
16 July 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-design Quantization Methodology / Fasfous, Nael; Vemparala, Manoj
Rohit; Frickenstein, Alexander; Valpreda, Emanuele; Salihu, Driton; Doan, Nguyen Anh Vu; Unger, Christian; Nagaraja,
Naveen Shankar; Martina, Maurizio; Stechele, Walter. - In: ACM TRANSACTIONS ON EMBEDDED COMPUTING
SYSTEMS. - ISSN 1539-9087. - ELETTRONICO. - 20:5s(2021), pp. 1-25. [10.1145/3476997]

Original

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-design Quantization Methodology

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3476997

Terms of use:
openAccess

Publisher copyright

© ACM 2021. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS,
http://dx.doi.org/10.1145/3476997.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2927387 since: 2021-10-04T08:34:59Z

ACM

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-design
Quantization Methodology

NAEL FASFOUS∗, Technical University of Munich, Germany
MANOJ ROHIT VEMPARALA∗ and ALEXANDER FRICKENSTEIN∗, BMW Autonomous Driving,
Germany
EMANUELE VALPREDA∗, Politecnico di Torino, Italy
DRITON SALIHU and NGUYEN ANH VU DOAN, Technical University of Munich, Germany
CHRISTIAN UNGER and NAVEEN SHANKAR NAGARAJA, BMWAutonomous Driving, Germany
MAURIZIO MARTINA, Politecnico di Torino, Italy
WALTER STECHELE, Technical University of Munich, Germany

Model compression through quantization is commonly applied to convolutional neural networks (CNNs)
deployed on compute and memory-constrained embedded platforms. Different layers of the CNN can have
varying degrees of numerical precision for both weights and activations, resulting in a large search space.
Together with the hardware (HW) design space, the challenge of finding the globally optimum HW-CNN
combination for a given application becomes daunting. To this end, we propose HW-FlowQ, a systematic
approach that enables the co-design of the target hardware platform and the compressed CNN model through
quantization. The search space is viewed at three levels of abstraction, allowing for an iterative approach for
narrowing down the solution space before reaching a high-fidelity CNN hardware modeling tool, capable of
capturing the effects of mixed-precision quantization strategies on different hardware architectures (processing
unit counts, memory levels, cost models, dataflows) and two types of computation engines (bit-parallel
vectorized, bit-serial). To combine both worlds, a multi-objective non-dominated sorting genetic algorithm
(NSGA-II) is leveraged to establish a Pareto-optimal set of quantization strategies for the target HW-metrics at
each abstraction level. HW-FlowQ detects optima in a discrete search space and maximizes the task-related
accuracy of the underlying CNN while minimizing hardware-related costs. The Pareto-front approach keeps
the design space open to a range of non-dominated solutions before refining the design to a more detailed
level of abstraction. With equivalent prediction accuracy, we improve the energy and latency by 20% and 45%
respectively for ResNet56 compared to existing mixed-precision search methods.

CCS Concepts: • Computing methodologies→Modeling and simulation; • Computer systems orga-
nization → Architectures; Neural networks.

∗Contributed equally to this research.

Authors’ addresses: Nael Fasfous, nael.fasfous@tum.de, Technical University of Munich, Germany; Manoj Rohit Vemparala,
manoj-rohit.vemparala@bmw.de; Alexander Frickenstein, alexander.frickenstein@bmw.de, BMW Autonomous Driving,
Germany; Emanuele Valpreda, emanuele.valpreda@polito.it, Politecnico di Torino, Italy; Driton Salihu, driton.salihu@tum.de;
Nguyen Anh Vu Doan, anhvu.doan@tum.de, Technical University of Munich, Germany; Christian Unger, christian.unger@
bmw.de; Naveen Shankar Nagaraja, naveenshankar.nagaraja@bmw.de, BMW Autonomous Driving, Germany; Maurizio
Martina, maurizio.martina@polito.it, Politecnico di Torino, Italy; Walter Stechele, walter.stechele@tum.de, Technical
University of Munich, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/10-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 N. Fasfous, M.R. Vemparala, A. Frickenstein, et al.

Additional Key Words and Phrases: Convolutional Neural Networks, Multi-Objective Optimization, Hardware
Modeling, Genetic Algorithms, Quantization.

ACM Reference Format:
Nael Fasfous, Manoj Rohit Vemparala, Alexander Frickenstein, Emanuele Valpreda, Driton Salihu, Nguyen
Anh Vu Doan, Christian Unger, Naveen Shankar Nagaraja, Maurizio Martina, and Walter Stechele. 2021.
HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-design Quantization Methodology. 1, 1 (October 2021),
24 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Convolutional neural networks (CNNs) have become the state-of-the-art for many computer vision
tasks, including image classification, object localization and semantic segmentation [4, 13, 29].
Along with their rise in popularity, their growth in computational complexity and memory demand
has made the efficient deployment of CNNs on edge devices an increasingly challenging task. This
led to a substantial effort in research to focus on the compression of CNNs.

A commonly used compression technique is quantization. The multitude of arithmetic operations
typically required for modern CNNs can be executed on simplified hardware (HW) components,
bringing benefits in terms of area, power and/or latency. Another advantage comes from lower
bitwidth operands efficiently exploiting the data movement bandwidth available on the HW. How-
ever, the technique is not without its challenges. Low bitwidth representations have a lower
information capacity, losing the fine details captured by gradient propagation at training time.
Finding a suitable quantization scheme that achieves the target benefits without degrading task-
related accuracy becomes more challenging at lower bitwidths. Moreover, not all layers require
equal numerical precision [32], rendering the search space even larger.
Evaluating a quantization strategy based on metrics that are loosely correlated to HW benefits

can lead to sub-optimal deployment setups. This has influenced recent works to optimize neural
networks with hardware-in-the-loop (HIL) approaches [14, 32]. HIL-based optimization techniques
necessitate the fully-functional and fabricated HW to be readily available when optimizing the
CNN, leaving little to no room for adjusting the target execution platform. Look-up table (LUT)
approaches have the same impediment, as filling up the table would require synthesized HW
measurements [33].
HW-FlowQ bridges the gap between HW design and CNN quantization. In many real-time,

safety-critical scenarios (e.g. robotics, autonomous driving), energy consumption and latency goals
with respect to set resource constraints can only be met through hand-in-hand HW-CNN co-design.
For such challenges, three large search spaces for the (1) HW-design, (2) the CNN structure and the
(3) layer-wise quantization strategy need to be considered. Traversing all three in an unstructured
manner would likely lead to sub-optimal solutions.

In a top-down approach, the tripartite design space is narrowed down iteratively with the help
of an extensive HW-modeling tool and a genetic algorithm. HW-FlowQ provides the flexibility of
studying the impact of mixed-precision quantization and HW-specific design parameters, without
having to finalize the hardware platform in the early phases of development.

The contributions of this work can be summarized as follows:
• A HW-model-in-the-loop quantization methodology, allowing design space exploration of
CNN quantization strategies and hardware platforms at different design phases.

• Exploring single and multi-objective genetic algorithms (SOGA, MOGA) for finding Pareto-
optimal quantization strategies with respect to the underlying HW platform.

• Modeling vectorized and bit-serial accelerators, with varying resources and dataflows for
mixed-precision quantization, enabling HW-design exploration during CNN optimization.

, Vol. 1, No. 1, Article . Publication date: October 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-designQuantization Methodology 3

2 RELATEDWORK
2.1 Quantization Methods
Many works have focused on improving the training scheme for quantized neural networks [2, 6,
17, 18, 36]. DoReFa-Net [36] adapts the straight-through estimator (STE) [2] and bounds the magni-
tude of latent weights and activation between [0, 1]. These latent datatypes are deterministically
quantized. QNN [17] additionally quantizes the weights in the first and last layers of the CNN.
The work in PACT [6] improves the training procedure of QNNs by learning the optimal clipping
level for the activations of each layer at training time. The dynamic clipping function allows larger
representational capability than DoReFa-Net, thereby increasing the prediction accuracy. The
aforementioned works explore the effect of quantization on the accuracy of the model and the
achieved compression rate. Claims on the degree of improvement in energy efficiency or latency are
difficult to make, as these complex metrics highly depend on the underlying HW details (memory
hierarchy, interconnect, technology, etc.).

2.2 Quantization & Search Schemes
Dong et al. [10] determine the bitwidths of activations and weights based on the Hessian spectrum
obtained for individual layers. The quantization criterion is based on model size (Params), which
loosely correlates to final energy or latency for an inference execution. Wu et al. [34] propose a
framework that learns quantization levels for each layer during the training period. To encourage
lower-precision weights and activations, a loss term is associated with the quantization objective,
capturing the benefits in operation count (OPs) and model size (Params), but not necessarily the
effectiveness on HW-level metrics such as energy and latency. The authors of HAQ [32] propose a
reinforcement learning-based exploration scheme to determine HW-aware layer-wise quantization
levels for weights and activations in a CNN model. The reward function is evaluated after executing
the inference of the quantized CNN on an FPGA design. In APQ [33] a joint model architecture-
pruning-quantization search is proposed. Pre-trained and pruned sub-networks are extracted from
a once-for-all network. Then, mixed-precision quantization is applied and a predictor estimates the
final accuracy. An energy/latency LUT is used to provide the HW feedback for a target accelerator
during the search. Therefore, a set of pre-sampled data points is required from a readily available
target hardware.

2.3 Hardware Modeling
Timeloop [27] is a HW-modeling tool that exploits CNN execution determinism to offer accurate
estimates for a given hardware description. The tool provides the flexibility of changing the cost
of hardware operations (e.g. read, write, multiply-accumulate, etc.) and the memory hierarchy,
among other design parameters. Interstellar [35] proposes formal dataflow definitions. Different to
Timeloop, Interstellar uses the Halide programming language to represent the memory hierarchy
and data movement constraints. Tetris [11] and Tangram [12] make use of a dataflow scheduler for
DNN workloads on spatial accelerators to test the potential of other manipulations possible for
their memory hierarchies. The mentioned works have proven the effectiveness of HW-modeling of
DNN workloads. Nevertheless, other aspects have not been explored as thoroughly, such as adding
the effects of layer-wise mixed-precision quantization on the resulting dataflow or supporting
mixed precision computation units. There is a need to extensively integrate HW-models with
CNN optimization algorithms to aid the exploration of mixed-precision CNNs with respect to the
HW-model under consideration, particularly when multiple HW-architectures are being considered
as potential fabrication candidates.

, Vol. 1, No. 1, Article . Publication date: October 2021.

4 N. Fasfous, M.R. Vemparala, A. Frickenstein, et al.

2.4 Hardware-Software Co-Design
Jiang et al. [19] propose a HW-SW co-exploration framework, which includes the HW’s performance
in the reward function of an RL-agent and iteratively tunes both the CNN and HW architectures.
Fine hardware-level details, such as scheduling schemes and quantized execution, are not explored,
as the optimization loop targets optimally partitioning the CNN workload over a pool of FPGAs.
The authors of [1] propose a HW-CNN co-design framework based on neural architecture search
(NAS). Fine-level details such as dataflow mapping are not studied, nor the effect of layer-wise
quantization on bit-serial or vectorized hardware. The authors of ALOHA [24] propose a multi-
phase genetic algorithm-based framework for HW-aware CNN design, which takes into account
the trade-off between model compression and adversarial robustness. Compression with mixed-
precision or layer-wise quantization is not explored, nor the direct interactions between layer-wise
quantization and different hardware designs and processing units. Although ALOHA considers
the target hardware in early phases of the CNN design, the hardware itself is not actively being
co-designed in the flow. FINN-R [3] is an accelerator generator for quantized CNN inference on
Xilinx FPGAs. Two types of architectures are supported: a pipelined dataflow architecture with
appropriately sized MAC units for each layer to exploit layer-wise quantization, and a single multi-
layer array that is reused across all layers. Candidate architectures are evaluated using an analytical
model for resource usage and throughput. The framework is HW-design focused, and does not
explore the quantization and training search space of the CNN. NHAS [22] aims to find an optimal
quantized CNN using an evolutionary algorithm. An efficient HW-architectural dimensioning for
compute array and on-chip memory is searched to accelerate a given set of benchmark workloads.
The HW-evaluation follows a LUT approach. Although NHAS promotes the idea of joint HW-CNN
co-design, the approach can be enhanced by understanding the influence of each search decision
against various aspects, such as the quantization method, mixed precision accelerator choice, and
scheduling schemes, with the help of HW models during the optimization.

