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A FAMILY OF SHARP INEQUALITIES ON REAL
SPHERES

ROBERTO BRAMATI

Abstract. We prove a family of sharp multilinear integral inequalities
on real spheres involving functions that possess some symmetries that can
be described by annihilation by certain sets of vector fields. The Lebesgue
exponents involved are seen to be related to the combinatorics of such
sets of vector fields. Moreover we derive some Euclidean Brascamp–Lieb
inequalities localized to a ball of radius R, with a blow-up factor of type
Rδ, where the exponent δ > 0 is related to the aforementioned Lebesgue
exponents, and prove that in some cases δ is optimal.

1. Introduction

Brascamp–Lieb inequalities on Rn are inequalities of the type∫
Rn

m∏
i=1

fi(Bix)dx ≤ C
m∏
i=1

‖fi‖Lpi (Rni ), (1)

where Bi : Rn → Rni are surjective linear maps, fi : Rni → R+ are nonneg-
ative measurable functions and pi ≥ 1. The constant C, which depends on
the maps Bi and on the exponents pi, is called Brascamp–Lieb constant and
it is the smallest possible constant (finite or infinite) for which inequality (1)
holds for all nonnegative functions fi ∈ Lpi(Rni). An effective tool to study
these inequalities is the heat flow technique, introduced in this context by
Carlen, Lieb and Loss [6] and independently by Bennett, Carbery, Christ and
Tao [3]. For a review of the history of these inequalities, see [3] and references
therein.

Our point of view on inequality (1) is that it is an inequality for functions
that possess symmetries described by annihilation by certain sets of vector
fields. Indeed the functions gi = fi ◦Bi are functions on Rn that are constant
on affine subspaces parallel to the kernel of the map Bi. We can characterize
such symmetry by saying that the functions gi, which without loss of generality
we suppose to be smooth, are annihilated by all vector fields parallel to the
kernel of Bi. Inequality (1) then says that for this kind of functions, the
integral of the product is controlled, apart from a constant, by a product of
Lebesgue norms of the functions restricted to a (linear) manifold where all
the information is carried (we can see Rni as (KerBi)

⊥).
A fundamental result contained in [3] establishing necessary and sufficient

conditions on the maps Bi and the exponents pi in order for inequality (1)
to hold with finite constant in the Euclidean case is the following.

2010 Mathematics Subject Classification. 26D15, 43A15, 43A85, 52A40.
Key words and phrases. Multilinear inequalities, Homogeneous spaces, Heat flow.

1



2 ROBERTO BRAMATI

Theorem 1.1. The constant C in (1) is finite if and only if
∑m

i=1 p
−1
i ni = n

and for all V subspaces of Rn, dim(V ) ≤
∑m

i=1 p
−1
i dim(BiV ).

The second condition in Theorem 1.1 can be interpreted as a non-degeneracy
condition implying that the kernels of the maps Bi are not too parallel between
themselves, or that the symmetries involved are not too similar.

The problem of finding nonlinear analogs of inequality (1) was first studied
by Carlen, Lieb and Loss in [6], where the authors proved, using a heat flow
argument, a sharp inequality on real spheres for functions depending on one
variable. The problem was also studied from the more abstract point of view
of Markov semigroups by Barthe, Cordero-Erausquin and Maurey in [2] and
Barthe, Cordero-Erausquin, Ledoux and Maurey in [1]. Recently the author
used the heat flow technique to prove some inequalities in the context of
compact homogeneous spaces of Lie groups (see [5]), providing some sharp
results in the case of real spheres. The inequalities studied in [5] have the
form ∫

Sn−1

m∏
i=1

fidσ ≤
m∏
i=1

‖fi‖Lpi (Sn−1), (2)

where dσ is the normalized uniform measure on Sn−1 and the functions fi
have symmetries described by annihilation by certain differential operators
and can be thought of as functions f̃i defined on unit balls Bm of Euclidean
spaces of dimension m ≤ n − 1, then pulled-back to the sphere via the
orthogonal projection πi from Sn−1 ⊂ Rn onto the ball Bm. The Lpi(Sn−1)

norms of the functions fi can be controlled with the Lpi(Bm) norms of the f̃i,
thus yielding a Brascamp–Lieb type inequality. Inequality (2) has also the
structure of Hölder’s inequality, but in the presence of symmetries certain
exponents pi for which (2) holds could be not directly deducible from Hölder’s
inequality itself. Indeed, given exponents pi for which inequality (2) holds,
Hölder’s inequality implies that the inequality holds for p′i ≥ pi, but it is not
clear how to get smaller exponents and what are the smallest possible (sharp)
exponents p̃i for which the inequality holds for pi ≥ p̃i.

