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We describe the ground state of a gas of bosonic atoms with two coherently coupled internal levels in a
deep optical lattice in a one-dimensional geometry. In the single-band approximation this system is described
by a Bose-Hubbard Hamiltonian. The system has a superfluid and a Mott insulating phase that can be either
paramagnetic or ferromagnetic. We characterize the quantum phase transitions at unit filling by means of a
density-matrix renormalization-group technique and compare the results with a mean-field approach and an
effective spin Hamiltonian. The presence of the ferromagnetic Ising-like transition modifies the Mott lobes. In
the Mott insulating region the system maps to the ferromagnetic spin-1/2 XXZ model in a transverse field and
the numerical results compare very well with the analytical results obtained from the spin model. In the superfluid
regime quantum fluctuations strongly modify the phase transition with respect to the well-established mean-field
three-dimensional classical bifurcation.
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I. INTRODUCTION

Ultracold atoms in optical lattices have opened new possi-
bilities to study quantum phase transitions [1] and to observe
the effects of quantum fluctuations [2,3]. Recent experimental
advances have also paved the way for the investigation of
quantum magnetism, notable examples being the demonstra-
tion of superexchange interactions in bosonic gases [4], the
time evolution of spin impurities [5,6], and the engineering
of Ising [7] and anisotropic exchange Hamiltonians [8,9]. On
the other hand, cold atoms are also very suitable to study
coherence phenomena related to the control of the coupling
between internal levels of atomic species. One can obtain
coherently coupled superfluids, which show many interesting
features ranging from a classical bifurcation transition in the
internal Josephson effect [10] to dimerization of half vortices
in rotating superfluids [11,12].

In this work we combine the two ingredients by studying
a coherently coupled Bose gas trapped in a one-dimensional
(1D) optical lattice at unit filling, which can be described by
a coupled two-component Bose-Hubbard model with on-site
interactions [see Eq. (1)]. In particular, the relative strengths
of the coherent coupling (or phase coupling) and the density
couplings due to species-dependent two-body interactions
drive the system into superfluid (SF) or Mott-insulating (MI),
nonpolarized-paramagnetic (NP), or polarized-ferromagnetic
(FM) phases. We characterize the phase diagram in detail
by combining mean-field and density-matrix renormalization-
group (DMRG) approaches [13] and by mapping to spin chain
Hamiltonians. The interest in such a system is manyfold since
it allows for the study of different topics such as the role of
quantum fluctuations due to confinement and interaction in
the NP-FM bifurcation in the superfluid regime; the change
of the lobes in the SF-MI transition, which in one dimension
(at constant integer density) is of the Berezinskii-Kosterlitz-
Thouless (BKT) type [14–16]; the Ising-like ferromagnetic
transition in the MI phase; and the possible simulation of a
ferromagnetic XXZ chain in a transverse field. Moreover,

the model Hamiltonian we use is relevant for ladder chain
models in the presence of a density-density interaction between
the particles on different chains (see [17,18], where the
incommensurate filling case is studied), which has not been
studied as much as the case of noninteracting chains (see,
e.g., [19] and references therein).

In systems of hard-core bosons or fermions with nearest-
neighbor intraspecies and on-site intraspecies interactions, the
NP-FM transition has been studied for the density (charge)
gapless phase [20]. Interestingly, it has been shown that the
transition belongs to the Ising in transverse field universality
class. We find that the same holds for our model, but in the
MI, i.e., density (charge) gapped, phase. By means of our
accurate numerical tools we give an explicit expression for the
phase transition point. Moreover, we characterize completely
the various phases and find, e.g., as mentioned above, that the
NP-FM transition affects the Mott lobes. We also determine
the behavior of the transverse and longitudinal spin correlation
functions across the phase transition. The latter quantities can
be directly measured in cold gases experiments [21,22].