3 HW-FLOWQ
HW-FlowQ is a HW-CNN co-design methodology which facilitates a top-down design approach,
iteratively going through different levels of abstraction and performing some iterations of ex-
ploration, before fixing some parameters and refining the design to one abstraction level lower.
Moving away from hardware-in-the-loop and LUT approaches in existing works, we propose
model-in-the-loop design steps.
HW-FlowQ is based on an interaction between the individuals 𝜌 of population P, with the

hardware model ` in the context of a genetic search algorithm G (Fig. 1). In detail, the genotype
of an individual 𝜌 encodes the layer-wise quantization levels for weights and activations (𝑏𝑊 , 𝑏𝐴)
of the CNN. The individual’s fitness F is measured through the HW-model estimations 𝜑 and
CNN accuracy term 𝜓 , computed w.r.t. the images and labels of a validation set. When G is a
single-objective genetic algorithm (SOGA), the objectives 𝜑 and𝜓 are combined into a single cost
function for fitness evaluation (Sec. 3.2). G can also take the form of a multi-objective optimization
genetic algorithm (MOGA), such as the non-dominated sorting genetic algorithm (NSGA-II).

3.1 HW-Model Abstraction Levels
To enable the design steps of HW-SW co-design, different representations of the target HW
platform need to be accessible based on the design phase. Starting from an abstracted, high-level
representation makes it possible to coarsely search for HW-CNN combinations that may suit the
application at hand. After some high-level parameters are fixed, a step of refinement can take place.
This brings the exploration to a finer level of detail, but within the scope of the fixed parameters

, Vol. 1, No. 1, Article . Publication date: October 2021.

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-designQuantization Methodology 5

Genetic Algorithm :

HW-Models :

Al-1

Pred Y
~...

Convl

ci

Samples(I/Y)

wi

hi

Al cowo

ho

=

...

...

Gen (n):

Layer l
...

Population

16-bit
8-bit
4-bit
2-bit

Population

Individuals :

La
ye

rs
:

bA
l-1 =4-bit bW

l =16-bit bA
l =2-bit

Gen (n+1):

Selection: (i.e NSGA-II, SGA)

e.g.:

Task Metrics
• Accuracy

Wl

co

ci

kw

kh

Cr
os

so
ve

r

M
ut

at
io

n

• Multi abstraction level (Coarse,Mid, Fine) • Layer-wise scheduling scheme • Dynamic exploration

Banks: ifmap weights

Aligned
MemCpy

ofmap

3x aligned MemCpy
2xMemCpy

Unaligned
MemCpy

On-Chip: Buffer/SRAM

Coarse

Mid

Fine

• Unrolling
• Folding
• Interleaving

• Tiling
• Reordering

HW Estimates
• NormEnergy
• Latency
• Fractional Ops/Byte
• ...

75% Utilization

Inference
Simulation

Off-Chip: e.g. DRAM

Reuse!

SIMD
Vector Engine

Reuse!

...

...

Bitserial
Engine

Register

Lanes

bmax bmaxbW

bA

bmax

bW

bA

bmax

Register

Fig. 1. Overview of the HW-FlowQ methodology. Population P is evaluated on task-related accuracy𝜓 and
HW-metrics 𝜑 . The three proposed HW-modeling abstraction levels - Coarse,Mid and Fine, enable the genetic
algorithm G to consider the HW-metrics of the CNN relative to the current design phase.

of the previous abstraction level (Fig. 2). More implementation-specific aspects can be considered
after each refinement iteration. At any stage, if the exploration fails to find any suitable solutions,
an abstraction step can take the design back to a coarser level and re-evaluate the higher-level
parameters which were set. This type of design flow is commonly used in VLSI design, where
complex, large design spaces must be explored at different levels of abstraction, from system-level
down to transistor logic [25, 31].

Three levels of abstraction are offered in HW-FlowQ, namely Coarse, Mid and Fine. Starting with
Coarse-level optimization, the framework can be used to test the effect of quantization on differently
shaped/sized CNNs, given as an input. The total computations required and the task-related accu-
racy can be evaluated. The CNN parameters at this level heavily influence the start of the co-design

Global Optimum Local Optima

CNNCNN

Coarse

Fine

Mid

R
e
fi

n
e
m

e
n

t/
O

p
ti

m
iz

a
ti

o
n

A
b

s
tr

a
ct

io
n

/R
e
d

e
s
ig

n

HW-FlowQ Design HIL-based Optimization

Compile/Synthesize

Fig. 2. Iterative refinement increases the likelihood of finding the global optimum. Flow inspired by [31].

, Vol. 1, No. 1, Article . Publication date: October 2021.

6 N. Fasfous, M.R. Vemparala, A. Frickenstein, et al.

Coarse Mid Fine
• Fractional OPs
• Mem. Footprint
• Quant. Accuracy

• Baseline CNN
• Quant. Support

• Fractionalize Ops
• Compression

Opt.

• Mem. Hierarchy
• Mem. Size/Partition
• Off-chip Bandwidth

• Compute Arch.
• PE Specification
• Supported Dataflows

• Loop Tiling
• Loop Reordering

Opt.

• Loop Unrolling
• Interleaving
• Folding/Mapping

Opt.

• CTC ratio
• Off-chip access
• Tile volumes

• Total energy
• Per-datatype energy
• Total latency
• HW-utilization
• Detailed execution

schedule

Mid Est. 𝜑 Fine Est. 𝜑Coarse Est. 𝜑

ℱ𝜌(𝜑, 𝜓)ℱ𝜌(𝜑, 𝜓)ℱ𝜌(𝜑, 𝜓)

Phase 1 Phase 2 Phase 3

Abstraction

Refinement

Fig. 3. Input, output and optimization details of the HW-model ` abstraction levels used at each phase. After
refinement, the inputs of the preceding phase are inherited to the next.

process, as they set the upper-bound of task-related accuracies possible, as well as the range of
fractional operations and on-chip memory the HW must accommodate. After quantization, if the
target compression and/or task-related accuracy cannot be met, support for lower quantization
levels needs to be considered and/or new CNN architectures need to be provided. The quantization
training scheme can also be decided at this stage (e.g. DoReFa, PACT, QNN). It is important to
note that HW-FlowQ does not constitute a neural architecture search (NAS) methodology, but is
rather complementary to such techniques. As an example, a NAS framework can provide HW-
FlowQ with high-accuracy CNN architectures as inputs at the Coarse-level. Then, HW-FlowQ
can quantize them optimally for target HW-designs, as well as facilitate designing customized
HW for the proposed CNNs. Once the CNN(s) meets the high-level requirements, the Mid-level
evaluates the feasibility of different memory hierarchies to buffer and move data between different
stages before reaching the on-chip computation units. Parameters such as data transfer volumes,
computation-to-communication ratio (CTC) and off-chip memory accesses can be searched. This
information can help in deciding which off-chip to on-chip communication infrastructure and
bandwidth is suitable to meet the application constraints. The CNN can further be quantized with
this HW-model-in-the-loop, in order to close the gap between the HW-constraints and computa-
tion/communication requirements, while maintaining the task-accuracy goals. Performing one
more iteration of refinement takes the design to the Fine-level. At this stage, the HW computation
architecture can be defined. Precise information on the supported quantization levels, number
of computation units available, register file sizes, supported data movements, and more, can be
provided. HW-FlowQ provides high-fidelity estimates of the benefits that can be achieved on the
prospective HW-design, for a particular quantization strategy (Fig. 5). Details on the Fine-level
modeling are provided in the next sections.
Considering all design parameters holistically would imply searching all possible quantiza-

tion strategies for all candidate CNNs (Coarse), on all possible on-chip/off-chip communication
and on-chip memory sizes (Mid) for all possible dataflows, compute array sizes, multiplier types
and register dimensions (Fine). This would ultimately waste an immense amount of GPU hours,
searching for solutions which could have been eliminated at the Coarse-level already. Additionally,
with so many search parameters, the convergence of the search algorithm becomes more difficult
to guarantee, potentially leading to sub-optimal results. To address this challenge, the step-wise
optimization in HW-FlowQ’s Coarse, Mid and Fine levels along with the Pareto-front-based quanti-
zation approach (NSGA-II) promotes a design-flow which leads to improved synergies in the final
HW-CNN implementation and a more practical approach to searching the three large search spaces
of (1) CNN structure, (2) quantization strategy, and (3) HW design.

, Vol. 1, No. 1, Article . Publication date: October 2021.

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-designQuantization Methodology 7

Fig. 3 summarizes the inputs required at each level, the optimization that the HW-Model `
can perform internally at each phase and the output estimates which can be used to evaluate the
HW-related fitness F𝜌 of different individuals in population P. Traversal between the levels is
indicated by refinement and abstraction arrows. The decision on whether the search takes a step of
refinement can be inferred from a list of application constraints. For example, a maximum number
of fractional operations needs to be met, before a transition between Coarse to Mid can take place.
Similarly, a desired off-chip communication constraint can be set, before the design transitions
between Mid to Fine. If a certain constraint cannot be met, the framework must reconsider the
inputs of the current level (e.g. at Coarse reconsider baseline CNN architecture, at Mid reconsider
memory hierarchy, etc.). If changing the inputs of the level does not meet the targets, the inputs of
the level above are reconsidered (abstraction). Through this progressive filtering of design decisions
at each level, the output of the overall framework meets the desired application targets at the end
of the flow.

3.2 Genetic Algorithm
Finding the correct layer-wise quantization strategy for both weights and activations w.r.t. a target
HW-model is a complex problem which would benefit from gradient-free optimization due to the
discrete nature of the solution space. The search space for the quantization strategy alone consists
of |𝑞 |2𝐿 solutions, where 𝑞 is the set of possible quantization levels and 𝐿 is the number of layers.
Quantizing some layers leads to larger drops in accuracy than others, and different accuracy drops
can take place at different quantization levels for the same layer. Moreover, quantization strategies
change the mapping and scheduling space of the accelerator. For example, a quantization strategy
might make new schedules possible, which lead to sudden drops in latency and energy, as soon as
a particular computation tile fits the on-chip memory after quantization. Therefore, we leverage
genetic algorithms (GAs) to tackle our quantization strategy search problem, as they are known to
be resilient to noisy search spaces, quick to prototype, and do not need smooth, continuous search
spaces to perform well.