In [5] this sharp exponent is found for the cases of functions depending on
1 ≤ k ≤ n− 2 variables, and depending radially on 1 ≤ k ≤ n− 2 variables.
These were the first sharpness results for this type of inequality, extending
the sharpness found in [6] for the case of functions depending on one variable.

In this paper we determine sharp exponents for the inequality (2) when all
symmetries of the functions fi’s are balanced. This means that the different
Lie algebras Ai of vector fields annihilating the fi’s are all isomorphic to
each other and that all possible symmetries of the same type appear exactly
once. For example, we can consider the case of functions of k variables. The
balance condition requires that all the fi’s are functions of k variables, and
all the possible collections of k variables appear exactly once. We refer to
Section 3 for the precise definition of balanced setting. In the balanced case,
we find that the inequality holds if all exponents pi are bigger than or equal
to a critical p̃ ≥ 2 independent of i.

Our main result is Theorem 3.1 where we explicitly compute p̃ and prove
that this exponent is sharp, meaning that it is the lowest possible for which
the inequality holds for exponents pi ≥ p̃ : for every p < p̃ there are functions
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in Lp(Sn−1), with the appropriate symmetries, that make the left-hand side
of (2) diverge. The computation of p̃ is based on a general theorem proved
by the author in [5] that is recalled in Section 2.

As an application of Brascamp–Lieb type inequalities on spheres, we
derive a family of local Brascamp–Lieb inequalities on Euclidean spaces, i.e.
inequalities of type (1) where on the left-hand side integration is performed
just over a ball of radius R > 0. Such local analogs of Brascamp–Lieb
inequalities were first considered by Bennett, Carbery, Christ and Tao in [3,
Section 8] and [4]. More recently the growth rate in the parameter R was
studied in the case of weak Brascamp–Lieb inequalities (i.e. local inequalities
with functions that are constant at certain scales) by Maldague [8] and Zorin-
Kranich [10], with applications respectively to Multilinear Kakeya inequalities
and Kakeya–Brascamp–Lieb inequalities. Our focus will be on the growth
rate of the corresponding local Brascamp–Lieb constant, which will blow up
as a power of R. In the balanced case, using the sharpness result of Theorem
3.1, we find that the exponent of R is lowest possible.

2. Notation and preliminary results

Throughout this paper, for A,B > 0, by A . B we mean that A ≤ CB,
for some C > 0.

We will interpret the unit sphere Sn−1 ⊂ Rn, for n ≥ 3, as the left
homogeneous space SO(n− 1)\SO(n). Let

Li,j = xi∂xj − xj∂xi ,

for 1 ≤ i < j ≤ n, be a basis for the Lie algebra so(n) of left invariant vector
fields on SO(n), acting on Sn−1, and write the Laplace–Beltrami operator
on Sn−1 as L =

∑
i<j L

2
i,j . We say that a subset A ⊆ {Li,j}i<j is maximal if

A = 〈A〉 ∩ {Li,j}i<j , where 〈A〉 is the Lie subalgebra of so(n) generated by
A. We denote by

(
a
b

)
, with a ≥ b ≥ 0, the binomial coefficient and by(

a

b1, . . . , bk

)
=

a!

b1! . . . bk!
,

for k ∈ N and a =
∑k

i=1 bi, bi ≥ 0, the multinomial coefficient.
Let α = ((α)1, . . . , (α)n) ∈ Zn2 := (Z/2Z)n = {0, 1}n be a multi-index,

denote by |α| =
∑n

i=1(α)i its length and by ᾱ = (1, 1, . . . , 1)− α, where the
difference is intended componentwise. We say that multi-indices α, β ∈ Zn2
are orthogonal if α · β =

∑n
i=1(α)i(β)i = 0, i.e. if they do not have 1’s in the

same components. For a point x = (x1, . . . , xn) ∈ Rn, we denote by xα the
point with components ((α)1x1, . . . , (α)nxn) and by |xα| its Euclidean norm.
Note that, by a small abuse of notation, the point xα can be identified with
a point in R|α|.

Given α ∈ Zn2 we denote by soα the Lie algebra isomorphic to so(|α|)
generated by the set {Lk,l : k < l, (α)k = (α)l = 1}. The following theorem
holds.