II. COHERENTLY COUPLED BOSE-HUBBARD MODEL

We consider a Bose gas at unit filling confined in a
1D geometry with two hyperfine levels that are coherently
coupled. The atoms experience a deep optical lattice of a
number of sites L that is the same for the two internal
levels. The system can be described by a two-component
single-band Bose-Hubbard Hamiltonian with a static linear
coupling between the two species:

H =
∑

i

[∑
σ

U

2
n̂iσ (n̂iσ − 1) + Uabn̂ian̂ib

]

+ J�

∑
i

(â†
i b̂i + âi b̂

†
i ) − J

2

∑
〈ij〉

(â†
i âj + b̂

†
i b̂j + H.c.),

(1)
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where σ = a,b is the index distinguishing the two (pseu-
dospin) internal levels, âi and b̂i are the corresponding
annihilation operators on the lattice site i, and n̂iσ is the
number operator. The interaction terms U and Uab represent
on-site intraspecies and interspecies two-body interactions,
respectively, while J� is the strength of the conversion from
one internal level to the other. Finally, the hopping with
strength J , limited to nearest neighbors 〈ij 〉, represents the
kinetic energy in the lattice. In this work, for the sake of clarity,
we restrict the discussion to equal intraspecies interactions and
equal hopping for both components. Equal hopping is also the
typical situation in ultracold gases experiments.

The presence of a static linear coupling J�, such as the
one employed in [10,23–26], makes the system very different
from the much studied Bose-Bose mixtures [27–31] or from
schemes where J� is time dependent [32–34]. Briefly, in the
two-component case one has two U(1) symmetries (related
to the conservation of the atom number in each species,
which is J� = 0, and broken in the SF regime) and when
the interspecies interaction fulfills Uab > U the mixture phase
separates [30]. In the presence of the interchange term only
one U(1) symmetry is left, the system is always miscible, and
if Uab is large enough that a Z2 symmetry is broken, allowing
for a second-order phase transition that brings the system to a
FM state. Notice also that the miscible-immiscible transition
for mixtures (phase separation) is of the first-order kind.

III. MOTT-SUPERFLUID PHASE TRANSITION

The Mott-superfluid transition is related to the breaking
of the U(1) symmetry, which leads to the emergence of a
global phase and thus to quasicondensation in one dimension.
In the absence of hopping J = 0, the ground state of the
Hamiltonian (1) is |0〉 = ∏

i c
†
i |vac〉, where |vac〉 is the

vacuum of particles and we have introduced the operators ĉ
†
i =

(â†
i − b̂

†
i )/

√
2 creating a particle at site i in the antisymmetric

state of the internal levels a and b (dressed state). Notice that if
J� were not real (or positive), a different relative phase would
appear between â† and b̂† in the definition of ĉ†, which would
not affect the properties of the system.

In the presence of hopping the system undergoes a phase
transition between a Mott insulating phase and a superfluid
phase. It is customary to depict the phase diagram of the system
as a function of its chemical potential μ and the tunneling
energy J . This leads to a lobe structure with fixed filling
within the Mott lobes. Examples of phase diagrams of the
Hamiltonian (1) for n = 1 are plotted in Fig. 1 (top) for both
the mean-field approximation and the exact DMRG result.

A. Mean-field Mott-superfluid phase transition

In order to get insight into the way the different parameters
of the model enter in the SF-MI phase transition, we apply a
mean-field theory [1] to the grand-canonical Hamiltonian H −
μ

∑
iσ n̂iσ . At J = 0, the borders of the Mott lobes are easily

determined by requiring a unit filling factor. The chemical
potential must satisfy the conditions −J� < μ and μ < J� +
(U + Uab)/2 −

√
16J 2

� + (U − Uab)2/2. For J �= 0, second-
order perturbation theory predicts that the border between the
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FIG. 1. Shown on top is the MI-SF phase transition predicted
by the mean-field approach (dashed lines) and the DMRG approach
(symbols). In the inset we show a typical finite-size scaling of μ+

and μ− in the superfluid regime for Uab/U = 1.8. We characterize
a charge gapless phase, i.e., superfluidity, by μ+ − μ− = 0 in the
thermodynamic limit. The bottom shows the associated NP-FM
transition calculated with the DMRG approach. All curves correspond
to J�/U = 0.1 and solid lines are drawn as a guide for the eye.

