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Abstract—A real-time monitoring system based on Augmented
Reality (AR) and highly wearable Brain-Computer Interface
(BCI) for hands-free visualization of patient’s health in Operating
Room (OR) is proposed. The system is designed to allow the
anesthetist to monitor hands-free and in real-time the patient’s
vital signs collected from the electromedical equipment available
in OR. After the analysis of the requirements in a typical
Health 4.0 scenario, the conceptual design, implementation and
experimental validation of the proposed system are described in
detail. The effectiveness of the proposed AR-BCI-based real-time
monitoring system was demonstrated through an experimental
activity was carried out at the University Hospital Federico II
(Naples, Italy), using operating room equipment.

Index Terms—Augmented Reality, brain-computer interface,
health 4.0, monitoring systems, operating room, real-time sys-
tems.

I. INTRODUCTION

The 4.0 Era is based on the adoption of the enabling
technologies typical of the Industry 4.0 paradigm (e.g., the in-
ternet of things [1], [2]; brain-computer interface [3]; artificial
intelligence [4]; machine learning [5], [6]; cloud computing
[7]; wearable technologies [8]–[11]; cyber-physical systems
[12], [13]; augmented, virtual, and mixed realities [14]) in
other contexts, with the aim to extend the advantages of the
Smart Industry to other important application fields, such as
healthcare, public administration, education and so on [15]. In
particular, in the context of Health 4.0 revolution, Augmented
Reality (AR) and Brain-Computer Interface (BCI) are among
the technologies that are currently being used to implement
innovative user-centered systems.
BCI is a direct communication pathway between human
intentions and external devices, originally used in the field

of motor disabilities or medical diseases [16]. However, in
the last decade, BCI-based systems were also extended to
entertainment, robotics and education [17]–[19].
The most used BCI paradigms include, it is important to
mention (i) P300; (ii) Steady-State Visually Evoked Potentials
(SSVEPs); (iii) Event-Related Potentials (ERPs); and (iv) Sen-
sorimotor Rhythms (SMR). In particular, SSVEPs [20]–[22]
are mostly used for practical systems, thanks to high levels of
accuracy and reproducibility [23] often without the need of a
training for the user [24], and optimal wearability. SSVEPs
are induced in the primary visual cortex when observing
intermittent visual stimuli, and preserve the periodicity of
the external stimuli observed. This fixed frequency oscillation
(usually within the band 8-15 Hz) allows an easier detection
even in noisy conditions and with low electrodes [25].
Virtual Reality and AR head-mounted display (HMD) are
optimal candidates for the generation of visual stimuli, since
images are projected straight towards the eyes, increasing
contrast, decreasing the distance between the user and the
stimuli and, at the same time, reducing the noise factors of
the surrounding environment.
The suitable combination of AR and BCI is already success-
fully implemented in the smart industry field [3], [26]. How-
ever, it is possible to extend the use of these technologies also
to other application contexts, such as healthcare. AR is already
largely employed as a fruition tool for a comprehensive set
of information coming from medical equipment in operating
room (OR). The integration of AR-based monitoring systems
with SSVEP-based BCI can represent an interesting solution
for hands-free user’s input, providing an innovative way to
have access to a set of information from the surrounding



Fig. 1. System architecture of the proposed system.

environment.
The case study considered in this work is a typical scenario
in OR, when the operators have to monitor patient’s during
medical procedures. The stringent requirements of health
monitoring applications are addressed in [27]. Typically, any
audio/video delay higher than 300 ms should be avoided to
guarantee an acceptable and practical user experience. On
the other hand, it is mandatory to guarantee a transmission
accuracy as high as possible, by means of the realization of
fault-tolerant systems and the adoption of safe communication
protocols. For AR-BCI based applications, these requirements
become even more stringent, to avoid phenomena such as
motion sickness. Hence, it is important also to implement
systems with high wearability and portability.

In this work a wearable, differential single-channel SSVEP-
based BCI based is presented, wherein AR smart glasses are
used with the twofold aim of (i) generation of the flicker-
ing stimuli and (ii) real-time visualization of the patient’s
vital parameters coming from the OR equipment. Off-the-
shelf components (COTS) are used, together with dry and
noninvasive electrodes, to acquire and process the EEG signal.
Furthermore, the challenging possibility of using four flicker-
ing stimuli (rather than two as reported in [22], [25], [26]) is
investigated, still preserving the current single-channel config-
uration and, at the same time, keeping high the performance in
terms of accuracy and time response, also meeting the typical
requirements of health monitoring applications.
The present paper is organized as follows. In Section II, the
proposal is presented, focusing on the conceptual design of the
AR-BCI integrated system. In Section III, the implementation
of the system is described in detail. Section IV shows the
results obtained during the experimental validation at the Uni-
versity Hospital Federico II. Finally, Conclusions are drawn.

