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VERA: Resource Orchestration for
Virtualized Services at the Edge

Sharda Tripathi∗, Corrado Puligheddu†, Somreeta Pramanik†, Andres Garcia-Saavedra‡, Carla Fabiana Chiasserini†
∗Birla Institute of Technology and Science Pilani, †Politecnico di Torino, ‡NEC Laboratories Europe

Abstract—The combination of service virtualization and edge
computing allows mobile users to enjoy low latency services, while
keeping data storage and processing local. However, the network
edge has limited resource availability, and when both virtualized
user applications and network functions need to be supported
concurrently, a natural conflict in resource usage arises. In this
paper, we focus on computing and radio resources and develop a
framework for resource orchestration at the edge that leverages
a model-free reinforcement learning approach and a Pareto
analysis, which is proved to make fair and efficient decisions.
Through our testbed, we demonstrate the effectiveness of our
solution in resource-limited scenarios where standard multi-agent
solutions violate the system’s capacity constraints systematically,
e.g., over 70% violation rate with 2 vCPUs in our testbed.

Index Terms—Virtual RAN, virtualized services, resource or-
chestration, machine learning, experimental testbed

I. INTRODUCTION

It is well known that Network Function Virtualization
(NFV) and edge computing are disrupting the way mobile
services can be offered through mobile network infrastructure.
Third parties such as vertical industries and over-the-top
players can now partner up with mobile operators to reach
directly their customers and deliver a plethora of services with
substantially reduced latency and bandwidth consumption.
Video streaming, gaming, virtual reality, safety services for
connected vehicles, and IoT are all services that can benefit
from the combination of NFV and edge computing: when
implemented through virtual machines or containers in servers
co-located with base stations, they can enjoy low latency and
jitter, while storing and processing data locally.

The combination of NFV, edge computing, and an efficient
radio interface, e.g., O-RAN, is therefore a powerful means to
offer mobile services with high quality of experience (QoE).
However, some important aspects have been overlooked. For
instance, user applications are not the only ones that can be vir-
tualized: network services such as data radio transmission and
reception are nowadays virtualized and implemented through
Virtual Network Functions (VNFs) as well [1]; and both types
of virtual services, user’s and network’s, may be highly com-
putationally intensive. Besides, the amount of data each service
has to process is entangled [2], in the sense that a correlation
exists between the amount of data processed/generated by
virtual applications at the edge and network services VNFs,
and such correlation can be positive or negative depending on
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the type of involved VNFs. Also, it is a fact that computational
availability at the network edge is limited [3]. It follows
that in the edge ecosystem, user applications and network
services compete for resources, hence designing automated
and efficient resource orchestration mechanisms in the case of
resource scarcity is critical. To withstand these challenges,
we design a flexible framework, called VERA (Virtualized
Edge for Radio and user Applications), leveraging a model-
free reinforcement learning (RL) approach.

Several works have addressed the VNF placement problem
at the network edge, which is related but orthogonal to
the problem we face. Recent examples include: [4], which
minimizes the user-perceived latency and system cost; [5],
which optimizes both service placement and traffic routing
under different resource constraints; and [6], which uses co-
operation among edge nodes for service caching and workload
scheduling. Other studies have focused on QoE provisioning
to mobile users through edge-assisted solutions. In particular,
[7] presents an RL framework for crowdcasting services at
the edge meeting bit rate as well as streaming and channel
switching latency requirements, while minimizing the overall
computing and bandwidth cost. [8], instead, designs and imple-
ments an edge network orchestrator, and a server assignment
and frame resolution selection algorithm for best latency-
accuracy trade-off in mobile augmented reality. Related joint
resource allocation problems have been addressed before [2],
[9], albeit ignoring the complex relationship between all sys-
tem parameters and context variables and, therefore, making
simplifying assumptions that do not work in practice. More-
over, extending these approaches to multi-service scenario will
increase the system complexity manifolds.

We underline that, unlike previous works, we address the
allocation of edge resources constrained to a limited budget
across different, competing, virtual services. To this end, we
propose a distributed multi-agent learning approach, wherein
not only the actions of individual agents must collectively
satisfy the hard capacity constraints of mobile edge platforms,
some notion of fairness is also required when enforcing
these constraints. Consequently, we introduce a novel Pareto
component that guarantees a fair Pareto-efficient fair solution.