Explicit, bijective encoding is used to create the genomes of potential solutions as shown in Fig. 4.
A single genome represents a potential CNN quantization strategy and has as many genetic loci
as there are layers in the CNN. Each genetic locus encapsulates a tuple of integer bitwidth values
for weights and activations (𝑏𝑊 , 𝑏𝐴) at the corresponding layer. The set of possible alleles at each
genetic locus is defined by the bitwidths supported by the HW-model. Bitwidth-to-layer encoding
can be captured intuitively in sequential genomes, which leads to a sensible use of GA operators,
such as single-point crossover (example in Fig. 4). Neighbouring CNN layers have higher feature
correlation than distant layers. Therefore, quantized layer relationships encoded in neighboring
genetic loci can survive in a population and be reused through single-point crossover to create
more efficient offspring. The more fit the parents become throughout the generations, the better
genetic localities they will have to create better individuals. Mutation further allows offspring to
escape local minima of their parents.
Referring back to Fig. 1, on the top-left an initial population P0 is randomly generated at the

start of the genetic algorithm G, with each individual encoding the quantization levels of each layer
of the CNN in its genes. The individuals of P0 are briefly fine-tuned and evaluated based on their
task accuracy𝜓 on a validation set (Fig. 1 top-right), as well as HW-estimates 𝜑 of the HW-model
through inference simulation (Fig. 1 bottom-right). Based on the GA configuration,𝜓 and 𝜑 define
the fitness of each individual 𝜌0 ∈ P0. As depicted in Fig. 1,𝜓 and 𝜑 are fed back to a selection phase
in G, to constrain the cardinality of the population to |P | =𝑚. Individuals survive this phase based
on their fitness. Survivors are allowed to mate and produce offspring in P1, which inherit alleles
from two survivor parents through crossover. A round of mutation takes place, altering alleles of

, Vol. 1, No. 1, Article . Publication date: October 2021.

8 N. Fasfous, M.R. Vemparala, A. Frickenstein, et al.

(𝑏𝑊
𝑙 , 𝑏𝐴

𝑙)

𝑊

𝐴

Parent CNN 𝜌1

Good locality of

Bitwidth-to-Layer Genes
Genome Encoding

Point Crossover (𝑏𝑊
𝑙 , 𝑏𝐴

𝑙)

𝑊

𝐴

Parent CNN 𝜌2

Good localityGenome Encoding

Point Crossover

Offspring CNN

Mate: Good localities captured

Mutate

Mutant Offspring CNN 𝜌3

HW-Supported

Bitwidths (Alleles)
e.g. :

16-bit

8-bit

4-bit

2-bit
Genome 𝜌1 Genome 𝜌2

Genome 𝜌3

Locality from Parent 𝜌1

Locality from Parent 𝜌2 Escape local minimas of Parents (𝜌1, 𝜌2)

Fig. 4. Layer-wise genome encoding allows for intuitive use of genetic operators (crossover, mutation) to
capture and maintain good localities of bitwidth-to-layer encodings from two fit parents into their offspring.

the offspring in P1. The population goes through the same phases of fitness evaluation, selection
and crossover for 𝑛 subsequent generations.

3.2.1 Fitness Evaluation. We explore both a SOGA and MOGA approach in the form of the non-
dominated sorting genetic algorithm (NSGA-II). Both GAs share the same evolutionary flow de-
scribed earlier, but are different in their observation of fitness. By definition, SOGA maximizes
a single reward. Since our problem inherently involves multiple objectives (𝜓 and 𝜑), a balanced
reward function must be defined to combine them into a single fitness value F to apply SOGA.

F𝜌 =

{ (
1 − 𝜓 ∗−𝜓

𝑡
) · log(𝜑

∗

𝜑
), if SOGA

𝜓,𝜑 otherwise NSGA-II
(1)

The fitness definition of SOGA in Eq. 1 is inspired by the cost function proposed in [16].𝜓 ∗ and
𝜑∗ are the task-related accuracy and the HW-estimates of the uncompressed CNN respectively.
The function balances the improvements in HW efficiency log(𝜑∗/𝜑) while trying to maintain
task-related accuracy through the term (1− (𝜓 ∗ −𝜓)/𝑡). 𝑡 sets a threshold on accuracy degradation,
where a difference between𝜓 ∗ and𝜓 equal to or greater than 𝑡 turns the accuracy term negative
and renders the fitness F𝜌 of individual 𝜌 unacceptable.
In the case of NSGA-II optimization, the algorithm evaluates the Pareto optimality of each

individual w.r.t. the population P. This relieves the burden of crafting a single fitness function,
which may not always guarantee a fair balance between multiple objectives. Additionally, having
an array of potential solutions in a Pareto-front is a better approach for design space exploration,
compared to having a single solution suggested by the search algorithm. Design space exploration
is a fundamental part of HW-SW co-design making NSGA-II an attractive alternative to SOGA.
Considering the accuracy-related fitness term𝜓 , the quantization strategies of a population P

need to be evaluated in a reasonable amount of time, to avoid a bottleneck in the search process. To
tackle this challenge, we circumvent the need to fully train each quantized network 𝜌 in P. Instead,
we instantiate the CNN model, load it with pre-trained floating-point weights, then quantize it
according to the genome of 𝜌 and briefly fine-tune it to recover from the accuracy loss introduced
by the quantization. This process can also be parallelized, as the individuals within a population
can be fine-tuned at the same time, on a single or multiple GPUs. We study the learning behavior
of 2-bit, 4-bit and 6-bit networks, to see how early their training curves can be differentiated. This
gives us an indication of how well the accuracy will be at the end of a full-training cycle. The
accuracy fitness evaluation epochs in Sec. 6 were chosen accordingly. The GA essentially evaluates

, Vol. 1, No. 1, Article . Publication date: October 2021.

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-designQuantization Methodology 9

the learning capacity of the individual, not its final fully-trained accuracy. At the end of the search,
when a solution is chosen, we train it from scratch, without loading any pre-trained weights. It is
worth mentioning that fast accuracy predictors, such as the ones proposed in [8, 33], could also be
used for the purpose of fast accuracy-related fitness evaluation in HW-FlowQ’s GA.

3.2.2 Genetic Operators. The mutation, crossover and selection operations are pivotal to the GA’s
efficacy. We apply single-point crossover, which intuitively has a high probability of capturing
attractive bitwidth-to-layer encodings of two fit individuals and maintains inter-layer dependencies
across segments of the CNN, as shown in Fig. 4. With mutation probability 𝑝𝑚𝑢𝑡 a single allele
at a randomly selected genetic locus is replaced by another from the set of possible alleles. All
individuals conform with the CNN and the quantization levels supported on the HW. Tournament
selection is used for SOGA, where𝑚 tournaments take place to decide all the survivors. On the
other hand, NSGA-II selection is based on the crowded-comparison-operator [9].

3.3 Modeling Mixed Precision Inference
In this work, we focus on modeling spatial architectures similar to [5, 23, 27, 35], with an on-chip
buffer and a compute core with an array of PEs, as depicted in Fig. 1. The energy cost of data
accesses depends on the technology and the size of the memory. HW-FlowQ supports independent
read-write costs for off-chip communication, memory blocks, as well as the register files (RFs)
of the PEs on the compute blocks. For our cost models, we adhere to the approach proposed
in [5, 15, 27, 35]. A normalized energy cost is set for each operation that can take place on the
architecture. The HW-model attempts to map the computations of a particular CNN workload
efficiently onto the HW-model. For each schedule, the HW-model is able to extract the number of
actions (reads, writes, MACs) required at each level of the accelerator. The number of actions is
multiplied by the cost of each action on each type of memory/compute unit. The exact normalized
energy costs we choose in this work align with the Timeloop [27] framework and the Eyeriss
model in [5], as shown in Tab. 1. HW-FlowQ also supports manually setting costs for each action,
depending on different fabrication technologies.

3.3.1 Scheduler and Mapper: Modern compute architectures allocate a considerable amount of
their power budget for memory accesses and data movement [15]. Moreover, redundant data
movement can have a significant impact on latency. This has made efficient scheduling of CNNs
on spatial hardware an active field of research [5, 11, 12, 23, 27, 35]. Eq. 2 represents the operation
required for computing a single output pixel of the output activation tensor 𝐴𝑙 from the two input
tensors 𝐴𝑙−1 and𝑊 𝑙 for input activations and weights respectively. The bias addition and batch
dimension are not shown for simplicity. As depicted in Fig. 1, 𝐶𝑖 and 𝐶𝑜 represent the input and
output channel dimensions, 𝐻𝑖 and𝑊𝑖 the spatial height and width of the input feature maps, 𝐻𝑜
and𝑊𝑜 equivalently for output feature maps, and 𝐾ℎ and 𝐾𝑤 are the height and width of the 2-D
kernels. Lastly, 𝑠 represents the stride of the kernel over the input feature map for the convolution
operation. The equation can also be interpreted as a nested loop, with the tensor and summation
indices and limits representing the for-loops’ iterators and loop bounds. Consequently, similar to
other for-loop algorithms, CNNs inherently present many data reuse opportunities.

𝐴𝑙 [𝑐𝑜] [𝑤𝑜] [ℎ𝑜] =
𝐶𝑖∑
𝑐𝑖

𝐾ℎ∑
𝑘ℎ

𝐾𝑤∑
𝑘𝑤

𝐴𝑙−1 [𝑐𝑖] [𝑤𝑜 · 𝑠 + 𝑘𝑤] [ℎ𝑜 · 𝑠 + 𝑘ℎ] ·𝑊 𝑙 [𝑐𝑜] [𝑐𝑖] [𝑘𝑤] [𝑘ℎ] (2)

Three main techniques are commonly used to optimize a nested loop’s execution on hardware,
namely loop tiling, reordering and unrolling. HW-FlowQ’s scheduler and mapper components handle
loop optimization techniques largely in a similar manner to the popular frameworks Interstellar [35]

, Vol. 1, No. 1, Article . Publication date: October 2021.

10 N. Fasfous, M.R. Vemparala, A. Frickenstein, et al.

and Timeloop [27]. For brevity, we will only discuss the added considerations to capture the effect
of mixed-precision quantization, and refer the interested reader to [35] and [27] for further reading
on CNN inference modeling on spatial architectures.

Quantization shrinks the bitwidth of datatypes allowing larger computation tiles to fit in a given
lower-level memory. This increases the number of possible loop tiling and reordering schedules.
Loop optimization through unrolling is handled by HW-FlowQ’s mapper component and is de-
pendent on both the dataflow supported by the accelerator and the mixed-precision computation
technique. It is important to note that when unrolling fractionalized (quantized) computations on
a vectorized or multi-lane bit-serial PE-array, a single PE may handle more spatially distributed
computations, as long as its register files fit the operands/partial sums needed/generated by said
computations. This can be exploited by HW-FlowQ’s mapper to find more efficient schedules which
fit on a smaller physical computation array and require less PE-to-PE data movement.
Depending on the defined HW-model, the scalar or single-instruction multiple-data (SIMD)

vector-engines in the PEs can be word-aligned, making some quantization degrees less attractive
than others. An example of sub-optimal SIMD-register usage is marked with a red-cross in Fig. 1
(middle-right). HW-FlowQ can also model bit-serial compute units, similar to [30], in which case, a
relative improvement for any quantization level for weights and/or activations can be achieved on
the compute block. The word alignment on the compute block can be set differently to that of the
outer memory blocks and the off-chip memory interconnect.

In the convolution operation, partial sums (psum) can grow after each accumulation to amaximum
of 2𝑏 +𝐶𝑖 , where 𝑏 is the bitwidth of the operands. The HW-model considers instances of the largest
possible psum, according to the maximum bitwidth 𝑏𝑚𝑎𝑥 supported by the accelerator. The increase
in vector throughput due to quantization of𝑊 𝑙 and 𝐴𝑙−1 is constrained to the maximum amount of
psum RF memory available on the PE. After complete accumulation, a speed-up can be achieved in
writing back the output pixels at the quantization level of the input of the following layer 𝑏𝑙

𝐴
of 𝐴𝑙 .