MI and SF regions is given by the condition

1

zJ
= 1

μ + J�

+ −2μ + 6J� + U + Uab( − μ + J� + U+Uab

2

)2 − 4J 2
� − (

U−Uab

2

)2 , (2)

where the coordination number is z = 2 in one dimension.
Notice that in the SU(2) symmetric case for the interaction
Uab = U , the single-component result is recovered provided
the chemical potential is rescaled to μ̃ = μ − J�. When the
hopping strength J becomes larger than that given by Eq. (2)
the system enters the SF phase and develops a nonzero order
parameter given by ψ− = (ψ, − ψ)T /

√
2, with ψ = 〈a〉 =

〈b〉. Since quantum fluctuations are neglected the MI phase
is described by the state |0〉 introduced above. Therefore,
the system could support a polarized state only in the SF
regime provided Uab is large enough, in analogy to coupled
condensates (see, e.g., the experiment reported in [10] and
references therein).

The structure of the mean-field Mott lobes given by Eq. (2)
is shown as dashed lines in Fig. 1 for different values of Uab.
There are a number of features in the structure of the lobes to
be noticed: The lower border equals −J�/U for all values of
Uab/U and the upper border converges at 1 + J�/U for Uab >

U ; as Uab/U is increased, the lobes saturate at a maximum
value of J/U , a feature that also takes place in mixtures.
Moreover, at fixed U one has, as expected from the change in
the compressibility, that for Uab < U the insulating region is
smaller than in the single-component case, while for Uab > U

the insulating region is enlarged.
With respect to quantum systems in higher dimensions [35],

in one dimension the role of quantum fluctuations can provide
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relevant beyond-mean-field effects [3]. These are usually not
properly captured in semiclassical approaches, such as the
mean-field approach, but can be accounted for in quasiexact
methods such as the DMRG approach (see the next paragraph).

B. DMRG Mott-superfluid phase transition

In order to check the previous analysis and to get quanti-
tative results we use the DMRG technique [13] to determine
the properties of the ground state of Eq. (1). This method has
already proven to give strong beyond-mean-field effects in the
context of the single-species Bose-Hubbard model [15,16]. All
the numerical results are obtained at unit filling. The Mott lobes
calculated with the DMRG approach are shown as symbols in
Fig. 1 (top).

As expected, we find that the Mott-superfluid transition
takes place at values of J/U much higher than predicted
by mean-field theory (dashed lines) and that the lobes have
the reentrant shape characteristic of the 1D Bose-Hubbard
Hamiltonian [15,16]. We determine the transition points by the
closure of the so-called density (or charge) gap for different
system sizes and then performing finite-size scaling as we
report in the inset of Fig. 1. The density gap μ = μ+ − μ− for
a system with N particles with energy E(N ) is defined by the
difference in energy in adding, μ+ = E(N + 1) − E(N ), or
removing, μ− = E(N ) − E(N − 1), a particle. While such
a method works very well for incommensurate transition
points, it is known to be less accurate for determining the
commensurate-commensurate transition. The latter belongs
indeed to the BKT universality class with an exponentially
small gap closure [16]. However, the use of the gap closure is
enough for the purpose of the present work. We have indeed
checked that our transition points for U = Uab (equivalent to
the single-component case) are in very good agreement with
the ones obtained by calculating the central charge as in [36].

IV. PARAMAGNETIC-FERROMAGNETIC
PHASE TRANSITION

In addition to the Mott-SF transition, the Hamiltonian (1)
allows for states breaking a Z2 symmetry, creating a finite
polarization Sz = (Na − Nb)/2N , with Nσ the number of
atoms in state σ = a,b.