In summary, we provide the following novel contributions:
(i) We propose VERA, an RL framework for an effective,

joint allocation of computing and radio resources for user
applications and vRAN at the edge;

(ii) To enhance the system flexibility, we resort to distributed
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Fig. 1: Virtualized user application and vRAN at the edge: system
scenario and reference use case

learning agents, and complement the framework with a novel
Pareto analysis for a fair and efficient decision making, when-
ever resource utilization is constrained to a given budget, as
in the case of CPU;

(iii) A proof-of-concept is provided by designing a con-
tainerised edge and an srsRAN-based testbed implementing
the proposed VERA framework;

(iv) We show the excellent performance of the VERA
framework in terms of convergence as well as its ability
to closely meet the target KPIs of all services in resource-
constraint scenarios, and also against an independent multi-
agent RL solution that we use as benchmark.

We remark that, to our knowledge, we are the first to
address the allocation of a common pool of edge resources to
different, competing, virtualized services through distributed
learning, and to tackle the non-trivial correlations existing
among the behaviors of such services in a scalable manner.
Moreover, not only VERA can swiftly adapt to time-varying
network conditions and application traffic, but it also controls
the settings of both user applications and vRAN, selecting at
each decision step a fair Pareto-efficient solution.

II. REFERENCE SCENARIO AND TESTBED ARCHITECTURE

The system architecture and reference scenario under study
are illustrated in Fig. 1. For the sake of clarity, we focus
on one user application and one virtual base station (vBS),
implemented within an edge computing platform. As sample
use case, we consider a livecast service representing a live
video recording of an event occurring, e.g., at a stadium, that
is broadcast to mobile users located therein or in the nearby
area. The high-quality source video is processed within an
edge computing platform through a standard video transcoder.

In addition to the livecast application (as well as, possibly,
other user applications running at the edge), the edge comput-

ing platform hosts vBS functions, central unit (CU) and/or
distributed unit (DU), which are jointly controlled by the
VERA controller. As depicted by Fig. 1, the VERA controller
is deployed in the Service Management & Orchestration
(SMO) platform, and interacts with both O-RAN intelligent
controllers (RIC) to configure the vBS functions, the edge
service controllers (in this case the livecast controller), and
the NFV virtual infrastructure manager (VIM) to configure
the CPU schedulers. In this way, VERA’s workflows (data
collection and decision making) are fully compliant with
O-RAN’s machine learning procedures [10]. Indeed, VERA
continuously monitors the state of the vRAN and the livecast
application (hereinafter also referred to as services), as well as
the overall usage of computing resources in the edge platform.
Then, it uses such observations to compute the values of the
operating parameters for both livecast and vRAN, which, given
the available computing and networking resources, meet both
the application and vRAN KPI targets.

The system architecture has been recreated in a smaller scale
in our testbed for the development and testing of the VERA
framework. The main components are the edge computing
platform, and the user equipment (UE), communicating by
means of an LTE radio link implemented using the srsRAN
suite [11]. The edge platform runs two Docker containers
implementing, respectively, the livecast and the vRAN service,
which consume the edge resource pool. The radio and livecast
services are connected to VERA through a dedicated API,
used to dynamically set radio and livecast operating parameters
and retrieve performance measurements. VERA also interacts
with the edge computing platform operating system and the
Docker daemon to monitor and allocate computing resources
to the services. The edge platform and the UE are hosted on
Linux machines with Intel i7-7700HQ and i7-8550U CPUs,
respectively, and with 16 GB of DDR4 memory.

III. THE VERA FRAMEWORK

The VERA framework is designed using a model-free RL
approach. It includes distributed learning agents, each corre-
sponding to a service in the edge platform, which simultane-
ously make decisions for the allocation of radio and computing
resources as well as tune service-specific operating parameters
with periodicity equal to N ≥ 1 monitoring slots. These
decisions are collectively referred to as a resource allocation
policy, which consists of two development stages. Firstly,
each RL agent makes decisions based on the shared context
representation to obtain a greedy resource allocation policy.
Subsequently, greedy policies from all RL agents are collated
and further refined in view of the feasibility of the chosen
actions to obtain a Pareto-efficient fair resource allocation. The
individual stages are elaborated in the sequel. The structure of
the VERA framework is shown in Fig. 2.