Theorem 2.1 ([5]). Let A ⊆ {Li,j}i<j. Then there exist a unique N ∈ N
and unique (up to relabeling in the case of equal length) pairwise orthogonal
multi-indices α1, . . . , αN , with |αi| ≥ 2, |α1| ≥ · · · ≥ |αN |, and

∑N
i=1 |αi| ≤ n,
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such that

〈A〉 =

N⊕
i=1

soαi .

Remark 2.2. If the subset A is maximal, its cardinality is necessarily∑N
i=1

(|αi|
2

)
, and there is a natural splitting in N subsets Ai, of cardinality(|αi|

2

)
, each of which is a basis for the associated soαi .

We are interested in subalgebras of the algebra of smooth functions on
the sphere of functions which are annihilated by certain vector fields. In this
regard we give the following definition.

Definition 2.3. Let A ⊆ {Li,j}i<j . A function f ∈ C∞(Sn−1) is A-
symmetric if Xf = 0 for all X ∈ A.

Remark 2.4. A function which is A-symmetric, is also B-symmetric for
subsets such that 〈A〉=〈B〉, so it is convenient to consider only maximal
subsets and we shall do so from now on. Note that a function which is
A-symmetric will also be annihilated by all vector fields in the Lie subalgebra
〈A〉 of so(n) and so it will be constant on certain submanifolds of Sn−1.

Given a multi-index α ∈ Zn2 , annihilation of a function f(x1, . . . , xn) on
the sphere by a subalgebra of type soα gives radiality in the variables xα, i.e.
the dependence on these variables is actually a dependence on |xα|.

For a function f(x1, . . . , xn) on the sphere, annihilation by a maximal sub-
set A and consequently by its generated subalgebra, which has the structure
described in Theorem 2.1, can be interpreted as follows. The multi-index
α1 tells us that the function depends on the n− |α1| variables xᾱ1 . Indeed
f(x1, . . . , xn) = f(xα1 , xᾱ1), being annihilated by soα1 , can be thought as a
function f̃(|xα|, xᾱ1) = f̃(±

√
1− |xᾱ1 |2, xᾱ1) which in turn can be identified

with two functions g±(xᾱ1) defined on the ball Bn−|α1| of Rn−|α1| (when we
omit the indication of center and radius we refer to the unit ball centered at
0). The ambiguity given by the ± sign is minor. Indeed one could split each
function in the sum of two functions each defined on a different spherical cap
and recover all the results that follow. To avoid heaviness of notation we
will assume that all the functions we consider have an additional reflection
symmetry, i.e., in the notation above, we require that g+(xᾱ1) = g−(xᾱ1).

The annihilation by the other subalgebras soαi , for i = 2, . . . , N , gives
radial dependence on the collections of variables xαi , which are contained in
xᾱ1 and distinct by the orthogonality of the multi-indices. The multi-index

R := ᾱ1 −
N∑
i=2

αi (3)

has 1’s in the positions where the dependence is on the single variables.
According to this interpretation, the ambiguity in Theorem 2.1 about the
ordering of the multi-indices αi gives rise to dependence on different variables
(or radiality in different collections of variables), but, by the condition x2

1 +
· · ·+ x2

n = 1, all these dependecies can be seen to be equivalent. See [5] for
further details about this interpretation and examples.

We now recall the following theorem.
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Theorem 2.5 ([5]). Let m ∈ N and AJ be maximal subsets of {Li,j}i<j, for
J = 1, . . . ,m. Then, for AJ -symmetric nonnegative functions fJ , we have∫

Sn−1

m∏
J=1

fJ(x)dσ(x) ≤
m∏
J=1

‖fJ‖LpJ (Sn−1) (4)

for pJ ≥ p̃, where p̃ is the number of occurrences of the most recurrent vector
field among the finite sets (AJ)c, i.e.

p̃ = max
L∈∪mi=1(Ai)c

max
j :∩j(Ak)c3L

|j|,

where L denotes a vector field, j ∈ {0, 1}m and the notation
⋂

j(Ak)c :=⋂
i : (j)k=1(Ak)c denotes the intersection of the subsets (Ak)c for those k such

that (j)k = 1.

Remark 2.6. Since dσ(Sn−1) = 1, by continuous embeddings of Lebesgue
spaces on Sn−1, the relevant information of the Theorem is that inequality
(4) holds for pJ = p̃ for all J .

Remark 2.7. Notice that by Theorem 2.1 all the information about the
symmetries of the functions and the exponent p̃ is contained in the multi-
indices αJi , for i = 1, . . . , NJ , with J = 1, . . . ,m.

