swarms are
typically augmented by additional attractive/cohesion behaviours, where individ-
uals are also pulled in the direction of those in their neighbourhood; in non-local
continuous models, a similar effect is gained through a nonlocal attraction term that
biases movement direction, e.g. [6]. As stressed above, we have reasonably excluded
such considerations from the present model for simplicity, however including non-
local attractions could clearly counteract swarm dispersal. For example, following
[3], attraction (or repulsion) between individuals can be considered by

A =
(dc − dist(x,y)

dist(x,y)

)
e−(dc−dist(x,y))2~e(x,y) .

Here dist(x,y) denotes the distance between two individuals x and y, along the
direction of the unit vector ~e(x,y). If dist(x,y) < dc, where dc is a critical distance,
then the action of A is repulsive and if dist(x,y) > dc we have attraction.

Recently, there has been considerable interest in the composition and structuring
of swarming populations. For example, in the case of bird flocks and fish shoals,
the existence of faster and/or braver individuals can lead to hierarchical swarm ar-
rangements [26, 30] and the question is raised as to how much swarm movement
is dominated by the choice of a few. For simplicity, the movements of our lead-
ers has been set here somewhat naively: during streaks, they operate as ballistic
particles adopting fast movements towards the target. While this may be a reason-
able approximation for bee swarms, where leaders have specific a priori knowledge,
more general “leaders” may be more subtle and get influenced by neighbour move-
ments. Consequently, a logical extension would be to also adopt a velocity jump
model for the leader population, where one of their movement contributions stems
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from an interaction function similar to (4), distinctly weighted. In other instances,
leader/follower statuses may be transient, for example resulting from spatial posi-
tion within the swarm, and it may be necessary to include switching terms between
follower and leader populations.

The study of population dynamics, where a few discrete agents act as leaders,
provides an excellent scenario to derive specific control laws and interactions that
drive self-organisation, leading the swarm optimally to a desired outcome. This will
allow an analytic understanding of follower-leader interactions, with applications
not only to understanding the collective dynamics of biological populations but also
outside biology, for example to hierarchical swarms of robots.

Appendix A. Macroscopic diffusion limit for followers. To compute the
mean direction of the followers, wf in Section 3.4, we start by substituting the
following expansions

σf = σ0
f + εσ1

f +O(ε2) , ρf = ρ0
f + ερ1

f +O(ε2) ,

T ε = T 0 + εT 1 +O(ε2) , Φε(Λ · θ) = Φ0 + εΦ1 +O(ε2) ,
(76)

into (47) and we obtain

ε2∂t(σ
0
f + εσ1

f ) + εcfθ · ∇(σ0
f + εσ1

f ) =− β(σ0
f + εσ1

f ) + ζβ(T 0 + εT 1)(σ0
f + εσ1

f )

+ ε(1− ζ)β(Φ0 + εΦ1)(ρ0
f + ερ1

f ) . (77)

Grouping in terms of powers of ε and assuming that T 0σ0
f = ρ0

f we have

ε0 : σ0
f = ζρ0

f , (78)

ε1 : σ1
f =

1

1− ζ

(
−cfζ

β
θ · ∇ρ0

f + ζ2T 1ρ0
f + (1− ζ)Φ0ρ0

f

)
. (79)

The Chapman-Enskog expansion in this case is given by σf = ζρ0
f + εσ1

f +O(ε2) .

The conservation equation (48) is given by

ε2∂tρ
0
f + ε2cf∇ ·

∫
S

θσ1
f = 0 .

Finally, we compute the mean direction wf as follows

∇ ·
∫
S

θσ1
fdθ = −∆(Dfρ

0
f ) +∇ · ρ0

f

∫
S

θΦ0(ΛW · θ)dθ , (80)

where Df =
ζcf

β(1−ζ)
∫
S
θθT dθ. In the derivation of (80) we used

∫
S
θT 1dθ = 0 since

we assume that T is symmetric.
Also, W is the total mean direction of the whole population and

ΛW =
JW
|JW |

for JW = nε

∫
y

Kε
( |y − x|

ε

)
W (y, t)dy .

If we consider J as in (4) then the mean direction, Λ, will depend only on the mean
direction of the active leaders, wa, as follows

Λa =
Ja
|Ja|

where Ja = nελ

∫
y

Kε
( |y − x|

ε

)
wady .