A. Global magnetization

In order to study the breaking of the Z2 symmetry in the
Hamiltonian (1) we first determine the global polarization (or
magnetization) Sz. In our numerical simulations this requires
special attention, especially in the superfluid phase, since a
sufficiently large size of the Hilbert space has to be taken. That
is, we need to consider an on-site basis containing the states
corresponding to a number of bosons up to nmax to allow the
fluctuations of a and b to explore the relevant configurations
and thus to drive the phase transition. We obtain convergence
of the results for open boundary conditions using nmax = 6,
keeping up to 512 DMRG states and 6 sweeps [13], getting a

truncation error lower that 10−8. Unless otherwise stated, we
show the results for a chain with L = N = 80.1

The results for the absolute value of the polarization2

as a function of J/U are reported in the bottom panel of
Fig. 1. In the SF phase (corresponding to Uab/U = 1.8)
the system shows strong quantum fluctuations. Indeed, the
NP-FM transition has been studied in the continuum and within
the Gross-Pitaevskii framework (for a recent discussion see,
e.g, [37] and references therein) and has been seen to take
place for Uab − U = 2J�/n, with n = 1 the total density of the
system. Moreover, the critical exponent of the magnetization
is in this case the expected mean-field value β = 1/2. In
the lattice, instead, the transition occurs for an interspecies
interaction larger than (but still of the same order as) the one
predicted for a mean-field coherent state, i.e., Uab/U = 1.2,
and the magnetization does not follow the classical bifurcation
law. Notice that the magnetization behavior for Uab/U = 1.8
is not properly described by mean-field or strong-coupling
analyses. This makes it very challenging to explain the peculiar
increase of |Sz|.

In the Mott phase, where double occupancy is strongly
suppressed, the interspecies interaction has to be much
stronger, e.g., Uab/U = 6 and Uab/U = 20, to drive the phase
transition. For increasing values of Uab the transition point is
seen to approach a limiting value of J corresponding to the
value given by the Ising model in a transverse field (ITF)
mapping discussed above.

Moreover, it can be noticed from Fig. 1 that once the
magnetic phase transition has taken place inside the lobe
(see, for instance, the case Uab/U = 20), the latter shrinks
slightly, indicating that the SF phase is more favorable than
the MI phase for the polarized system. Also, in this case the
Mott-insulating lobes no longer strongly depend on the value
of Uab, since in the ferromagnetic phase this interaction is less
effective. This saturation of the Mott lobes for Uab large has a
completely different meaning from the saturation found in the
mean-field analysis.

B. Strong-coupling regime

When the system becomes strongly interacting the fluctu-
ations of the number of atoms in each site are weaker and
therefore the effect of the two-body interaction is reduced,
making the polarized state less favorable. In particular in the
deep MI phase (J � U,Uab) the single-particle tunneling is
suppressed and an exchange of atoms is the dominant process.
In this case the coherently coupled Bose-Hubbard model (1)
can be mapped onto a spin chain model (see, e.g., [27,31]).
The effective spin Hamiltonian is the so-called spin-1/2 XXZ

1Due to the open boundary conditions, we may have a polarization
induced by boundary effects for small L. We checked that for L � 80
the transition point is independent of the size.

2We take the absolute value since states with polarization Sz and
−Sz are degenerate and different numerical realizations will find one
state or the other. We have checked that the local magnetization is
consistent with the value Sz and that border effects are small.
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FIG. 2. Shown on top is the NP-FM transition in the MI phase
for different values of the linear coupling J�/U for Uab/U = 6. The
inset shows a comparison between numerical results and the critical
exponent 1/8 of the ITF for J� = 0.1. The bottom shows the NP-
FM transition point calculated with the DMRG approach (symbols)
and using the expression J 2(1/U − 1/Uab) = J�/2 (solid lines) [see
the text and Eq. (4) for more details] for two values of Uab/U in
the MI phase.