Theorem 2.5 provides the same exponent p̃ for all the functions. A more
careful analysis leads to the following theorem.

Theorem 2.8 ([5]). With the hypotheses above, the inequality∫
Sn−1

m∏
J=1

fJ(x)dσ(x) ≤
m∏
J=1

‖fJ‖LpJ (Sn−1) (5)

holds for pJ ≥ p̃J , where p̃J is the number of occurrences of the most recurrent
vector field of (AJ)c among the finite sets (Ak)c, i.e.

p̃J = max
L∈(AJ )c

max
j :∩j(Ak)c3L

|j|,

where L denotes a vector field, j ∈ {0, 1}m and the notation
⋂

j(Ak)c :=⋂
i : (j)k=1(Ak)c is as explained above.

Remark 2.9. Notice that, by their definitions, p̃J ≤ p̃, so that (5) is actually
an improvement of (4). The problem of the sharpness of the exponents pJ
in Theorem 2.8, i.e. whether they are the smallest possible for which the
Theorem holds, is open in the general case. Nevertheless for some classes of
functions, like those treated in this paper, we can prove that they are sharp
(see also Remark 3.2 below).

3. Inequalities in the balanced case

We are interested in the case where all the functions have the same type
of symmetry (i.e. the Lie subalgebras generated by the maximal subsets for
which they are symmetric are isomorphic) and we consider all the possible
symmetries of the same type. Such balance allows to treat easily the combi-
natorics. In the unbalanced case Theorems 2.5 and 2.8 obviously still apply
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but it seems much harder to find an explicit form for the exponents and to
prove that they are sharp.

Let us describe, using the notation introduced above, what we mean by
balanced set up. We are in a balanced case if NJ = N for all J , for some
fixed N ∈ N, and the multi-indices αJi have the same length α̃i for all J .
In other words, we fix N natural numbers α̃1, . . . , α̃N , with α̃i ≥ 2 and
α̃1 ≥ α̃2 ≥ · · · ≥ α̃N and

∑N
i=1 α̃i ≤ n. Moreover, in the balanced case, we

also require to consider exactly once all the possible N -tuples of pairwise
orthogonal multi-indices with those fixed lengths. We set R̃ = n−

∑N
i=1 α̃i,

which will be the cardinality of all multi-indices RJ , as defined in (3). To each
N -tuple we associate a maximal subset and thus a symmetry as described
in Theorem 2.1. The Lie subalgebras of so(n) generated by this choice of
multi-indices are obviously isomorphic and exhaust their isomorphism class
(within our restricted choice of generators, which must be contained in the
basis {Li,j}i<j). If α̃i = α̃j for some 1 ≤ i < j ≤ N , in each N -tuple of
multi-indices there will be an ambiguity in the ordering as pointed out in
Theorem 2.1. For the moment we will not care about this (see Remark 4.4)
and count each case as separate.

The problem thus becomes a problem about the combinatorics of the multi-
indices. It is easy to see that the number of possible N -tuples of pairwise
orthogonal multi-indices with fixed lengths α̃1, . . . , α̃N is(

n

α̃1, . . . , α̃N , R̃

)
:= Jmax

so that J runs from 1 to Jmax. This is also the number of maximal subsets
AJ in the balanced case and the number of functions, each AJ -symmetric
for a different J , that we will consider.
Theorem 3.1. In the balanced case, the exponent in inequality (4) given by
Theorem 2.5 is

p̃ =
(n− 2)!

(
n(n− 1)−

∑N
i=1 α̃i(α̃i − 1)

)
α̃1! · · · · · α̃N !R̃!

. (6)

Moreover this exponent is sharp, in the sense that it cannot be lowered (see
remark below).

The proof of the sharpness is postponed to Section 4.

Remark 3.2. Following [6] and the terminology established in [5], by sharp
exponent we mean that the exponent (6) is the lowest possible for which
Theorem 2.5 holds as stated. The conditions given by Theorem 2.5 are only
sufficient and not necessary for the inequality to hold. Necessary conditions
on the exponents for these inequalities are not known, even in the easiest cases
(see [5, Section 6.3] for the case of functions of one variable on S2). Finding
them is an interesting and non-trivial open problem for future investigation.
If we are in the case of Theorem 2.8, i.e. when all the exponents are the same,
the condition given there is also necessary, if we are in the balanced case.