The integral over S in (80) is given by
∫
S
θΦ0(Λ0

W · θ)dθ = zΛ0
W where z can

be computed using polar coordinates θ = (cos(s), sin(s)) for n = 2, or spherical
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coordinates θ = (cosφ sin(s), sinφ sin(s), cos(s)) for n = 3. z is given by [15]

z =

{∫ 2π

0
Φ0(cos(s)) cos(s)ds, if n = 2,

2π
∫ π

0
Φ0(cos(s)) cos(s) sin(s)ds, if n = 3.

(81)

Appendix B. Diffusion limit for passive leaders with noise. Let us suppose
that the total population of passive leaders, σp, can be written in terms of the
following expansion:

σp = σ0
p + εσ1

p +O(ε2) . (82)

Similarly, we expand ρp = ρ0
p + ερ1

p +O(ε2), ρa = ρ0
a + ερ1

a +O(ε2) and

Bε(θ) = B0(θ) + εB1(θ) +O(ε2) ,

R̄εap(θ) = R̄0
ap(θ) + εR̄1

ap(θ) +O(ε2) , Rεap = R0
ap + εR1

ap +O(ε2) ,
(83)

where B0(θ) = pT 0(θ) + (1− p)T 0
ρf

and B1(θ) = pT 1(θ) + (1− p)T 1
ρf

.

Substituting (82) and (83) into (46) and grouping the appropriate powers of ε
we get

ε0 : σ0
p = B0ρ0

p , (84)

ε1 : σ1
p =

1

β
(−cpθ · ∇σ0

p+βB1ρ0
p + βB0ρ1

p) . (85)

We obtain a Chapman-Enskog expansion from (82) given by

σp = B0ρ0
p + εσ1

p +O(ε2) . (86)

Substituting the above expression into the mean direction of the passive leaders, wp
in (65), we obtain

wp =
1

n

∫
S

θB0(θ)dθρ0
p +

ε

n

∫
S

θσ1
pdθ =

ε

n

∫
S

θσ1
pdθ .

Since we assume B0 is symmetric, then
∫
S
θB0dθ = 0. The conservation equation

for the passive leaders (62), is then

ε2∂tρ
0
p + ε2cp∇ ·

∫
S

θσ1
pdθ = ε2R0

apρ
0
a − ε2R0

paρ
0
p . (87)

The term ∇ ·
∫
S
θσ1

pdθ can be explicitly computed using (84) and (85) as follows:

∇ ·
∫
S

θσ1
pdθ =

−cp
β

∫
S

(∇ · θ)(θ · ∇)B0ρ0
pdθ

+
1

β
∇ ·
∫
S

θ
(
βB1ρ0

p + βB0ρ1
p

)
dθ ,

= −∆(Dp+T)ρ0
p , (88)

where we have used the fact that B(θ) is symmetric and therefore
∫
S
θB0dθ =∫

S
θB1dθ = 0 and

Dp =
pcp
β

∫
S

θθTT 0(θ)dθ , and T =
(1− p)cp

β

∫
S

θθTT 0
ρf
dθ .
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Appendix C. Turn angle operator. This section recalls some basic spectral
properties of the turn angle operator T defined in (2).

Lemma C.1. Assume that k̃ is continuous. Then T is a symmetric compact oper-
ator. In particular, there exists an orthonormal basis of L2(S) consisting of eigen-
functions of T .
With θ = (θ0, θ1, ..., θn−1) ∈ S, we have

φ0(θ) = 1 is an eigenfunction to the eigenvalue ν0 = 1,

φj1(θ) = nθj are eigenfunctions to the eigenvalue ν1 =

∫
S

k̃(·, |η − e1|)η1dη < 1.

(89)
Any function σ ∈ L2(Rn × R+ × S) admits a unique decomposition

σ(x, t, θ) = u+ nθ · w + ẑ, (90)

where ẑ is orthogonal to all linear polynomials in θ. Explicitly,

u(x, t) =

∫
S

σ(x, t, θ)φ0(θ)dθ, wj(x, t) =

∫
S

σ(x, t, θ)φj1(θ)dθ,

and w = (w1, . . . , wn).
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