A. Greedy analysis

We consider a context vector comprising variables pertinent
to each service. The context vector is processed through an
autoencoder to create a shared context representation that



captures the correlation among context variables, as well as
reduces the dimensionality of the context vector. Then, each
RL agent devises a greedy resource allocation policy by using
the same shared context representation and by mapping it to an
action vector such that its long-term cumulative reward from
the environment is maximized. The elements composing the
greedy resource allocation policy are introduced below.

Context space. The resource allocation for the livecast
service is governed by the following contextual information:
input bit rate (b), input video frame-per-second (FPS) rate
(f ), and input image resolution (v) of the streaming video.
Besides, to accommodate any backlog in video processing,
the normalized CPU throttled time of the livecast application
(tv) in the previous monitoring slot is considered. Likewise,
resource allocation for the vRAN is based on normalized
CPU throttled time (tr), the 3GPP-compliant Channel Qual-
ity Indicator (CQI) (γ) reported from UE to vBS, which
is representative of the signal quality, and the traffic from
the livecast application sent over the radio link, specified
by the network load (l). Thus, the context vector observed
in monitoring slot n (n = 1, . . . , N ) can be written as
x(n) ∈ X ,x(n) := {b(n), f (n), v(n), tv(n), tr(n), γ(n), l(n)}.
Further, to extract the correlation between context variables, an
autoencoder projects context vector x(n) ∈ X onto its latent
representation y(n) ∈ RD,y(n) := {y1

(n), . . . ,y
(n)
D } where

D < dim(X ). The latent representation y(n) is shared with
each RL agent so that its decision process for a given service is
informed of the performance of others accessing the resource
pool, thus representing a shared context representation.

Action space. Since services are heterogeneous, we define
A := {ak},∀k ∈ (1, . . . ,K), comprising action vectors,
each having service-specific action variables. In our reference
scenario, K = 2, and we associate k = 1, 2, respectively, to
action vectors for livecast and vRAN. Thus, a1 comprises the
CPU allocated to the livecast application (cv), the video output
encoding bitrate (β), and the video output encoding FPS (ϕ),
while a2 includes the CPU allocated to vRAN (cr), and the the
MCS value (ω). Since CPU allocation is a capacity-constrained
resource, i.e., cv + cr ≤ Bc, where Bc is the total available
CPU budget, we replace cv and cr with a generic notation
ck that denotes the capacity-constrained resource allocated to
service k. Mathematically,

ak =

{
(β, ϕ, ck), if k = 1 ,

(ω, ck), if k = 2 .

Next, we discretize the quantity of capacity-constrained
resources that can be allocated, and map each feasible com-
bination of action variables in monitoring slot n into an
action index a

(n)
1 := {1, 2, . . . , Nβ · Nϕ · Nc} and a

(n)
2 :=

{1, 2, . . . , Nω · Nc}, where Ni is the number of elements in
the discretized version of action variable i, (i ∈ {β, ϕ, ω, c}.
This allows us to limit the action space to a subset of discrete
positive values with low cardinality, and facilitates simultane-
ous selection of several resources with a single action.

Reward. We now define observed KPIs, so as to measure
the goodness of our actions. Specifically, for the livecast appli-
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Fig. 2: Structure of the VERA framework

cation, we use the Weighted Video Multimethod Assessment
Fusion (WVMAF) (ζo) and the buffer state of the client’s
player (σo), which is a good estimator of the user’s QoE [12].
The WMAF is a custom metric based on the well-known
VMAF score, which provides a value between 0 (worst) and
100 (best) per video frame. Because VMAF assesses the
quality of individual video frames only, it is not helpful to
measure the smoothness of a video, which is well known to
impact the perceived quality. To weigh this in, we multiply
the measured VMAF of each frame by the ratio between the
output frame rate and the input frame rate, and we refer to this
as WVMAF. Concerning the vRAN, we consider the latency
measured within the RAN (λo) and the packet loss rate (µo).
Then, for every KPI, we denote their target values by ζt, σt,
λt, and µt, respectively.