Remark 3.3. In this setting, the critical exponents given by Theorems 2.5
and 2.8 coincide.
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Proof of Theorem 3.1. We want to apply Theorem 2.5. Notice that by the
balance conditions, all vector fields {Li,j}i<j will appear in

⋃m
J=1(AJ)c, and

they will all have the same number of occurrences. This is easily seen by
considering the multi-indices associated to the maximal subsets. The balanced
set up ensures that no vector field has a prominent role among the others.
This also implies that the outer maximums in the definition of the exponents
p̃, p̃J in Theorems 2.5 and 2.8 are irrelevant, meaning that they return the
same value for all their inputs, yielding p̃j = p̃ for all J . So we can just
fix a vector field Li,j and count how many AJ contain it. The vector field
Li,j is contained in AJ if (αJk )i = (αJk )j = 1 for some k = 1, . . . , N , and
1 ≤ i < j ≤ n. The number of ways of doing this is

N∑
i=1

(
n− 2

α̃1, . . . , α̃i − 2, . . . , α̃N , R̃

)
.

So our p̃ is given by(
n

α̃1, . . . , α̃N , R̃

)
−

N∑
i=1

(
n− 2

α̃1, . . . , α̃i − 2, . . . , α̃N , R̃

)
,

which after easy manipulation gives (6). �

Example 3.4. The simplest balanced case (N = 1) is that of the functions
of k variables, for 1 ≤ k ≤ n− 2, which was treated in [5] (see also [6], where
the case k = 1 was first established, and [1]). By Theorem 3.1 we have
α̃1 = n− k, Jmax =

(
n
α̃1

)
and

p̃ =

(
n

α̃1

)
−
(
n− 2

α̃1 − 2

)
=

(
n

k

)
−
(
n− 2

k

)
.

Example 3.5. The case N = 2, R̃ = 0 is that of functions depending radially
on 1 ≤ k ≤ n − 1 variables. By Theorem 3.1 we have α̃1 = max{n − k, k},
and α̃2 = min{n− k, k}, Jmax =

(
n

α̃1,α̃2

)
and

p̃ =
(n− 2)! (n(n− 1)− (n− k)(n− k + 1)− k(k + 1))

(n− k)!k!
= 2

(
n− 2

k − 1

)
.

For both examples, the author proved in [5] that the exponents are sharp.

In the following section we will prove that all exponents coming from
Theorem 3.1 are sharp.

4. Sharpness

For a fixed symmetry type, i.e. for fixed lengths α̃1, . . . , α̃N as above, we
consider the possible maximal subsets AJ , for J = 1, . . . , Jmax and introduce
the following functions

fJ(|xαJ2 |, . . . ,|xαJN |, xRJ ) =
N∏
i=2

|xαJi |
−γα̃i

∏
i:(RJ )i=1

|xi|−γ

+

N∑
i=2

(1− |xαJi |
2)−

γ(n−α̃i)
2 +

∑
i:(RJ )i=1

(1− x2
i )
− γ(n−1)

2 . (7)
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with γ > 0 to be determined. Note that the function fJ is AJ -symmetric. In
order to estimate Lebesgue norms of these functions we will use the following
lemma.

Lemma 4.1 ([7, 9]). Let α ∈ Zn2 and f(xα) a soᾱ-symmetric function, i.e.
a function depending on |α| variables. Then∫

Sn−1

f(xα)dσ= Cn,|α|

∫
B|α|

f(xα)(1− |xα|2)
n−2−|α|

2 dxα, (8)

where Cn,|α| is a constant only depending on n and |α|.

With the integration formula provided by Lemma 4.1 we can prove the
following proposition.

Proposition 4.2. For functions fJ as in (7) we have ‖fJ‖Lp(Sn−1) <∞ for
γp < 1.

Proof. By convexity we have

‖fJ‖pLp(Sn−1)
.
∫
Sn−1

N∏
i=2

|xαJi |
−γα̃ip

∏
i:(RJ )i=1

|xi|−γpdσ

+
N∑
i=2

∫
Sn−1

(1− |xαJi |
2)−

γ(n−α̃i)p
2 dσ +

∑
i:(RJ )i=1

∫
Sn−1

(1− x2
i )
− γ(n−1)p

2 dσ

= I +
∑

IIi +
∑

IIIi.