model in a transverse field (see, e.g., [38]), which reads

HXXZ = −t
∑

i

(
Ŝx

i Ŝx
i+1 + Ŝ

y

i Ŝ
y

i+1 + �Ŝz
i Ŝ

z
i+1

)

+ 2J�

∑
i

Ŝx
i , (3)

where Ŝz
i = (n̂ia − n̂ib)/2, Ŝx

i = (â†
i b̂i + âi b̂

†
i )/2, Ŝ

y

i =
−i(â†

i b̂i − âi b̂
†
i )/2, t = 4J 2/Uab, and � = 2Uab/U − 1 is

the anisotropy. Since we are considering repulsive on-site
interactions we are restricted to −1 < � < +∞. In such
a parameter range the spin model (3) exhibits only two
phases, a paramagnetic phase with magnetization along the
x axis and an Ising ferromagnetic phase along the z axis.
For J� = 0 the model is exactly solvable and the transition
occurs at � = 1, i.e., Uab = U . For J� �= 0 the transition is
shifted to larger values of Uab/U . On the other hand, for
Uab → ∞ the Hamiltonian reduces to the ITF, which is also
exactly solvable and predicts a transition at t� = 4J�, i.e., for
2J 2 = UJ�, with a critical exponent β = 1/8. The mapping to
the ITF tells us that even in the infinite interspecies interaction
case one always needs a minimum tunneling to observe the
ferromagnetic transition. As we will explain in detail in the
following, we find that the magnetic phase transition in the MI
phase belongs indeed to the ITF universality class, in analogy
to the results obtained in [20].

Let us better characterize the FM transition in the MI regime
by changing J�, as reported in the top panel of Fig. 2, which
shows the DMRG results. As described above, in the Mott
phase for J� → 0 the system is equivalent to the XXZ model,
which gives the FM transition at Uab/U = 1. For J� �= 0 the
transition is shifted to larger values of Uab/U . One can obtain
an approximation to the critical condition by noticing that the
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FIG. 3. Shown on top is the behavior of Cx(50) (open symbols)
and Cz(50) (closed symbols) across the MI-SF transition for J�/U =
0.1 (see Fig. 1). The bottom shows the long-range behavior of Cz(i)
in the SF (left) and MI (right) phases close to the phase transition.

Hamiltonian (3) can be rewritten as a Heisenberg exchange
term

∑ 	Si · 	Si+1 plus an ITF term. Neglecting the effect of the
Heisenberg term (valid for Uab > U ), the phase transition is
driven by the ITF and it takes place at

t(� − 1) = 8J 2(1/U − 1/Uab) = 4J�. (4)

The accuracy of this expression with respect to the numerical
solution of the Hamiltonian (1) is shown in the bottom panel of
Fig. 2, where it is shown to be very good for a range of values
of J�. Moreover, in the inset of Fig. 2 it is possible to notice
that the critical exponent β = 1/8 of ITF is in good agreement
with our numerical data. Such results justify the use of the
spin model to address the magnetic properties of Bose gases
in optical lattices also for not too small values of J/U .

C. Spin-spin correlation functions

While Sz is the global order parameter, we characterize the
NP and FM phases, and in particular the NP-FM transition,
also by determining the behavior of the correlation functions
around the phase transition point. We study the longitudinal
and the transverse spin-spin correlation functions Cs(i) =
〈Ŝs

j Ŝ
s
j+i〉 with s = z,x, respectively. In order to drop boundary

effects we exclude the more external sites and evaluate the
correlation functions only in the central region of the system
(in particular we take j = 15).