3.3.2 Vectorized and Bit-Serial Computation: To estimate the benefits in the computation of low-
bitwidth and mixed-precision CNNs, vectorized and bit-serial compute units are modeled. The
choice of the computation unit has a direct influence on the schedule, as it affects how many
computation cycles are required for a particular operation and how many unique computations
can be assigned to the same HW at different bitwidths.

For vectorized accelerators, we model an aligned SIMD-MAC unit which has a maximum bitwidth
of 𝑏𝑚𝑎𝑥 for both weights and activations. A speed-up through data-level parallelism at the PE-level
can happen at 𝑉speedup integer steps as shown in Eq. 3.

𝑉speedup =

⌊
𝑏𝑚𝑎𝑥

max(𝑏𝑊 , 𝑏𝐴)

⌋
(3)

𝑉speedup is the vectorization degree aligned with the wider operand between 𝑏𝑊 and 𝑏𝐴. This not
only allows for more parallel computations in the same cycle, but also reduces the memory access
cost at the register file level, which would now access 𝑉speedup data that fit into the SIMD-register
with bitwidth 𝑏𝑚𝑎𝑥 in a single read operation. The limitation of vectorized computation units is that
they can only perform complete operations, and therefore cannot always fully exploit any arbitrary
bitwidth. For example, a 16-bit vector unit can perform 2 complete 8-bit computations, however, if
the operands were 6-bits each, a non-integer speed-up of ∼ 2.67 would not be possible. Another
limitation is that variable bitwidths of 𝑏𝑊 ≠ 𝑏𝐴 cannot be exploited for higher parallelism even if
both are aligned, due to the max(𝑏𝐴, 𝑏𝑊) term in Eq. 3. The wider of the two operands dictates the
number of parallel computations which fit in the vector engine.

, Vol. 1, No. 1, Article . Publication date: October 2021.

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-designQuantization Methodology 11

CONV1 CONV2 CONV3 CONV4 CONV50
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2
2.4

·1010

Ve
ct
.(
2-
bi
t)

Ve
ct
.(
4-
bi
t)

Ve
ct
.(
8-
bi
t)

Ve
ct
.(
16
-b
it)

Ti
m
el
oo

p
[2
7]

Ey
er
is
s[
5]

AlexNet Workload

N
or
m
al
iz
ed

En
er
gy

[-]

DRAM SRAM Array RF MAC

106

107

108

109

La
te
nc
y
[C
yc
le
s]

Timeloop Latency 16-bit Latency
8-bit Latency 4-bit Latency
2-bit Latency

08
09

— 11
13

— 14
15

— 17
18

— 19
20

— 21
28

— 29
30

— 31
32

— 34
48

— 52
53

— 54
55

— 56
58

— 59
70

— 71
76

— 93
94

— 95
96

— 97
98

— 99
10
0
—0

0.
5

1
1.
5

DeepBench Workload

N
or
m
al
iz
ed

En
er
gy

[-]

HW-FQ 16-bit Timeloop 16-bit HW-FQ 8-bit
HW-FQ 6-bit HW-FQ 4-bit) HW-FQ 2-bit

08
09

— 11
13

— 14
15

— 17
18

— 19
20

— 21
28

— 29
30

— 31
32

— 34
48

— 52
53

— 54
55

— 56
58

— 59
70

— 71
76

— 93
94

— 95
96

— 97
98

— 99
10
0
—0

0.
5

1
1.
5

DeepBench Workload

La
te
nc
y
[C
yc
le
s]

HW-FQ 16-bit Timeloop 16-bit HW-FQ 8-bit
HW-FQ 6-bit HW-FQ 4-bit) HW-FQ 2-bit

CONV1 CONV2 CONV3 CONV4 CONV50
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

2.2
2.4
2.6
2.8 ·10

10

AlexNet Workload

N
or
m
al
iz
ed

En
er
gy

[-]

DRAM SRAM Array RF MAC

106

107

108

109

1010

1011

Bi
t-
Se
ria

l(
16
-b
it)

Bi
t-
Se
ria

l(
8-
bi
t)

Bi
t-
Se
ria

l(
4-
bi
t)

Bi
t-
Se
ria

l(
2-
bi
t)

La
te
nc
y
[C
yc
le
s]

16-bit Latency 8-bit Latency
4-bit Latency 2-bit Latency

08
09

— 11
13

— 14
15

— 17
18

— 19
20

— 21
28

— 29
30

— 31
32

— 34
48

— 52
53

— 54
55

— 56
58

— 59
70

— 71
76

— 93
94

— 95
96

— 97
98

— 99
10
0
—10

−1
10

0

DeepBench Workload

N
or
m
al
iz
ed

En
er
gy

[-]

Bit serial (16,16) Bit serial (8,8) Bit serial (4,4)
Bit serial (4,2) Bit serial (2,4) Bit serial (2,2)

08
09

— 11
13

— 14
15

— 17
18

— 19
20

— 21
28

— 29
30

— 31
32

— 34
48

— 52
53

— 54
55

— 56
58

— 59
70

— 71
76

— 93
94

— 95
96

— 97
98

— 99
10
0
—10

−2
10

−1
10

0

DeepBench Workload

La
te
nc
y
[C
yc
le
s]

Bit serial (16,16) Bit serial (8,8) Bit serial (4,4)
Bit serial (4,2) Bit serial (2,4) Bit serial (2,2)

Fig. 5. 16-bit AlexNet validation of HW-FlowQ with Eyeriss [5] and Timeloop [27] (top-left), as well as 8, 4
and 2-bit vectorized execution. Validation with Timeloop on DeepBench workloads [26] (top-right). Bit-serial
execution of AlexNet (bottom-left) and DeepBench (bottom-right).

Bit-serial computation units can fully exploit any level of quantization for both operands. Their
performance is enhanced w.r.t. a 𝑏𝑚𝑎𝑥 computation according to

𝐵𝑆speedup =
𝑏2𝑚𝑎𝑥

𝑏𝑊 × 𝑏𝐴
. (4)

It is important to note that 𝐵𝑆speedup cannot be directly compared to 𝑉speedup due to the inherent
differences between how both architectures perform a single 𝑏𝑚𝑎𝑥 computation. Bit-serial units
require 𝑏𝑊 × 𝑏𝐴 cycles to complete a single computation, whereas bit-parallel (irrespective of the
vectorization degree) produce a complete result(s) in every computation cycle. To compensate for
this, most bit-serial accelerators employ more computation lanes to make up for their slower method
of computation, and try to match the throughput of bit-parallel architectures, while benefiting
from the flexibility of supporting and getting a speedup at any reduced bitwidth for either operand
𝑏𝑊 or 𝑏𝐴. We model each PE to have a fixed number of independent lanes to perform parallel
computations. The bits trickle in from the register files over 𝑏𝑊 × 𝑏𝐴 cycles.

4 MIXED-PRECISION MODEL VALIDATION
To validate HW-FlowQ’s Fine-level modeling and mapping components, we compare its estimates
to the Eyeriss architecture [5] for AlexNet [21] inference. We would like to stress that AlexNet is not
used for quantization experiments (Sec. 6), as it is severely outdated. We only use AlexNet’s diverse
CNN layer shapes (large/small kernels, strides, group convolutions) to prove the fidelity/precision of
our hardware-modeling framework on varying computation workloads. Similarly, Eyeriss provides
sufficiently complex on-chip data movement, which is also challenging to model (e.g. vertical,
horizontal, and diagonal data movement on spatial array). This diversity in workloads and data
movement helps us validate our HW-modeling framework. We further validate our model with
Timeloop [27] across workloads from the DeepBench benchmark suite [26], on Eyeriss-256-DB
(configuration in Tab. 1).

, Vol. 1, No. 1, Article . Publication date: October 2021.

12 N. Fasfous, M.R. Vemparala, A. Frickenstein, et al.

Fig. 5 (top-left) shows the breakdown of normalized energy contributions at each memory level
for the AlexNet convolutional layers. Our 16-bit HW-model demonstrates high fidelity and accuracy
w.r.t. [5] and [27]. We additionally show the effects of quantization on latency and energy, for
vectorized and bit-serial HW-models. Extending the comparison with Timeloop, the DeepBench
workloads demonstrate the consistency between the modeling techniques (Fig. 5 (top-right)).
Deviating points occur when both frameworks resolve to different mapping solutions (i.e. not
related to the correctness of the model, but rather the schedule search). For both bit-serial and
vectorized accelerators, a non-trivial variation can be observed for the energy benefits of different
quantization schemes. Quantization allows for larger computation tiles to fit on the on-chip memory,
making more loop-tilings legal for a given workload. This changes the schedule search space and
introduces new solutions for the model’s mapper to consider. A slightly more direct relationship
can be observed for latency, particularly for bit-serial accelerators, which have a high parallelism
potential (due to computation lanes) that is not easily saturated. It is important to note that the
y-axis follows a logarithmic scale for bit-serial latency, due to the exponential speed-up gains
(Eq. 4). [27] does not support bit-serial PEs.

5 CROSS-ABSTRACTION LEVEL INTERACTIONS
HW-FlowQ groups hardware-related design parameters into abstraction levels to facilitate the
interpretation of HW-CNN interactions (recall Fig. 3). The neighbouring abstraction levels must
be cohesive to create a sensible flow between them, which can guide the designer and the genetic
algorithm towards amore efficient co-design strategy. For example, CNNworkloads (Coarse) directly
affect the on-chip memory (Mid). However, the effect of a CNN workload (Coarse) on the dataflow
(Fine) is hard to understand without knowing the on-chip/off-chip interconnect (Mid) or the on-chip
memory size (Mid) in between. The criteria are separated to divide the complexity of CNN structure
search (Coarse), interconnect/memory hierarchy search (Mid) and compute architecture search
(Fine).

In Fig. 6, we investigate the effect of changing the numerical precision of ResNet-18 for ImageNet
on (1) off-chip (DRAM) accesses and (2) computational throughput. These metrics can be evaluated
at all three abstraction levels, which makes them useful in highlighting the flow between the levels.
At the Coarse-level, the DRAM accesses are estimated as the CNN’s total necessary reads and writes
for all datatypes (inputs, weights and outputs). Since the Coarse-level abstraction is agnostic to

ResNet18-16bit ResNet18-8bit ResNet18-4bit ResNet18-2bit
Coarse Mid Fine

8 16 32 64 128 256 512

16
32

On-chip memory (KB)

D
RA

M
A
cc
es
s(
M
B)

8 16 32 64 128 256 512

64
12
8

25
6

51
2

10
24

20
48

On-chip memory (KB)

Th
ro
ug

pu
t(
O
ps
/C
yc
le
)

Fig. 6. Analysis of DRAM access and throughput on on-chip buffer size at different levels of hardware
abstraction and quantization.

, Vol. 1, No. 1, Article . Publication date: October 2021.