The reward value r is then given by the sum of the
components pertaining to each service-specific KPI k in the
n-th monitoring slot within the same decision window, as:

r(y(n),a
(n)
k ) =

{
rζ(y

(n),a
(n)
k ) + rσ(y(n),a

(n)
k ), if k = 1 ,

rλ(y(n),a
(n)
k ) + rµ(y(n),a

(n)
k ), if k = 2 .

In the above expressions, rζ(·), rσ(·) are the reward compo-
nents from WVMAF and buffer state (resp.), given by:

rKPI(y
(n),a

(n)
k ) =


1− erf(KPIo(y(n),a

(n)
k )− KPIt),

if KPI is met
erf(KPIo(y(n),a

(n)
k )− KPIt), else .

The terms rλ(·) and rµ(·) are instead the reward components
from latency and packet loss rate (resp.), which are given by
similar expressions but with (KPIt − KPIo(y(n),a

(n)
k )) as an

argument of the erf function, since all values of latency and
packet loss rate lower than their respective target values are
acceptable. Since all values of the erf function lie in [−1,+1],
we have: −2 ≤ r(y(n),a

(n)
k ) ≤ 2. Importantly, meeting

the target KPI for each service is not enough, rather, it is
essential to keep the observed KPIs as close as possible to their
target values. Failing that, the system may perform better than
required at the cost of extra resource consumption. In light
of this, erf is the best choice for estimating individual reward
components.

We consider a generic decision window h and, we let
a
(h−1)
k be the action for the k-th service selected in decision



Algorithm 1: Fair Pareto-efficient CPU allocation
1 S = {ãk}k , ck ← ãk(S), S1 = {ck}k, ∀k ∈ C /* Extract CPU

from greedy actions ãk */
2 if

∑
k∈C ck ≤ Bc /* Capacity-constraint check */

3 then
4 S? = S1

/* Output: Fair Pareto-efficient solution */
5 else
6 Se = {S1, S2, . . .}, s. t.∀Si 6= S1, ĉk(Si) ≥ ck(S1), ∀k ∈

C ∧
∑

k∈C ĉk(Si) ≤ |C|Bc /* Build expanded
solution set */

7 Ss ← {Si/|C|}Se /* Rescale expanded solution
set */

8 for S ∈ Ss do
9 Ŝs ← {âk(S)}, s.t. ck(S) in âk(S) and other components of

âk(S) fully match, ∀k ∈ C
/* Define refined actions set wrt Ss */

10 Sd ← {S}, s.t. ∀S ∈ Sd, ∀S′ ∈ Ŝs,Γi(S) > Γi(S
′),Γj(S) ≥

Γj(S
′), ∀i, j ∈ C, i 6= j /* Identify Pareto

dominant solution set through iterative
search and update */

11 S? ← {â?(k)}k , s.t. c?(k)} in â?(k)}(S?), ∀k ∈ C, and for S? ∈
S, ∀S′ ∈ S, maxmin

k∈C
(ukΓk(S

?)) ≥ maxmin
k∈C

(ukΓk(S
′))

/* Output: Fair Pareto-efficient solution */

window (h − 1) and applied in decision window h. We
then define the average reward over h as, r(y(h),a

(h−1)
k ) :=

1
N

∑N
n=1 r(y

(n),a
(h−1)
k ), where y(h) is the vector of shared

contexts observed in the N monitoring slots in decision
window h, while a

(h−1)
k is the action for service k selected

and applied in decision window h− 1 and h, respectively.
Action-value estimation and action selection. At the end

of each decision window, actions need to be evaluated and
the best one has to be selected. To this end, we compute
the mean shared context over the N monitoring slots in h
as, y(h) =

∑N
n=1 zny(n)/

∑N
n=1 zn, where zn > 0 and

zN > zN−1 > · · · > z1 are the weights assigned so
that the latest shared context has the highest weight. We
then quantify the goodness of taking an action using action
values. For service k, the value of a