For the term I, since the integrand is a function of n− α̃1 variables, we use
(8) and pass to polar coordinates to get

I .
∫
Bn−α̃1

N∏
i=2

|xαJi |
−γα̃ip

∏
i:(RJ )i=1

|xi|−γp(1− |xᾱ1
J |2)

α̃1−2
2 dxᾱJ1

.
N∏
i=2

∫
Bα̃i

|xαJi |
−γα̃ipdxαJi

∏
i:(RJ )i=1

∫ 1

−1
|xi|−γpdxi

.
N∏
i=2

∫ 1

0
ρ−γα̃ip+α̃i−1dρ

∏
i:(RJ )i=1

∫ 1

−1
|xi|−γpdxi.

The integrals are finite if −γα̃ip + α̃i − 1 > −1 and −γp > −1, i.e. when
γp < 1. For each of the pieces IIi we use again (8) and polar coordinates to
get

IIi .
∫
Bα̃i

(1− |xαJi |
2)−

γ(n−α̃i)p
2 (1− |xαJi |

2)
n−2−α̃i

2 dxαJi

.
∫ 1

0
(1− ρ2)−

γ(n−α̃i)p
2

+
n−2−α̃i

2 ρα̃i−1dρ.

The integral is finite if −γ(n−α̃i)p
2 + n−2−α̃i

2 > −1, which again gives γp < 1.
The same computation works for the terms of type IIIi, which involve
functions of one variable, and it is easily seen that the integrability condition
is again γp < 1. �
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We are now ready to prove the following theorem.

Theorem 4.3. The exponent p̃ in Theorem 3.1 is sharp, i.e. for each
p < p̃ the Theorem 3.1 does not hold, since there exist functions fJ , each
AJ -symmetric, for J = 1, . . . , Jmax, such that the right-hand side of (4) is
finite and the left-hand side diverges.

Proof. By Proposition 4.2, in order to have a finite right-hand side in (4) it
suffices to have γp < 1.

Let us now consider the left-hand side of (4), that we want to control from
below. In the left-hand side, the product inside the integral gives a sum of
(positive) products of the terms of the considered functions. We dominate
all terms of this sum from below with just a specific one: we fix a variable,
say xn, and we select the summand that contains the product term (the first
term in (7)) for those J for which the function fJ does not depend on the
variable xn, i.e. if (αJ1 )n = 1, and the sum term that contains xn (either the
second or the third term in (7)), for those J for which fJ depends on xn, i.e.
if (αJ1 )n = 0. The number of functions that do not depend on the variable xn
is
( n−1
α̃1−1,...,α̃N ,R̃

)
. The number of functions that depend on the variable xn in

the radial collection |xαJi | for i = 2, . . . , N is
( n−1
α̃1,...,α̃i−1,...,α̃N ,R̃

)
, and for these

functions we denote by î the unique index i such that (αJ
î
) = 1. Finally the

number of functions that depend on the variable xn as a single variable, that
are the functions such that (RJ)n = 1, is R̃

n

( n
α̃1,...,α̃N ,R̃

)
, and the expression

also includes the case R̃ = 0. Note that

N∑
i=1

(
n− 1

α̃1, . . . , α̃i − 1, . . . , α̃N , R̃

)
+
R̃

n

(
n

α̃1, . . . , α̃N , R̃

)
=

(
n

α̃1, . . . , α̃N , R̃

)
,

which is Jmax, the total number of functions involved. For β > 0 we will use
the inequalities |xα|−β ≥ (x2

1 + . . . x2
n−1)−

β
2 for collections xα that do not

contain the variable xn, and (1− |xα|2)−
β
2 ≥ (1− x2

n)−
β
2 for collections xα

that contain the xn variable. We have

∫
Sn−1

Jmax∏
J=1

fJ dσ ≥
∫
Sn−1

∏
J :(αJ1 )n=1

 N∏
i=2

|xαJi |
−γα̃i

∏
i:(RJ )i=1

|xi|−γ


×
∏

J :(αJ1 )n=0,(RJ )n=0

(1− |xαJ
î
|2)−

γ(n−α̃
î
)

2

∏
J :(RJ )n=1

(1− |xn|2)−
γ(n−1)

2 dσ

≥
∫
Sn−1

∏
J :(αJ1 )n=1

(x2
1 + · · ·+ x2

n−1)−
γ(

∑N
i=2 α̃i+R̃)

2

×
∏

J :(αJ1 )n=0,(RJ )n=0

(1− x2
n)−

γ(n−α̃
î
)

2

∏
J :(RJ )n=1

(1− x2
n)−

γ(n−1)
2 dσ.
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Now we think of the sphere as a graph, noting that 1− x2
n = x2