To have an idea of how the large-distance behavior of the
correlation functions changes along the transition, we plot in
the top panel of Fig. 3 the correlation functions for a separation
i = 50 as a function of J/U . The paramagnetic phase is
dominated by transverse spin correlations since in this regime
J� is the most important term, while in the ferromagnetic phase
the longitudinal correlations become dominant. Notice that the
magnetic transition (see Fig. 1) seems to be well described
by the crossing point between the long-range values of
Cx and Cz.
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The longitudinal correlation function across the NP-FM
transition is shown in the lower panels of Fig. 3 in the
superfluid phase (Uab/U = 1.8) (left panel) and in the MI
phase (Uab/U = 6) (right panel). The behavior of Cz changes
from an exponential decay in the paramagnetic phase to
long-range order in the FM phase showing a clear second-order
phase transition. The critical point is in good agreement with
the one obtained with Sz (Fig. 1). Notice that in the SF phase
the system polarizes more “slowly” than in the insulating case
due to strong fluctuations, which explains the larger region of
intermediate decays.

V. CONCLUSION AND PERSPECTIVES

Let us briefly comment here on the experimental realization
of the model Hamiltonian (1) with cold gases. Even if some rel-
evant ingredients are already available within the present tech-
nology, some challenging achievements are missing. The two-
species Bose-Hubbard models have been realized and their
mapping to a spin chain tested (see, e.g., [9]). Adding a static
Rabi coupling is not an issue. At the same time, in fermionic
systems, temperatures of the same order of spin exchange have
been reached [8]. In current experiments, where Rb atoms are
used, the most difficult and not yet achieved ingredient is to
have very different intraspecies and interspecies interactions
to address the ferromagnetic transition in the MI phase. A very
helpful tool in this direction is the recent possibility, explored
by Jotzu et al. [39], of creating state-dependent lattices for
essentially any atomic species. At the same time spin-selective
microwave fields could allow for the exploration of resonances
in nonstandard collision channels [40], which would open
the way towards the achievement of a large range of Uab/U

values.
In conclusion, the system we have studied, described by

Eq. (1), constitutes an unexplored system in the family of
Bose-Hubbard Hamiltonians (see, e.g., also [18,20]). It is
fundamentally different from Bose-Bose mixtures and in a
way a generalization of two-leg chains. The system shows two
quantum phase transitions: the superfluid to Mott insulator

transition, which is of the Berezinskii-Kosterlitz-Thouless
kind at fixed integer density, and a paramagnetic-nonpolarized
to ferromagnetic-polarized transition. We showed that the
latter transition changes the structure of the Mott lobes. In
the Mott regime the transition was well described in terms
of a quantum XXZ model in a transverse field. In the SF
regime, due to quantum fluctuations, strong corrections to the
mean-field coherent results are present. While we focused on
the unit filling factor case, at low filling factor, the system is
also interesting, especially considering that its experimental
realization should be feasible within current technology as
shown in [9]. Indeed, in the small J/U case both species a

and b have a fermionic (Tonks-Girardeau regime) equation
of state [41]. Therefore, one has the possibility of studying
the fate of itinerant ferromagnetism in one dimension in
analogy to the recent analysis in [42] with the inclusion
of the linear interspecies coupling J�. Another interesting
aspect to study is the dynamics of the system. The latter
has been studied in some detail for the homogeneous weakly
interacting case. In the presence of a lattice it would be
interesting, for example, to study the quenching across the
ferromagnetic transition [43–45] or how J� would modify the
domain-wall dynamics (see, e.g., [46]) or the quenching across
the ferromagnetic transition.

Note added. Recently, the Mott regime was studied in [47],
obtaining results in agreement with ours.

ACKNOWLEDGMENTS

Useful discussions with G. Ferrari, Yan-Hua Hou, and
Tommaso Roscilde are acknowledged. This work was
supported by ERC through a QGBE grant and by Provincia
Autonoma di Trento. L.B. acknowledges support from the
Cariparo Foundation (Eccellenza Grant No. 11/12) and
the CNR-INO BEC Center in Trento for CPU time. A.R.
acknowledges support from the Alexander von Humboldt
Foundation. M.A. acknowledges support from the Okinawa
Institute of Science and Technology Graduate University
during the final stages of the work.

[1] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, 1999).