(h)
k given policy πk,

which is qπk
(y(h),a

(h)
k ), is defined as the expected differential

return conditioned on y(h) and a
(h)
k , following policy πk,

i.e., qπk
(y, a) = Eπk

[G
(h)
k |y

(h) = y,a
(h)
k = a]. Since

the context space X is real, we use a practical method
for action-value estimation using function approximation in
an F-dimensional space, yielding the approximated function
q̂πk

(y(h),a
(h)
k , w) =

∑F
f=1 wfsf (y(h),a

(h)
k ), where w and

s(y(h),a
(h)
k ) denote the F -size weight and feature vectors

(resp.), with the latter being generated using tile coding [13].
The estimation of the action values is followed by an ε-

greedy action selection policy [14], with ε = 0.5 and ε-
decay factor = 0.999. This favors higher exploration in the
initial phase, while it allows for exploitation of the gained
environment knowledge with progression of time, so as to
maximize the expected return.

B. Pareto analysis

We recall that the CPU allocation for service k is a capacity-
constrained resource. Hence, it is essential that the sum of CPU

allocated to different services does not exceed the available
computing resource budget and that the selected actions can be
enacted. To this end, we introduce an algorithm that works on
the multi-dimensional actions selected by the ε-greedy policy
in the RL framework introduced above, and it further refines
them so that the resulting actions (i) meet the budget constraint
and (ii) entail fair Pareto-efficient resource sharing.

Specifically, given a decision window, we first formulate
the fair Pareto-efficient allocation of CPU across the services
as a constrained multi-criteria optimization problem. Let C be
the set of services; given a set of coefficients uk ≥ 0, k ∈ C,
with

∑
k∈C uk = 1, it is required to find a solution S? = {c?k},

k ∈ C, that maximizes
∑
k∈C ukΓ

(n)
k (S) such that S ∈ Sc and∑

k∈C ck ≤ Bc. Here, Sc is the set of feasible CPU allocations
and Γ

(n)
k (S) is the criteria function denoting the reward of

service k in monitoring slot n following strategy S.
The optimization problem is solved using Alg. 1, which

initially considers the CPU allocation to the services provided
by the greedy resource allocation policy, and creates the ex-
panded CPU allocation solution set by considering all possible
values for the ck’s that are greater than those output by the
greedy policy and whose sum does not exceed |C| times the
available budget. Such values are then scaled by |C|, to get
candidate allocation values that meet the CPU budget. The
corresponding action set, Ŝs, is built starting from such ck’s
and possibly refining the actions so that their components take
feasible values. Such actions, {âk(S)}, S ∈ Ŝs, are then used
to compute the values of Γ

(n)
k (S).

As shown in the Appendix, we prove that: (i) Given
coefficients uk’s satisfying the aforementioned conditions,
solution S? is Pareto-efficient (Prop. 1), (ii) Alg. 1 converges
to a Pareto-efficient solution set at a sub-linear rate (Prop. 2),
(iii) Alg. 1 converges to a solution that is fair with respect to
each of the multiple criteria Γk, k ∈ C (Prop. 3), thus leading
to a fair Pareto-efficient solution.

Over successive iterations, action values are updated using
differential semi-gradient SARSA, an on-policy learning al-
gorithm [14]. Hence, best actions corresponding to a given
context are identified. To summarize, the main steps in the
learning algorithm are: (i) obtain a greedy resource allocation
policy for service k through estimation of action values
qπk

(y, a), (ii) obtain a fair Pareto-efficient resource allocation
policy by collating greedy policies of all the services, and (iii)
update action-value estimates.

IV. PERFORMANCE EVALUATION

Convergence evaluation. To analyze the performance of
the VERA framework, first we discuss its convergence. Fig. 3
depicts the time evolution of reward values for the vRAN and
livecast services. Despite the large heterogeneous action set
and the diverse context vector, the reward corresponding to
each of the KPIs, and hence the total reward, saturates close to
the maximum reward value, thereby highlighting the efficient
learning capability of the VERA framework. Also, note that
the convergence of the livecast service is relatively slower with
respect to vRAN owing to its slowly varying dynamics.
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TABLE I: Comparison between VERA and standard IRL

CPU budget 3 vCPUs 2 vCPUs 1 vCPU
IRL violation rate 12.73% 71.54% 100%
VERA violation rate 0% 0% 0%