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-designQuantization Methodology 13

the on-chip memory details, we see that all its corresponding red curves are constant. However,
among the Coarse-level curves, the difference in read/write volumes at each quantization level (left
plot), as well as the speed-up possible through vectorization (right plot) is still captured.
Moving on to the Mid-level, the model can capture more details of the HW. In this case, the

limitations of an under-dimensioned on-chip memory or an insufficient off-chip to on-chip com-
munication bandwidth can be detected. The Mid-level estimates are sensitive to on-chip memory
and communication, but semi-agnostic to the computation architecture. For this example, we set
the bandwidth of off-chip to on-chip communication to 8 bytes/cycle. On the DRAM accesses plot,
the green lines approach the red (ideal) curves, as the on-chip memory grows. More importantly, at
lower numerical precisions, we notice the Mid-level estimates meeting the corresponding Coarse-
level estimates at smaller on-chip memory sizes. Moreover, the Mid-level’s limited information
on the computation architecture can still be used to detect bottlenecks in communication and/or
on-chip memory size. The Mid-level abstracts the details of the computation architecture through
the assumption that all processing elements are fully utilized and can always perform computations,
if sufficient data is available. In the throughput plot, we observe communication bottlenecks for
small on-chip memory sizes, which are not able to provide the ideal computation architecture
with enough data to fully utilize it. These communication bottlenecks are more evident for CNN
models consisting of multiple fully-connected layers (AlexNet and VGG-16). This behaviour does
not change with numerical precision, since smaller bitwidths also increase the ideal computation
throughput of vectorized processing elements (i.e. Coarse-level estimates get higher).
At the Fine abstraction level, the model considers the CNN, the memory hierarchy, and the

computation architecture details (register files, dataflow, mapping, etc.). For this example, we used
the validated Eyeriss-256-DB from Tab. 1, with varying SRAM sizes. The Fine-level blue curves
approach the Mid and Coarse curves at a slower rate, as the on-chip memory increases. This is due
to the other limitations of the computation architecture, which the Fine-level takes into account
(e.g. sub-optimal unrolling, limited register file sizes, etc.). The Fine-level provides much more
information (as shown in Fig. 2), but for the purpose of highlighting the cross-abstraction level
interactions, these are not covered in this section.
The different bitwidth ResNet-18s have different Coarse lines (red), which limit the theoretical

optimum DRAM accesses and throughput. The Mid and Fine lines (green and blue), which capture
more HW details, never surpass their respective red lines which are defined at the Coarse stage.
The search at the Coarse level provides these theoretical optimal performance levels for a range of
mixed-precision CNN quantization strategies, while subsequent levels try to reach that optimum, by
parameterizing the HW. For example, if our target was to achieve the theoretical best performance
w.r.t. 4-bit Coarse, we could either over-dimension our hardware (blue-diamond line at 512KB of
on-chip memory) or quantize down to 2-bit and dimension the on-chip memory to 32KB (Mid
and Fine triangle lines of 2-bit touch/surpass the 4-bit Coarse line). Both options allow us to reach
the theoretical optimum set by Coarse for 4-bit, but each option would have a different effect on
accuracy, where over-dimensioned HW would achieve higher accuracy due to larger bitwidths,
while 2-bit would have lower accuracy but a smaller on-chip memory design.

From Fig. 6, we can clearly see a multi-abstraction flow which can help the designer eliminate
HW and CNN candidates at earlier stages of the co-design, without having to spend costly GPU
hours on training or synthesis and HIL-based testing.

6 EXPERIMENTS
HW-FlowQ is evaluated based on CIFAR-10 [20] and ImageNet [29] datasets for the classification
task and Cityscapes [7] for the semantic segmentation task. The 50K train images of CIFAR-10
are used for training and accuracy fitness 𝜓 evaluation, while the 10K test images are used for

, Vol. 1, No. 1, Article . Publication date: October 2021.

14 N. Fasfous, M.R. Vemparala, A. Frickenstein, et al.

final accuracy evaluation at the end of the search. The images have a resolution of 32 × 32 pixels.
ImageNet consists of ∼ 1.28M train and 50K validation images with a resolution of 256 × 256 pixels.
The Cityscapes dataset consists of 2975 training images and 500 test images. The images of size
2048 × 1024 show German street scenes along with their pixel-level semantic labels of 19 classes.
In Sec. 6.1 and Sec. 6.3, we aim to highlight the flexibility of our HW-modeling tool and search

approach. To isolate and identify the effects of changing the HW-model on the resultant quantization
strategy, we fixed all other variables of the experiment, including the CNN workload (ResNet20). In
Sec. 6.2, we focus on understanding the hyper-parameters of NSGA-II and its convergence. Here,
we complicate the task by enlarging the quantization search space, and employing a deeper 56-layer
CNN. In Sec. 6.4, we apply HW-FlowQ to a different task domain, namely semantic segmentation.
We use the DeepLabv3 [4] model to study the effects of layer-wise quantization on the encoder,
bottleneck layers (incl. atrous spatial pyramid pooling (ASPP) block), and the decoder layers of the
segmentation network. Finally, in Sec. 6.5, we compare our work with state-of-the-art methods
of uniform and variable quantization, further testing HW-FlowQ on wide and high resolution
CNNs (ResNet18 for ImageNet). If not otherwise mentioned, all hyper-parameters specifying the
task-related training were adopted from the CNN’s base model and its corresponding quantization
method. The first and last layers are kept at 16-bits, following the heuristic of other quantization
works [6, 28, 36]. The HW metrics are generated based on the HW configurations described in
Tab. 1. The vectorized Spatial-256 HW-model with row-stationary dataflow is used in Sec. 6.5 with
additional support for 1-bit (XNOR-Net). As a Coarse-level metric, we use fractional operations (Frac.
OPs) as measure of CNN computation compression, with respect to the hardware it is executed
on. For example, we compute the Frac. OPs of a vectorized accelerator as the layer-wise sum of
operations over speed-up due to the respective layer’s quantization:

𝐹𝑟𝑎𝑐.𝑂𝑃𝑠 =

𝐿∑
𝑙=0

𝑂𝑃𝑠𝑙

𝑉 𝑙
𝑠𝑝𝑒𝑒𝑑𝑢𝑝

. (5)

Table 1. Hardware configurations and normalized access energy costs used for experiments and validation.

HW-Model

Specs PE DRAM SRAM Array Registers

Array Cost Size Cost Cost Size (filter, ifmap, psums) Cost

Spatial-168* 12 × 14 200 128KB 6 2 224, 12, 16 Words 1
Spatial-256* 16 × 16 200 256KB 13.84 2 224, 12, 16 Words 1
Spatial-1024* 32 × 32 200 3072KB 155.35 2 224, 12, 16 Words 1

Eyeriss-1024 32 × 32 200 3072KB 155.35 2 224, 37, 16 Words 1

Eyeriss-256 - DB 16 × 16 200 128KB 7.41 0 192, 12, 16 Words 0.99
*: Same dimensioning for bit-serial (BS) and other dataflows (RS, OS, WS)

For experiments on CIFAR-10, we set the population size |P | to 25 and 50 for exploration and
SoTA comparison experiments respectively. The number of generations 𝑛 is fixed to 50 for all
CIFAR-10 experiments. Probabilities for mutation and crossover are set to 0.4 and 1.0 respectively.
For ImageNet experiments, |P | and 𝑛 are scaled down to 10, while Cityscapes experiments have
|P | = 25 and 𝑛 = 10. The CNNs trained on CIFAR-10 are fine-tuned for 2 epochs and their accuracy
fitness is evaluated on 10K random samples from the train-set during the search. For ImageNet, we
fine-tune for 0.4 epochs before evaluating on the valid-set. For Cityscapes, 10 epochs are necessary
to evaluate the candidate population. As explained in Sec. 3.2, the accuracy fitness (𝜓) is the GA’s
measure of the learning capacity of an individual. To avoid artificially biasing the search algorithm
towards individuals that perform well on the test set, we keep the accuracy fitness restricted to
train or validation set. This way, the framework does not indirectly “see” the test set during the

, Vol. 1, No. 1, Article . Publication date: October 2021.

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-designQuantization Methodology 15

search. After the search concludes, we fully train the chosen individual from scratch and report its
test set accuracy as “Accuracy Top-1” in the result tables.

6.1 A HW-CNN Co-design Example
This experiment serves as a simple example of how the design levels can be used to iteratively
narrow down the range of solutions that could suit a potential application. Additionally, we compare
SOGA and MOGA (NSGA-II) variants of the search algorithm presented in Sec. 3.2. In a real use
case, a set of different CNNs can be considered at the start of the exploration, proposed by a NAS
algorithm for example. For simplicity, we start with ResNet20 as our baseline, with task-accuracy of
92.47% on the CIFAR-10 dataset. At the Coarse-level, we start the compression with Frac. OPs being
our target optimization criterion. Considering a vectorized accelerator, we allow the GA to maintain
individuals that have bitwidths which we plan on supporting in our target HW-accelerator. In this
example, we restrict 𝑏𝐴 = 𝑏𝑊 ∈ {16, 8, 6, 4, 2}. In Tab. 2, the potential of operation fractionalization
w.r.t. the bitwidth restrictions given is around 75% at a task-related accuracy of around 89-90%.
Assuming a higher accuracy/fractionalization or lower CNN memory footprint was necessary, we
can consider relaxing the condition 𝑏𝐴 = 𝑏𝑊 , allowing the GA to find solutions with varying 𝑏𝐴
and 𝑏𝑊 values. We can also consider supporting more quantization levels and expand the range
{16, 8, 6, 4, 2} with intermediate quantization levels and/or binary OPs. This would result in a more
fine-grained search that results in new solutions that achieve our desired task-accuracy and CNN
memory footprint, at the cost of potentially more complex HW (supporting more 𝑏𝑊 and 𝑏𝐴 options
for example). It is important to note that NSGA-II offers a range of Pareto-optimal Frac. OPs vs.
accuracy solutions (Accuracy Pareto-leader: Top-1 accuracy of 90.70% at 63% 𝜑𝑂𝑃𝑠 ; Compression
Pareto-leader : Top-1 accuracy of 89.34% at 77.09% 𝜑𝑂𝑃𝑠).

Table 2. ResNet20 for CIFAR-10 quantized at different abstraction levels of the Spatial-256 HW with SOGA
and NSGA-II.

Configuration Accuracy Accuracy𝜓 HW-𝜑 N. Energy Latency
(< 𝜑 >;< level >;< G >) Top-1 [%] Fitness [%] Fitness [%]* [×107] [×103cyc.]

Baseline (16 bit) 92.47 - - 32.84 191

Frac. OPs; Coarse; SOGA 89.28 88.44 79.64 - -
Frac. OPs; Coarse; NSGA-II 90.09 92.80 73.09 - -

DRAM acc.; Mid; SOGA 89.18 91.93 67.79 - -
DRAM acc.; Mid; NSGA-II 90.00 95.33 65.56 - -

N. Energy; Fine; SOGA 89.45 91.18 51.05 16.07 52
N. Energy; Fine; NSGA-II 90.09 94.75 48.12 17.04 61

Latency; Fine; SOGA 88.44 86.21 78.71 14.94 41
Latency; Fine; NSGA-II 89.99 94.78 68.77 17.05 59

*: Measured as (1-(Compressed Metric/Baseline Metric))*100

Once satisfied with the CNN’s compression potential, the search can be refined to take the off-
chip to on-chip memory movement into consideration. Here we can estimate how many processing
passes (rounds of communication between off-chip to on-chip) would be necessary to complete
all the computations of a CNN. The layer tiling and loop ordering can be searched for different
quantization strategies. For this example, we check theMid-level estimates based on DRAM accesses
when the on-chip buffer is dimensioned to 256KB. The CNN’s DRAM accesses can be reduced by
around 65% w.r.t. the 16-bit baseline CNN, while maintaining the same accuracy that was targeted
at the Coarse-level. Based on the bandwidth of the off-chip to on-chip communication infrastructure
considered, this can confirm that our dimensioning of the on-chip buffer is in a good range to
achieve a significant reduction of DRAM accesses, without having to over-quantize our CNN and

, Vol. 1, No. 1, Article . Publication date: October 2021.