1 + · · ·+ x2
n−1,

and pass to polar coordinates, obtaining∫
Sn−1

Jmax∏
J=1

fJ dσ ≥
∫
Bn−1

∏
J :(αJ1 )n=1

(x2
1 + · · ·+ x2

n−1)−
γ(

∑N
i=2 α̃i+R̃)

2

×
∏

J :(αJ1 )n=0,(RJ )n=0

(x2
1 + · · ·+ x2

n−1)−
γ(n−α̃

î
)

2

×
∏

J :(RJ )n=1

(x2
1 + · · ·+ x2

n−1)−
γ(n−1)

2 (1− x2
1 − · · · − x2

n−1)−1/2dx1 . . . dxn−1

=

∫ 1

0
ρ
−γ

[
(
∑N
i=2 α̃i+R̃)( n

α̃1−1,...,α̃N ,R̃
)+

∑N
i=2(n−α̃i)( n−1

α̃1,...,α̃i−1,...,α̃N ,R̃
)
]

× ρ−γ
[
R̃(n−1)

n ( n
α̃1,...,α̃N ,R̃

)
]
(1− ρ2)−1/2ρn−2dρ.

This integral diverges for

γ = (n− 1)

[(
N∑
i=2

α̃i + R̃

)(
n

α̃1 − 1, . . . , α̃N , R̃

)

+
N∑
i=2

(n− α̃i)
(

n− 1

α̃1, . . . , α̃i − 1, . . . , α̃N , R̃

)
+
R̃(n− 1)

n

(
n

α̃1, . . . , α̃N , R̃

)]−1

.

So, if we take γp < 1 to make the right-hand side finite, we find

p <
1

γ
=

(n− 2)!

α̃1! . . . α̃N !R̃!

[
N∑
i=1

(n− α̃i)α̃i + (n− 1)R̃

]
,

which is exactly p̃ in Theorem 3.1. �

Remark 4.4. There is a potential ambiguity in the ordering of the multi-
indices in Theorem 2.1, but the symmetries related to different orderings
are equivalent, meaning that the Lie subalgebras of so(n) given by Theorem
2.1 associated to the ambiguous cases are not only isomorphic, but exactly
the same subalgebra. This also implies that in Theorems 3.1 and 4.3 we
might be over-counting the number of functions Jmax and all the other related
quantities. Indeed, there is a common factor multiplying all these quantities,
due to the fact that we introduced the ordering in Theorem 2.1. To identify
this factor, let Aj , j ∈ N be the set of indices α̃i such that α̃i = j, for
i = 1, . . . , N . By our construction, the only sets that can be nonempty are
Aj for j = 2, . . . , n− 2. We can run the proofs of Theorems 3.1 and 4.3 with
all the quantities divided by

∏n−2
j=2 |Aj |! and get again sharp exponents.

5. Local Brascamp–Lieb inequalities

As an application of the inequalities found in Section 3 we derive some local
Euclidean Brascamp–Lieb inequalities associated to orthogonal projections
on vector subspaces of Rn generated by collections of vectors in the basis
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{e1, . . . , en}, i.e. inequalities on Rn of the form∫
B(0,R)

m∏
j=1

fj(πjx)dx . Rδ
m∏
j=1

‖fj‖Lp(Rnj ),

where B(0, R) is the Euclidean ball of center 0 and radius R > 0 (this R
is not related to the R appearing in the previous sections) and the power
δ and the implicit constant depend on n, on the projections πj and on the
exponent p. More precisely we only consider projections πα : Rn → R|α|
mapping a point (x1, . . . , xn) to xα (see Section 2 for the notation). Note
that, given a function f : R|α| → R+, the pullback function f ◦ πα : Rn → R+

is a function that restricted to each sphere rSn−1, with r > 0, endowed with
the normalized measure r−(n−1)dσ, with dσ as above, is annihilated by the
algebra soᾱ. We thus can extend Definition 2.3 to functions defined on the
whole space Rn. Recall that for a maximal subset A of {Li,j}i,j , we have the
decomposition

〈A〉 =
N⊕
i=1

soαi

given by Theorem 2.1. A function f on the whole space Rn which is A-
symmetric is a function that depends only on the variables xᾱ1 , and on
the radius |xα1 |. Hence, A-symmetric functions on Rn are more general
than those appearing in Euclidean Brascamp–Lieb inequalities associated to
orthogonal projections. Anyway, in order to analyze the connection with the
Euclidean case, for the sake of our analysis, we will only consider A-symmetric
functions on Rn that do not depend on the radius |xα1 |. Since they only
depend on the variables xᾱ1 , they can be identified with a function f̃ defined
on Rn−|α1| and then pulled back via the projection πᾱ1 . Notice that if we
restrict a function f of this kind to a sphere rSn−1 of radius r, we have

(f̃ ◦ πᾱ1)|rSn−1
= f̃ ◦ (πᾱ1)|rSn−1

,

and f̃ now acts only on the ball rBn−|α1| of radius r in Rn−|α1| and so
we recover the interpretation of the previous section. By a slight abuse of
notation we will write f(xᾱ1) for f̃(xᾱ1).