Next, Fig. 4 presents the evolution of KPIs across iterations
during the learning process. We observe that KPI satisfaction
for vRAN is achieved when its KPIs latency and packet loss
do not exceed their respective targets. On the contrary, for the
livecast service, the KPIs buffer state and WVMAF should not
fall below their target values, while keeping the observed KPIs
as close as possible to the target values for both the services.
As per the 3GPP 5G specifications and acceptable user’s QoE,
the target values are set to 150 ms, 0.01, 0.5 s and 50 (resp.)
for latency, packet loss, buffer state, and WVMAF. From the
plots, we note that barring a few initial iterations during which
the algorithm is still learning, the VERA’s choice of actions
leads to KPI satisfaction for both vRAN and livecast services.

Varying the CPU constraints. We now evaluate the im-
pact that different CPU capacity constraints have on VERA’s
performance. To this end, we compare two different values of
CPU budget (namely, 2 and 3 vCPUs, respectively) in Fig. 5(a)
and (b). The difference in performance in the two cases is mild,
thus confirming that VERA can successfully meet the target
KPI values even in the presence of a reduced CPU budget.
Further, for a 3-vCPU budget, VERA matches the goal, not
just of satisfying, but also of approaching the KPI theresholds
better than for 2vCPUs, since a larger set of feasible actions,
hence a wider choice, is available. This is confirmed by the
reward evolution in Fig. 5(c) and (d), highlighting that the
reward is always higher for larger CPU budget.

Comparison with other approaches. A remaining question

is the role that the Pareto block has in the VERA decision
process. To shed light on this aspect, Tab. I compares the
percentage of cases in which a resource allocation decision
violates the system’s CPU budget when we use VERA and
when we use a standard multi-agent independent RL (IRL),
respectively. While VERA satisfies the system constraint in all
cases, IRL incurs in substantial violations, which grow as the
constraint becomes tighter. For instance, it is worth noticing
that for a budget equal to 2 vCPUs, IRL incurs over 70%
of decisions violating the system capacity, all cases where
VERA’s Pareto block plays a key role in providing fair Pareto-
efficient allocations.

V. CONCLUSIONS

We considered an edge computing platform hosting virtual-
ized user applications and network services (namely, vRAN)
competing for the same resources, and developped a dis-
tributed learning framework, called VERA, that sets the con-
figuration of both types of services so that the target KPIs
can be met in spite of the limited availability of computing
resources at the edge. VERA also exploits a Pareto analysis
that leads to fair Pareto-efficient decisions. Importantly, as a
proof-of-concept, we designed a containerised edge and an
srsRAN-based testbed implementing the VERA framework.
Through experimental results, we showed the feasibility of
our approach and its excellent performance in the presence
of capacity-constrained resources where standard multi-agent
solution fall into resource capacity violations, e.g., over 70%
with a budget of 2 vCPUs in our testbed.

As a future work, we are investigating the scalability of
VERA in multi-service, multi-user vRAN scenarios, thereby
increasing the scenario heterogeneity and dimensionality, and
considering multiple resource constrained variables.

APPENDIX

Proposition 1. Given a set of coefficients uk ≥ 0, k ∈ C,
such that,

∑
k∈C uk = 1, then the solution S? = {c?(k)},

k ∈ C, that maximizes the multi-criteria optimization problem∑
k∈C ukΓ

(n)
k (S), is Pareto-efficient.

Proof. Let f(Γ(1)(S), . . . ,Γk(S)) =
∑
k∈C ukΓ

(n)
k (S),

where K = |C|. We show that the solution which maximizes
f is Pareto-efficient by contradiction. Let S? be a solution
to multi-criteria optimization problem maxS∈Ŝs

∑
k∈C ukΓ

(n)
k

(S), and is not Pareto-efficient. Then ∃ S′ that dominates
S?, i.e., relation Γi(S

′) > Γi(S
?),Γj(S

′) ≥ Γj(S
?),∀i, j ∈

C, i 6= j is satisfied with strict inequality for at least one crite-
rion. We first observe that the function f is strictly increasing
on each component of the set (Γ(1)(S), . . . ,Γk(S)),∀S ∈ Ŝs,
i.e., for each k, j ∈ C, Γk(S) > Γk(S′) =⇒ f(Γj(S),
Γk(S)) > f(Γj(S