16 N. Fasfous, M.R. Vemparala, A. Frickenstein, et al.

lose the task-related accuracy goal. Finally, the Fine-level estimates give us a better understanding
of how our CNN can be scheduled on a particular HW-Model. For this example, we proceed with the
Spatial-256 configuration presented in Tab. 1, with row-stationary dataflow. Normalized energy can
be reduced by around 50%, while maintaining the target Top-1 accuracy from the higher abstraction
levels. When considering latency, we observe the drawback of the SOGA approach, not being able
to decently balance accuracy and the HW-reward. Although the emerging solution maximizes the
latency reward significantly (78.71%), it leads to a considerable accuracy degradation (88.44%). The
reward function (Eq. 1) was designed to balance both accuracy and HW-rewards, however, due to
the high potential of improving latency through quantization, we find that the SOGA algorithm
was willing to sacrifice the train reward𝜓 (down to 86.21%) to get a much larger overall reward
through latency 𝜑𝐿 . This highlights the weakness of handcrafting reward functions to achieve
multi-criteria optimization. On the other hand, NSGA-II offers a range of solutions, from which
a well-balanced solution is shown in Tab. 2, reducing latency by (68.77%) and maintaining the
task-related accuracy since the Coarse-level. The Pareto-optimal solutions for latency vs. accuracy
range from Top-1: 90.63% at 60.00% 𝜑𝐿 to Top-1: 89.37% at 72.74% 𝜑𝐿 . The set of all Pareto-front
solutions is not shown in the table for brevity.

6.2 Multi-Objective Genetic Optimization using NSGA-II
To relieve the burden of designing a fair cost function, facilitate design space exploration, and
maintain a diverse set of Pareto-optimal solutions, we leverage NSGA-II as the search technique for
the next experiments. We also exploit the multi-objective capabilities to simultaneously construct
a Pareto-front which optimizes for task-related accuracy, energy, and latency, concurrently in a
single search experiment. To collect more information on the hyper-parameters of the GA, the
characteristics of the search space, and the relationship between quantization and the optimization
targets, we present the following experiments on the Spatial-256 HW-model with row-stationary
dataflow and the deeper ResNet-56 CNN, trained on the CIFAR-10 dataset. As mentioned in Sec. 3,
the quantization search space has a size of |𝑞 |2𝐿 , where 𝑞 is the set of possible quantization levels
and 𝐿 the number of layers. The larger search space of ResNet-56 (554 solutions for 𝑏𝐴 = 𝑏𝑊 ∈
{16, 8, 6, 4, 2}) allows us to verify the scalability of the GA search approach.
Fig. 7 shows 2-D projections of the 3-D Pareto-fronts produced by three experiments, each

with a different population size |P | and/or number of generations 𝑛. An increase in generation
count (left vs. middle) allows the Pareto-front to take a more convex form. On the other hand,
increasing the population size |P | results in an extended Pareto-front, finely covering a wider
surface and a larger hypervolume, however with similar form as the middle configuration. The
solutions which are most attractive, are those which offer a trade-off among the optimization
criteria. For (|P |, 𝑛) = (25, 50) and (50, 50), we notice that the points which contribute the most to
the total Pareto-front hypervolume (lie at the apex of the convex Pareto-front) are comparable in
HW-metrics and accuracy fitness. The (|P |, 𝑛) = (25, 25) configuration has solutions of equivalent
accuracy fitness, however, their hardware metrics are worse. With these insights, we fix 𝑛 = 50 for
all CIFAR-10 experiments to get better convergence. |P | is set to 25 for exploration experiments
and 50 for comparison with state-of-the-art experiments.

The hypervolume occupied by the 3-D frontier can be measured at each generation to derive the
search convergence. As a decision-making technique, we extrapolate a reference point from the
polar solutions (worst in each dimension) of the final Pareto-front, and find the farthest solution from
it in the frontier, based on Euclidean distance. We refer to this solution as the hypervolume-leader
(HV-leader), which offers a balanced trade-off among the Pareto-points of the frontier.

, Vol. 1, No. 1, Article . Publication date: October 2021.

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-designQuantization Methodology 17

2.0 2.2 2.4 2.6·109

88

90

92

94

96

98

2.0 2.2 2.4 2.6·109

88

90

92

94

96

98

2.0 2.2 2.4 2.6·109

88

90

92

94

96

98

(a) Accuracy Fitness𝜓 (%) (y-axis), Normalized Energy 𝜑𝐸 (unitless)
(x-axis)

2.0 2.2 2.4 2.6·109

0.6

0.8

1.0

1.2

·106

2.0 2.2 2.4 2.6·109

0.6

0.8

1.0

1.2

·106

2.0 2.2 2.4 2.6·109

0.6

0.8

1.0

1.2

·106

(b) Latency 𝜑𝐿 (Cycles) (y-axis), Normalized Energy 𝜑𝐸 (unitless)
(x-axis)

0.6 0.8 1.0 1.2 ·106

88

90

92

94

96

98

0.6 0.8 1.0 1.2 ·106

88

90

92

94

96

98

0.6 0.8 1.0 1.2 ·106

88

90

92

94

96

98

(c) Accuracy Fitness𝜓 (%) (y-axis), Latency 𝜑𝐿 (Cycles) (x-axis)

Fig. 7. 2-D projections of three 3-D Pareto-fronts for ResNet56 quantization: left to right (|P |, 𝑛) = (25, 25),
(25, 50), (50, 50). Grey to black shades represent Pareto-fronts of older to newer generations, red points belong
to the final Pareto-front.

6.3 HWModeling and Exploration
6.3.1 Quantization onDifferent HWDimensions. In this experiment, three candidateHW-accelerators
are modeled to observe the effect of HW-dimensioning (computing units, buffer sizes and memory
access costs) on quantizing ResNet20 for CIFAR-10. Fig. 8(a) shows three 2-D projections of four 3-D
Pareto-fronts optimizing task-related train reward𝜓 , normalized energy 𝜑𝐸 and processing cycle
latency 𝜑𝐿 . 𝜑𝐸 and 𝜑𝐿 are measured for processing 4 frames, to compare with a batch-processing
HW-model.
The three differently dimensioned spatial compute arrays (details in Tab. 1) show similar char-

acteristics in the shape and form of their Pareto-fronts. A slight difference can be observed for
Spatial-1024, where its Pareto-front has a narrower latency range w.r.t. different quantization
strategies. This indicates that the loop unrolling capacity is already exploited at a high degree
due to the large PE-array, and cannot be improved much further through quantization. This hints
to Spatial-1024 being slightly over-dimensioned for the task. On the other hand, Spatial-168 and
256 HW-models show a wider range of solutions for 𝜑𝐸 and 𝜑𝐿 , leaving more room for exploiting
quantization to meet a given constraint for the CNN under consideration (ResNet20). In all three
plots, a gap can be noticed between the 1024 model and the others, indicating a good potential for
testing a model dimensioned in between (e.g. 512 PE array).

, Vol. 1, No. 1, Article . Publication date: October 2021.

18 N. Fasfous, M.R. Vemparala, A. Frickenstein, et al.

0.6 0.8 1.0 1.2
·109

85

90

95

100

Normalized Energy/4 Frames 𝜑𝐸 [-]

Tr
ai
n
Re

w
ar
d
𝜓
[%
]

0.6 0.8 1.0 1.2
·109

1

2

3

4

5

6 ·105

Normalized Energy/4 Frames 𝜑𝐸 [-]

La
te
nc
y/
4
Fr
am

es
𝜑
𝐿
[c
yc
le
s]

2 4 6
·105

85

90

95

100

Latency/4 Frames 𝜑𝐿 [cycles]

Tr
ai
n
Re

w
ar
d
𝜓
[%
]

(a) HW-Dimensioning and 𝜓 , 𝜑𝐿 , 𝜑𝐸 potential:.Spatial 168.Spatial
256.Spatial 1024 × Spatial 256-Batch4

0.6 0.8 1.0 1.2 1.4
·109

85

90

95

100

Normalized Energy/4 Frames 𝜑𝐸 [-]

Tr
ai
n
Re

w
ar
d
𝜓
[%
]

0.6 0.8 1.0 1.2 1.4
·109

1

2

3

4

·106

Normalized Energy/4 Frames 𝜑𝐸 [-]

La
te
nc
y/
4
Fr
am

es
𝜑
𝐿
[c
yc
le
s]

1 2 3 4
·106

85

90

95

100

Latency/4 Frames 𝜑𝐿 [cycles]

Tr
ai
n
Re

w
ar
d
𝜓
[%
]

(b) Mixed-precision arch.:.BitSerial-168.BitSerial-256.BitSerial-1024 × BitSerial-256-Batch4

1.5 2.0 2.5 3.0 3.5 4.0
·108

80

85

90

95

100

Normalized Energy 𝜑𝐸 [-]

Tr
ai
n
Re

w
ar
d
𝜓
[%
]

1.5 2.0 2.5 3.0 3.5 4.0
·108

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ·105

Normalized Energy 𝜑𝐸 [-]

La
te
nc
y
𝜑
𝐿
[c
yc
le
s]

0.5 1.0
·105

85

90

95

100

Latency 𝜑𝐿 [cycles]

Tr
ai
n
Re

w
ar
d
𝜓
[%
]

(c) Dataflow exploration:.Output Stationary.Row Stationary.Weight
Stationary

Fig. 8. 2-D projections of 3-D Pareto-fronts of 3 exploration experiments on ResNet20 for CIFAR-10 for HW
dimensioning, bit-serial processing and dataflow variants.

Increasing the batch size to 4 on the Spatial-256 configuration shows an improvement in terms of
energy, bringing the Spatial-256 configuration closer to the energy efficiency of Spatial-168, while
maintaining the latency of the single-batch Spatial-256 configuration. This can be seen in Fig 8(a).
In Tab. 3, we show the results of the baseline 16-bit ResNet20 executing on the 3 hardware

configurations and a larger batch-size. Maintaining our desired accuracy threshold of 90%, we
choose solutions from the Pareto-front of each hardware configuration. We can see that with this
accuracy requirement, the Spatial-1024 configuration can achieve a very low latency with respect
to other configurations, without over-quantizing the CNN. This comes at the cost of more energy
required by the execution, due to larger memories and more expensive access costs (see Tab. 1).
We notice that for the small Spatial-168 hardware configuration, the latency is the highest, as it
needs to maintain an accuracy of 90% (i.e. cannot over-quantize), while processing on fewer PEs.
Nevertheless, the smaller design reduces the energy requirements of the execution. Finally, taking
a look at Spatial-256 with batch-size 4, we notice an improvement in latency and energy, due to
better reuse of the weights w.r.t. the batched inputs, bringing the energy of the execution close to
the small Spatial-168 accelerator.

, Vol. 1, No. 1, Article . Publication date: October 2021.

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-designQuantization Methodology 19

Table 3. Quantization of ResNet20 for CIFAR-10 on different HW-Dimensions.

Configuration Accuracy Accuracy𝜓 N. Energy 𝜑𝐸 / Latency 𝜑𝐿 /
(< choice >;< ` >;< batch >) Top-1 [%] Fitness [%] 4 Frames [×107] 4 Frames [×103cyc.]

Baseline (16-bit); Spatial-168; 1 92.47 - 130.28 1128
Baseline (16-bit); Spatial-256; 1 92.47 - 131.36 764
Baseline (16-bit); Spatial-1024; 1 92.47 - 190.40 204
Baseline (16-bit); Spatial-256; 4 92.47 - 119.94 764

Pareto-Choice; Spatial-168; 1 90.31 94.22 64.80 343
Pareto-Choice; Spatial-256; 1 90.26 96.31 72.68 282
Pareto-Choice; Spatial-1024; 1 90.25 95.08 105.41 68
Pareto-Choice; Spatial-256; 4 90.03 95.19 66.09 259

Table 4. Quantization of ResNet20 for CIFAR-10 on Bit-Serial Accelerators.