[2] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[3] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M.
Rigol, Rev. Mod. Phys. 83, 1405 (2011).

[4] M. Anderlini, P. J. Lee, B. L. Brown, J. Sebby-Strabley, W. D.
Phillips, and J. V. Porto, Nature (London) 448, 452 (2007).

[5] J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, F.
Minardi, A. Kantian, and T. Giamarchi, Phys. Rev. A 85, 023623
(2012).

[6] T. Fukuhara et al., Nat. Phys. 9, 235 (2013).
[7] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M.

Greiner, Nature (London) 472, 307 (2011).
[8] D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, and T. Esslinger,

Science 340, 1307 (2013).

[9] T. Fukuhara, P. Schauss, M. Endres, S. Hild, M. Cheneau, I.
Bloch, and C. Gross, Nature (London) 502, 76 (2013).

[10] T. Zibold, E. Nicklas, C. Gross, and M. K. Oberthaler, Phys.
Rev. Lett. 105, 204101 (2010).

[11] D. T. Son and M. A. Stephanov, Phys. Rev. A 65, 063621 (2002).
[12] K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 91,

150406 (2003).
[13] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[14] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,

Phys. Rev. B 40, 546 (1989).
[15] T. D. Kuhner and H. Monien, Phys. Rev. B 58, R14741 (1998).
[16] T. D. Kühner, S. R. White, and H. Monien, Phys. Rev. B 61,

12474 (2000).
[17] P. Lecheminant and H. Nonne, Phys. Rev. B 85, 195121

(2012).
[18] E. Orignac and T. Giamarchi, Phys. Rev. B 57, 11713 (1998).

033645-5

http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1038/nature06011
http://dx.doi.org/10.1038/nature06011
http://dx.doi.org/10.1038/nature06011
http://dx.doi.org/10.1038/nature06011
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1126/science.1236362
http://dx.doi.org/10.1038/nature12541
http://dx.doi.org/10.1038/nature12541
http://dx.doi.org/10.1038/nature12541
http://dx.doi.org/10.1038/nature12541
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1103/PhysRevLett.105.204101
http://dx.doi.org/10.1103/PhysRevA.65.063621
http://dx.doi.org/10.1103/PhysRevA.65.063621
http://dx.doi.org/10.1103/PhysRevA.65.063621
http://dx.doi.org/10.1103/PhysRevA.65.063621
http://dx.doi.org/10.1103/PhysRevLett.91.150406
http://dx.doi.org/10.1103/PhysRevLett.91.150406
http://dx.doi.org/10.1103/PhysRevLett.91.150406
http://dx.doi.org/10.1103/PhysRevLett.91.150406
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.58.R14741
http://dx.doi.org/10.1103/PhysRevB.58.R14741
http://dx.doi.org/10.1103/PhysRevB.58.R14741
http://dx.doi.org/10.1103/PhysRevB.58.R14741
http://dx.doi.org/10.1103/PhysRevB.61.12474
http://dx.doi.org/10.1103/PhysRevB.61.12474
http://dx.doi.org/10.1103/PhysRevB.61.12474
http://dx.doi.org/10.1103/PhysRevB.61.12474
http://dx.doi.org/10.1103/PhysRevB.85.195121
http://dx.doi.org/10.1103/PhysRevB.85.195121
http://dx.doi.org/10.1103/PhysRevB.85.195121
http://dx.doi.org/10.1103/PhysRevB.85.195121
http://dx.doi.org/10.1103/PhysRevB.57.11713
http://dx.doi.org/10.1103/PhysRevB.57.11713
http://dx.doi.org/10.1103/PhysRevB.57.11713
http://dx.doi.org/10.1103/PhysRevB.57.11713


L. BARBIERO, M. ABAD, AND A. RECATI PHYSICAL REVIEW A 93, 033645 (2016)

[19] I. Danshita, J. E. Williams, C. A. R. Sá de Melo, and C. W.
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