′),Γk(S′)), j 6= k. Further, since the
weights uk are positive, any Pareto improved solution S′ that
dominates S? would increase f , i.e.,

∑
k∈C ukΓ

(n)
k (S′) >∑

k∈C ukΓ
(n)
k (S?). This contradicts the definition of S? which

states that S? is a solution to maxS∈Ŝs
∑
k∈C ukΓ

(n)
k (S),

hence S? is a Pareto-efficient solution maximizing f .
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Fig. 5: Comparison for different CPU budgets: KPI and reward evolution for vRAN (a,c) and livecast (b,d)

Proposition 2. Alg. 1 converges to a Pareto-efficient solution
set at a sub-linear rate.

Proof. The multi-criteria optimization problem defined as
maxS∈Ŝs

∑
k∈C ukΓ

(n)
k (S), where Ŝs is the set of feasible

solutions having cardinality |Ŝs|, and Γis are the criterion
functions corresponding to the reward from each service. Let
S be a solution from set of feasible solutions Ŝs, then S =
{ck}, k ∈ C s.t.

∑
k∈C ck ≤ Bc, where each ck is the CPU

allocated to service k, and Bc is the maximum computation
capacity of the server. The solution update proposed in Alg. 1
is similar to an iterative multi-objective search and update
algorithm [15]. Therefore, based on Sec. 4.3 and Thm. 2 in
[15], convergence is ensured for the proposed Alg. 1.

Further, subject to maximum capacity constraint, only those
solutions are feasible that adhere to

∑
k∈C ck ≤ Bc. This

effectively reduces the possible number of solutions, thereby
limiting the iterations over feasible solutions set Ŝs. Thus, the
complexity of multi-criteria optimization problem is O(|Ŝs|).

Let St be the solution at iteration t to the problem
maxS∈Ŝs

∑
k∈C ukΓ

(n)
k (S), and the Pareto-efficient solution

given by S? is achieved at t?. From Alg. 1, at any iteration t,
a solution S is added to Sd only if it dominates the existing
solutions in Sd. When S dominates another solution S′, then
by definition there is a Pareto improvement, such that some
Γis will gain and none of them will loose. Thus, over succes-
sive iterations, if f(Γ(1)(S), · · · ,Γk(S))=

∑
k∈C ukΓ

(n)
k (S),

where K=|C|, then,

f?(Γ(1)(S?), · · · ,Γk(S?)) ≥ ft+1(Γ(1)(St+1), · · · ,Γk(St+1))

≥ ft(Γ(1)(St), · · · ,Γk(St))

It follows that f?−f(t+1) ≤ f?−ft
f?−f(t+1)

f?−ft ≤ 1 . Since
f?−f(t+1)

f?−ft ≤ 1 for 1 ≤ t < t? ≤ |Ŝs|, it implies that f(t+1) is
closer to f? compared to ft, thus the algorithm is converging
with increasing iterations at sub-linear rate.

Proposition 3. The solution obtained using Alg. 1 is fair with
respect to each of the multiple criteria Γk, k ∈ C.

Proof. Set Sd (in Alg. 1) includes the dominant Pareto-
efficient solutions to the multi-criteria optimization problem
maxS∈Ŝs

∑
k∈C ukΓ

(n)
k (S). We prove that solution S∗, which

maximizes mink∈C(ukΓk(S?)), is fair with respect to each
criterion, by using contradiction. Let us assume that a Pareto-
efficient solution S ∈ Sd is biased towards criterion Γi, i.e.,

Γi(S)� Γj(S), 1 ≤ i, j ≤ |C|, i 6= j. Then, step 11 in Alg. 1
would maximize ujΓj(S). This maximization ensures that for
a Pareto-efficient solution S?, Γi(S

?) ≈ Γj(S
?). Thus, all

solutions that are biased towards any single criteria are ruled
out. Consequently, the Pareto-efficient solution S? obtained in
Alg. 1 is fair with respect to every criterion.
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