Configuration Accuracy Accuracy𝜓 N. Energy 𝜑𝐸 / Latency 𝜑𝐿 /
(< choice >;< ` >;< batch >) Top-1[%] Fitness [%] 4 Frames [×107] 4 Frames [×103cyc.]
Baseline (16-bit); BS-168; 1 92.47 - 141.07 20365
Baseline (16-bit); BS-256; 1 92.47 - 147.65 12296
Baseline (16-bit); BS-1024; 1 92.47 - 208.26 3326
Baseline (16-bit); BS-256; 4 92.47 - 137.57 12296

Pareto-Choice; BS-168; 1 90.17 94.90 68.36 2468
Pareto-Choice; BS-256; 1 90.37 92.91 75.58 1406
Pareto-Choice; BS-1024; 1 90.19 96.95 116.63 563
Pareto-Choice; BS-256; 4 90.33 92.10 62.01 1216

6.3.2 Quantization on Bit-Serial Mixed-Precision Accelerators. So far, vectorized accelerators have
been considered, which support 𝑏𝐴 = 𝑏𝑊 ∈ {16, 8, 6, 4, 2}. In this experiment, we change the
underlying computation unit to observe the benefits that can be achieved for a bit-serial accelerator
which supports any 𝑏𝐴, 𝑏𝑊 ≤ 16 for any layer. All PEs have 16 computation lanes to allow for
higher throughput and partially compensate for the slower, serialized operations. The results of
this experiment are shown in Fig. 8(b).
An interesting difference can be observed when changing the dimensioning of the accelerator.

A larger bit-serial accelerator produces an even more compact Pareto-front, due to its ability to
maximize loop unrolling over the large PE-array, extended further with the computation lanes. For
the energy/latency graph (middle) more solutions appear for a particular energy and/or latency,
breaking the almost linear relationship between optimal energy and latency mapping observed for
vectorized accelerators (Fig. 8(a)). This can be attributed to both the change in compute architecture
and the variations possible for both 𝑏𝐴 and 𝑏𝑊 . In Tab. 4, we observe similar latency and energy
trends for bit-serial computation, as with vectorized computation for batch-size 1. A Pareto-optimal
solution is chosen for each hardware and trained to achieve an accuracy above 90%. The smallest
BS-168 is the slowest, yet the most energy efficient, while BS-1024 significantly reduces the latency
at the cost of more energy for data movement. The improved effect of batch processing is more
prominent for bit-serial accelerators. The 256-PE bit-serial accelerator with batch processing offers
a significant improvement in terms of energy, bringing the 256-PE configuration to better energy
efficiency than the smaller 168-PE counterpart executing batch-size 1 inputs. Additionally, latency
also gets a decent improvement of 13.5%. This shows the advantages of relaxing the 𝑏𝐴 = 𝑏𝑊
constraint on the HW and the GA search.

To further analyze this aspect, we study the layer-wise quantization strategy chosen by the GA
for batch sizes 1 and 4 on bit-serial accelerators. Layers with large activation volumes can have lower
bitwidth activations (low 𝑏𝐴), while the weights can be kept at a slightly higher bitwidth (higher
𝑏𝑊). The opposite can be done for layers with large filter volumes. This extends the improvements
to be gained on mixed-precision accelerators and larger batch sizes (i.e. larger activation volumes).
In Fig. 9, the quantization strategy chosen for batch size of 4 reflects the GA’s attempt to compress

, Vol. 1, No. 1, Article . Publication date: October 2021.

20 N. Fasfous, M.R. Vemparala, A. Frickenstein, et al.

CO
NV
21
1

CO
NV
21
2

CO
NV
22
1

CO
NV
22
2

CO
NV
23
1

CO
NV
23
2

CO
NV
31
1

CO
NV
31
2

CO
NV
32
1

CO
NV
32
2

CO
NV
33
1

CO
NV
33
2

CO
NV
41
1

CO
NV
41
2

CO
NV
42
1

CO
NV
42
2

CO
NV
43
1

CO
NV
43
2

0

5

10

15

Bi
tw

id
th

𝑏𝑊batch = 1 𝑏𝐴

CO
NV
21
1

CO
NV
21
2

CO
NV
22
1

CO
NV
22
2

CO
NV
23
1

CO
NV
23
2

CO
NV
31
1

CO
NV
31
2

CO
NV
32
1

CO
NV
32
2

CO
NV
33
1

CO
NV
33
2

CO
NV
41
1

CO
NV
41
2

CO
NV
42
1

CO
NV
42
2

CO
NV
43
1

CO
NV
43
2

0

5

10

15 batch = 4

Fig. 9. Layer-wise bitwidth strategy for BS-256 hardware. Batch size 1 (left) and 4 (right). NSGA-II compensates
for larger activations (batch=4) by lowering 𝑏𝐴 and maintains accuracy by increasing 𝑏𝑊 , when compared to
batch=1 inference.

the large activations more aggressively than for batch size of 1 (particularly for the first half of the
CNN), while increasing the weight bitwidths 𝑏𝑊 to maintain accuracy. The resulting quantized
CNNs of both batch 1 and batch 4 have an equivalent accuracy (∼90.3%), but with a noticeable
improvement in HW-metrics for batch size of 4, due to the GA taking the capabilities of the HW
into account.

Table 5. Quantization of ResNet20 for CIFAR-10 on Different Dataflows.

Configuration Accuracy Accuracy𝜓 N. Energy 𝜑𝐸 Latency 𝜑𝐿
(< choice >;< ` >;< batch >) Top-1[%] Fitness [%] [×107] [×103cyc.]
Baseline (16-bit); Fine; OS-256 92.47 - 46.33 159
Baseline (16-bit); Fine; WS-256 92.47 - 69.40 166
Baseline (16-bit); Fine; RS-256 92.47 - 32.84 191

HV-Leader; Fine; OS-256 89.99 93.98 16.36 48
HV-Leader; Fine; WS-256 89.11 90.87 20.54 97
HV-Leader; Fine; RS-256 89.65 95.19 17.20 64

6.3.3 Quantization on Different Dataflows. To demonstrate the effect of quantization on dataflows,
a weight stationary (WS) dataflow and an output stationary (OS) dataflow are presented. WS unrolls
computations in dimensions 𝐶𝑜 and 𝐶𝑖 over the processing element array, while OS unrolls 𝐻𝑜 and
𝑊𝑜 , and replicates the unrolling over 𝐶𝑜 . Both WS and OS support channel interleaving in order to
maximize their register utilization, similar to the row stationary (RS) dataflow.

The baselines in Tab. 5 show RS is the most energy-efficient, while OS offers the best latency. WS
is placed in the middle in terms of latency but has worse energy efficiency when compared to the
other considered dataflows. The Pareto-fronts of quantization strategies in Fig. 8(c) demonstrate
the effect of dataflows on three accelerators, which are otherwise identical in dimensioning. WS
proves to be highly sensitive to quantization, having many unique non-dominated combinations of
𝜑𝐸 , 𝜑𝐿 and 𝜓 . Generally, WS is the least efficient in terms of latency and energy, for a particular
train accuracy 𝜓 . OS dataflow enjoys its lead in latency, due to a higher potential of unrolling
as a result of quantization over vectorized PEs (each vectorized PE acts as 𝑉speedup virtual PEs).
Consequently, its energy rivals that of RS. The higher parallelism degree on a single SIMD-vector
engine reduces the total cost of MAC operations. Furthermore, since the loop unrolling is taking
place across the array as well as within the vectorized PEs, fewer PE-to-PE hops are required to
achieve the unrolling of the mapper, resulting in less array data movement energy.

6.4 Mixed-PrecisionQuantization for Semantic Segmentation
The semantic segmentation task is critical to applications in robotics and autonomous driving.
High-quality segmentation can be more computationally complex by several orders of magnitude,
when compared to classification tasks (see Tab. 6). This is related to both, the typically larger input

, Vol. 1, No. 1, Article . Publication date: October 2021.

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-designQuantization Methodology 21

CO
NV
21
1

CO
NV
21
2

CO
NV
22
1

CO
NV
22
2

CO
NV
3S

CO
NV
31
1

CO
NV
31
2

CO
NV
32
1

CO
NV
32
2

CO
NV
4S

CO
NV
41
1

CO
NV
41
2

CO
NV
42
1

CO
NV
42
2

CO
NV
5S

CO
NV
51
1

CO
NV
51
2

CO
NV
52
1

CO
NV
52
2
AS
PP
1
AS
PP
2
AS
PP
3
AS
PP
4
AS
PP
5
DE
C1
DE
C2

CO
NV
2

CO
NV
3

0

5

10

15

Bi
tw

id
th

Fig. 10. Layer-wise bitwidths (𝑏𝑊 =𝑏𝐴) of a DeepLabv3 Pareto-choice strategy with 67.3% mIoU on Cityscapes.
Short and parallel layers have 𝑏𝐴 equal to their respective bottom layer.

Labels PACT-8 [6] Pareto-choice

Fig. 11. Qualitative results of DeepLabv3 quantization on Cityscapes scenarios. Black regions have no ground-
truth labels. Pareto-choice has 21.6% compression compared to uniform 8-bit PACT.

image resolution and the additional layers needed for semantic segmentation (bottleneck, ASPP
block and decoder layers).
For the DeepLabv3 network executing on Eyeriss-1024 (details in Tab. 1), HW-FlowQ must

adapt to the task’s training challenges, particularly on low-bitwidth (≤4-bit) configurations for
PACT quantization, which often lead to exploding gradients. Despite this difficultly of PACT,
HW-FlowQ produced the Pareto-choice candidate shown in Fig. 10, which achieved 67.30% mean
intersection over union (mIoU) with a 21.6% reduction in fractional operations over uniform 8-bit
PACT quantization of DeepLabv3 (shown in Tab. 6). In Fig. 11, we show qualitative results in
semantic predictions between uniform 8-bit PACT and our HW-FlowQ Pareto-choice, for three
example scenes in the Cityscapes dataset. These results show an impressive potential of mixed-
precision low-bitwidth quantization on complex semantic segmentation tasks, potentially with
more advanced quantization techniques under HW-FlowQ in future work.

6.5 Comparison with State-of-the-Art
In this section, we compare HW-FlowQ against state-of-the-art quantization approaches on shallow,
deep, and wide CNNs for classification and semantic segmentation tasks. DoReFa-Net [36] and
PACT [6] indicate uniform quantizationwith the respectivemethod.We found that PACT propagates
the gradients better during training for deeper and wider networks; therefore, we compared against
it for ResNet-56, ResNet-18 and DeepLabv3. We reimplemented the work in HAQ [32] and adapted
the reward in Eq. 1 to the reinforcement learning (RL) agent. The RL-agent was integrated with
our HW-model ` and thoroughly tested with different agent hyper-parameters to achieve the

, Vol. 1, No. 1, Article . Publication date: October 2021.

22 N. Fasfous, M.R. Vemparala, A. Frickenstein, et al.

convergence behavior depicted in [32]. We found that the agent was achieving a better result when
optimizing for latency, as such, we quote the respective results. Finally, XNOR-Net is presented as
a binary neural network variant to compare with a highly HW-efficient implementation.
For ResNet-20, our HV-leader provides energy and latency reductions of 48% and 69% while

maintaining a Top-1 accuracy of 90.15%. In contrast, HAQ achieved a reduction of 42% and 57% for
energy and latency. For ResNet-56, our HV-leader achieved equivalent energy and latency to PACT

Table 6. Comparison of HW-FlowQ with state-of-the-art quantization methods on Eyeriss-256 Vectorized.