The following theorem is a special case of the local Brascamp–Lieb inequal-
ities introduced by Bennett, Carbery, Christ, and Tao and is an immediate
consequence of their analysis (see [3, Theorem 8.17] and [4, Theorem 2.2]).
Here we propose a different proof for our particular case, using a change of
variables to spherical coordinates and applying Theorem 2.8.

Theorem 5.1. Let f1, . . . , fm functions on Rn and let each fJ be AJ -
symmetric for some maximal subset AJ of {Li,j}i<j, for J = 1, . . . ,m, each
of the form fJ(xᾱJ1

). Then the inequality

∫
B(0,R)

m∏
J=1

fJ(xᾱJ1
)dx . Rδ̃

m∏
J=1

‖fJ‖
Lp̃J (Rn−|α

J
1 |)

(9)
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holds for R > 0, with p̃J as in Theorem 2.8 and

δ̃ = n−
m∑
J=1

p̃−1
J (n− |αJ1 |) > 0.

Proof. Integrating the product
∏m
J=1 fJ over the ball B(0, R), passing to

spherical coordinates and applying Theorem 2.8, we get∫
B(0,R)

m∏
J=1

fJ(x)dx =

∫ R

0

∫
Sn−1

m∏
J=1

fJ(ρx′)dσρn−1dρ

.
∫ R

0

m∏
J=1

‖fJ(ρ·)‖Lp̃J (B
n−|αJ1 |

)ρ
n−1dρ

=

∫ R

0

m∏
J=1

‖fJ‖Lp̃J (B
n−|αJ1 |

(0,ρ))ρ
−

∑
(n−|αJ1 |)p̃

−1
J ρn−1dρ

.
m∏
J=1

‖fJ‖
Lp̃J (Rn−|α

J
1 |)

∫ R

0
ρ−

∑
(n−|αJ1 |)p̃

−1
J +n−1dρ.

Observing that

n− 1−
m∑
J=1

(n− |αJ1 |)p̃−1
J ≥ n− 1−m−1

m∑
J=1

n > −1,

since p̃J ≤ p̃ ≤ m and |αJ1 | > 0, integrating in ρ we finally obtain∫
B(0,R)

m∏
J=1

fJ(x)dx . Rδ
m∏
J=1

‖fJ‖
Lp̃J (Rn−|α

J
1 |)
,

with δ̃ = n−
∑m

J=1 p̃
−1
J (n− |αJ1 |) > 0. �

Remark 5.2. By Theorem 2.8, inequality (9) also holds for all exponents
pJ ≥ p̃J with the same argument as in Theorem 5.1. For R > 1 this is also a
consequence of the fact that

∑m
J=1(n − |αJ1 |)p

−1
J ≤

∑m
J=1(n − |αJ1 |)p̃

−1
J for

pJ ≥ p̃J . Indeed, when R > 1, inequality (9) holds for all δ ≥ δ̃.

If we are in the balanced setting of Theorem 3.1, we also have the following
result.

Proposition 5.3. With the hypotheses of Theorem 3.1, we have that in-
equality (9) holds with p̃J = p̃ for all J , where p̃ is given by formula (6)
and

δ̃ = n− p̃−1(n− α̃1)Jmax.

Moreover δ̃ is sharp in the sense that under our assumptions, inequality (9)
is false in general for δ < δ̃.

Proof. The expression for δ̃ follows by specializing Theorem 5.1 to the setting
of Theorem 3.1. In this setting, taking δ < δ̃ is equivalent to choosing p < p̃.
Recalling that∫

Bn(0,R)

m∏
J=1

fJ(x)dx =

∫ R

0

∫
Sn−1

m∏
J=1

fJ(ρx′)dσρn−1dρ
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and that by Theorem 4.3 for p < p̃ there exist functions fJ , each AJ -
symmetric for J = 1, . . . , Jmax, such that the inner integral diverges, we have
that inequality (9) cannot hold for δ < δ̃. �
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