Model/ Method Accuracy F.Ops N. Energy Latency
Dataset Top-1 [%] [×106] [×107] [×103cycles]

Re
sN

et
20

CI
FA

R-
10

Baseline (16-bit) 92.47 41 33 191
DoReFa-Net (4-bit) [36] 89.75 10 16 51
DoReFa-Net (2-bit) [36] 87.16 5 14 43
XNOR-Net (1-bit) [28] 83.98 3 15 17
HAQ [32] 89.75 17 19 83
HV-Leader [Ours] 90.15 12 17 60

Re
sN

et
56

CI
FA

R-
10

Baseline (16-bit) 93.89 125 101 588
PACT (4-bit) [6] 90.96 32 48 155
PACT (2-bit) [6] 90.43 16 42 80
XNOR-Net (1-bit) [28] 85.61 8 47 48
HAQ [32] 92.07 56 61 279
HV-Leader [Ours] 92.00 30 49 154

Re
sN

et
18

Im
ag
eN

et

Baseline (16-bit) 69.01 1814 1489 9498
PACT (4-bit) [6] 66.59 542 822 3070
PACT (2-bit) [6] 63.59 330 703 1897
XNOR-Net (1-bit) [28] 52.51 224 676 1230
HV-Leader [Ours] 67.02 551 821 3191

D
ee
pL

ab
v3

Ci
ty
Sc
ap
es Baseline (16-bit)* 69.68 147367 140057 273588

PACT (8-bit) [6]* 69.95 76028 92035 134395
XNOR-Net (1-bit) [28]* 58.51 13606 39148 71559
Pareto-Choice [Ours]* 67.30 59616 87475 121422

*: Executed on Eyeriss-1024

(4-bit), while maintaining better accuracy. Our HV-Leader achieves an improvement of 20% and
45% over HAQ for energy and latency, at an equivalent Top-1 accuracy of 92%. The improvements
over HAQ go beyond these results. The reinforcement learning-based approach in HAQ has the
same limitations as SOGA, namely the aggregation of multiple criteria into one cost function. Our
MOGA approach through NSGA-II inherently supports multi-criteria optimization. The designer
does not need to handcraft a reward function which fairly captures all the optimization targets
in one reward value. For the ImageNet experiment, a HV-leader with an accuracy of 67.02% and
HW-estimates comparable to PACT (4-bit) was achieved in only 𝑛 = 10 and |𝑃 | = 10.

7 CONCLUSION
HW-FlowQ optimizes CNNs by finding quantization strategies based on high-fidelity HW-model-
in-the-loop setups. Abstraction levels and design phases inspired by VLSI design flows help in
systematically narrowing down hyper-parameters for both the CNN and HW-design, exposing
HW-CNN co-design synergies. Exploring vectorized and bit-serial compute engines, we exploit the
performance trade-offs for different mixed precision workloads. We demonstrate the effectiveness
of NSGA-II, which offers a Pareto-optimal set of quantization strategies for different HW-models
during the optimization process. As future work, the proposed framework and the HW-model
can be reused to investigate other compression techniques, such as pruning. The genomes can be
reformulated to assign a sparsity rate for each layer, which could further extend the compression

, Vol. 1, No. 1, Article . Publication date: October 2021.

HW-FlowQ: A Multi-Abstraction Level HW-CNN Co-designQuantization Methodology 23

capabilities of the co-design framework. Compared to existing mixed-precision methods, our GA-
based quantization improves the latency of ResNet20 and ResNet56 by 49% and 45%, respectively,
with equivalent prediction accuracy.

REFERENCES
[1] Mohamed S. Abdelfattah, undefinedukasz Dudziak, Thomas Chau, Royson Lee, Hyeji Kim, and Nicholas D. Lane.

2020. Best of Both Worlds: AutoML Codesign of a CNN and Its Hardware Accelerator. In Proceedings of the 57th
ACM/EDAC/IEEE Design Automation Conference (Virtual Event, USA) (DAC ’20). IEEE Press, Article 192, 6 pages.

[2] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. 2013. Estimating or Propagating Gradients Through
Stochastic Neurons for Conditional Computation. ArXiv abs/1308.3432 (2013).

[3] Michaela Blott, Thomas B. Preußer, Nicholas J. Fraser, Giulio Gambardella, Kenneth O’brien, Yaman Umuroglu,
Miriam Leeser, and Kees Vissers. 2018. FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration
of Quantized Neural Networks. ACM Trans. Reconfigurable Technol. Syst. 11, 3, Article 16 (Dec. 2018), 23 pages.
https://doi.org/10.1145/3242897

[4] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. 2017. Rethinking Atrous Convolution for
Semantic Image Segmentation. arXiv:1706.05587 [cs.CV]

[5] Y. Chen, J. Emer, and V. Sze. 2016. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional
Neural Networks. In ACM/IEEE Annual International Symposium on Computer Architecture (ISCA). 367–379. https:
//doi.org/10.1109/ISCA.2016.40

[6] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. 2018. PACT: Parameterized Clipping Activation for Quantized Neural Networks. ArXiv abs/1805.06085
(2018).

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. 2016. The Cityscapes Dataset for Semantic Urban Scene Understanding. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

[8] X. Dai, P. Zhang, B. Wu, H. Yin, F. Sun, Y. Wang, M. Dukhan, Y. Hu, Y. Wu, Y. Jia, P. Vajda, M. Uyttendaele, and N. K.
Jha. 2019. ChamNet: Towards Efficient Network Design Through Platform-Aware Model Adaptation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 11390–11399.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multi-objective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation 6, 2 (2002), 182–197.

[10] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. 2019. HAWQ: Hessian AWare
Quantization of Neural Networks With Mixed-Precision. In IEEE/CVF International Conference on Computer Vision
(ICCV).

[11] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017. TETRIS: Scalable and Efficient
Neural Network Acceleration with 3D Memory. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (Xi’an, China). ACM, New York, NY, USA, 751–764. https://doi.org/10.
1145/3037697.3037702

[12] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. 2019. TANGRAM: Optimized Coarse-
Grained Dataflow for Scalable NN Accelerators. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY, USA, 807–820.
https://doi.org/10.1145/3297858.3304014

[13] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image Recognition. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[14] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. 2018. AMC: AutoML for Model Compression and
Acceleration on Mobile Devices. In The European Conference on Computer Vision (ECCV).

[15] M. Horowitz. 2014. 1.1 Computing’s energy problem (and what we can do about it). In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC). 10–14.

[16] Qiangui Huang, Shaohua Kevin Zhou, Suya You, and Ulrich Neumann. 2018. Learning to Prune Filters in Convolutional
Neural Networks. IEEE Winter Conference on Applications of Computer Vision (WACV) (2018), 709–718.

[17] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. 2017. Quantized Neural Networks:
Training Neural Networks with Low Precision Weights and Activations. Journal of Machine Learning Research (JMLR)
18, 1 (Jan. 2017), 6869–6898.

[18] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and
Dmitry Kalenichenko. 2018. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only
Inference. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

, Vol. 1, No. 1, Article . Publication date: October 2021.

https://doi.org/10.1145/3242897
https://arxiv.org/abs/1706.05587
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1145/3037697.3037702
https://doi.org/10.1145/3037697.3037702
https://doi.org/10.1145/3297858.3304014
https://doi.org/10.1109/CVPR.2016.90

24 N. Fasfous, M.R. Vemparala, A. Frickenstein, et al.

[19] Weiwen Jiang, Lei Yang, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Shouzhen Gu, Sakyasingha Dasgupta, Yiyu Shi, and
Jingtong Hu. 2020. Hardware/Software Co-Exploration of Neural Architectures. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 39, 12 (2020), 4805–4815. https://doi.org/10.1109/TCAD.2020.2986127

[20] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. University of Toronto.
[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classification with Deep Convolutional Neural

Networks. In Advances in Neural Information Processing Systems (NeurIPS), F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger (Eds.). Curran Associates, Inc., 1097–1105. http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf

[22] Yujun Lin, Driss Hafdi, KuanWang, Zhijian Liu, and Song Han. 2019. Neural-Hardware Architecture Search. In NeurIPS
Workshop.

[23] Y. Ma, Y. Cao, S. Vrudhula, and J. Seo. 2018. Optimizing the Convolution Operation to Accelerate Deep Neural Networks
on FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26, 7 (2018), 1354–1367.

[24] P. Meloni, D. Loi, G. Deriu, A. D. Pimentel, D. Sapra, B. Moser, N. Shepeleva, F. Conti, L. Benini, O. Ripolles, D. Solans, M.
Pintor, B. Biggio, T. Stefanov, S. Minakova, N. Fragoulis, I. Theodorakopoulos, M. Masin, and F. Palumbo. 2018. ALOHA:
An Architectural-Aware Framework for Deep Learning at the Edge. In Proceedings of the Workshop on INTelligent
Embedded Systems Architectures and Applications (Turin, Italy) (INTESA ’18). Association for Computing Machinery,
New York, NY, USA, 19–26. https://doi.org/10.1145/3285017.3285019

[25] G. De Micheli, A. Sangiovanni-Vincentelli, and P. Antognetti. 1987. Design Systems for VLSI Circuits: Logic Synthesis
and Silicon Compilation. Martinus Nijhoff Publishers.

[26] S. Narang. 2016. DeepBench - Baidu Research. https://github.com/baidu-research/DeepBench.
[27] A. Parashar, P. Raina, Y. S. Shao, Y. Chen, V. A. Ying, A. Mukkara, R. Venkatesan, B. Khailany, S. W. Keckler, and J.

Emer. 2019. Timeloop: A Systematic Approach to DNN Accelerator Evaluation. In IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). 304–315. https://doi.org/10.1109/ISPASS.2019.00042

[28] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. XNOR-Net: ImageNet Classification
Using Binary Convolutional Neural Networks. In The European Conference on Computer Vision (ECCV), Bastian Leibe,
Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer International Publishing, Cham, 525–542.

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition
Challenge. ACM International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https://doi.org/10.1007/s11263-
015-0816-y

[30] Sayeh Sharify, Alberto Delmas Lascorz, Kevin Siu, Patrick Judd, and Andreas Moshovos. 2018. Loom: Exploiting
Weight and Activation Precisions to Accelerate Convolutional Neural Networks. In Proceedings of the 55th Annual
Design Automation Conference (San Francisco, California) (DAC ’18). Association for Computing Machinery, New York,
NY, USA, Article 20, 6 pages. https://doi.org/10.1145/3195970.3196072

[31] F. Vahid and T.D. Givargis. 2001. Embedded System Design: A Unified Hardware/Software Introduction. Wiley.
[32] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. HAQ: Hardware-Aware Automated Quantization With

Mixed Precision. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
[33] Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang, Yujun Lin, and Song Han. 2020. APQ: Joint

Search for Network Architecture, Pruning and Quantization Policy. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

[34] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. 2018. Mixed Precision
Quantization of ConvNets via Differentiable Neural Architecture Search. CoRR abs/1812.00090 (2018). arXiv:1812.00090
http://arxiv.org/abs/1812.00090

[35] Xuan Yang, Mingyu Gao, Qiaoyi Liu, Jeff Setter, Jing Pu, Ankita Nayak, Steven Bell, Kaidi Cao, Heonjae Ha, Priyanka
Raina, Christos Kozyrakis, and Mark Horowitz. 2020. Interstellar: Using Halide’s Scheduling Language to Analyze
DNN Accelerators. In International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery, New York, NY, USA,
369–383. https://doi.org/10.1145/3373376.3378514

[36] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. 2016. DoReFa-Net: Training Low
Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients. arXiv:1606.06160 [cs.NE]

, Vol. 1, No. 1, Article . Publication date: October 2021.

https://doi.org/10.1109/TCAD.2020.2986127
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1145/3285017.3285019
https://github.com/baidu-research/DeepBench
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1145/3195970.3196072
https://arxiv.org/abs/1812.00090
http://arxiv.org/abs/1812.00090
https://doi.org/10.1145/3373376.3378514
https://arxiv.org/abs/1606.06160