II. PROPOSAL

The design of the proposed AR-BCI based real-time health
monitoring system is based on a highly wearable BCI adopting

the SSVEP paradigm. In this way, AR is used both for dis-
playing patient’s vitals and for rendering the flickering stimuli
needed to elicit SSVEP in the user’s EEG. The proposed BCI
represents a selection method to navigate the AR menu: in
the considered case study, the brain-driven selection is used
to display in AR the patient’s vitals. The wearability of the
system is guaranteed by the adoption of (i) AR Glasses; (ii)
a single-channel differential configuration with few electrodes
placed on the user’ scalp; and (iii) portable acquisition and
processing units.

A. Architecture

Figure 1 shows the System Architecture. An Equipment
Control Unit (ECU) collects the patient vital signs from the
OR Equipment. The user wears the AR Glasses, which render
four flickering stimuli: the user looks at one stimulus (any of
the four) and this corresponds to the selection of the desired
vital sign to monitor. The EEG signal is acquired by means of
EEG Electrodes; then, it is digitized by the EEG Acquisition
Unit, which sends the data to the EEG Processing Unit. The
EEG signal is then processed and the results is sent to the
ECU. Finally, the patient’s vitals (as selected) are sent to the
AR Glasses which display them. In this way, the operator is
able (i) to select in real-time the vital signs to display, and
(ii) to monitor the patient’s vitals without having to constantly
look at the medical equipment.

B. SSVEP processing

A time-domain correlation-based algorithm is used to detect
the frequency elicited by the observed flickering stimulus (in
the range 8-15 Hz) [25].
Considering an EEG signal of length T (typically from 0.5
to 2.0 s), the first step is a passband FIR filtering between
5 Hz and 25 Hz. Therefore, the Pearson correlation coefficients
ρi are assessed between the filtered data Df and four sine
waveforms Φi, where i=1 ... 4, at the same frequency of the
corresponding flickering stimuli and variable phase θ:



ρi = max
θ∈[0,2π]

cov(Df ,Φ1(φ))

σDf
σΦi(φ)

(1)

where Df are the filtered data; Φi are the ith sinewaves;
θ is the phase; σD is the standard deviation of the filtered
data; and σΦi

the standard deviation of the sinewaves. The
following features are then extracted:

F1 = 1stmax
i∈[1,4]

(ρi) (2)

F2 = 2ndmax
i∈[1,4]

(ρi) (3)

F3 =
F1− F2

F2
(4)

F1 represents the maximum value among the correlation
coefficients assessed for all the four frequencies of stimuli; F2
is the second largest correlation coefficient for the remaining
three stimuli; and, finally, F3 represents the relative difference
between F1 and F2.
Given two threshold values th1 (usually from 0.40 to 0.60)
and th2 (usually from 0.5 to 1.0), a signal fragment can be
marked as recognized if the following condition is satisfied:

F1 > th1 ∩ F3 > th2 (5)

If condition (5) is not satisfied, a new EEG signal of length
T, overlapping with the previous one by T/2, is processed.
An offline analysis of the SSVEP dataset was carried out
aiming to evaluate the performance in terms of correctness of
classification and time response of the algorithm. With respect
to [25], the effect of the frame rate drop during the generation
of the flickering stimuli was taking into account. In fact, a shift
in the frame-rate inevitably translates into a consequent shift of
the stimuli frequency, decreasing the accuracy of classification.
Considering Nsignals as the total number of signals and E as
the number of errors during classification, the accuracy A is
defined as:

A =
Nsignals − E
Nsignals

· 100 (6)

where the numerator indicates the number of signals correctly
classified, and A is expressed as a percentage.
On the other hand, the time response is the time needed by
the algorithm to classify a signal fragment.
It should be mentioned that higher is the value chosen for
the aforementioned parameters (T, th1 and th2), the better the
goodness of classification obtained; however, the time needed
to the system to make a decision increases.
Brain signals of 20 healthy and untrained subject were an-
alyzed, with 24 brain signals per volunteer, using Epson
Moverio BT-200 AR glasses as generators of the flickering
stimuli. The luminosity of the environment was (97 ± 2) lx.
In this dataset, two stimuli were used, at a nominal frequency
of 10.0 Hz and 12.0 Hz. Each subject was asked to focus for
10 s on one stimulus at time. After the collection of all the
acquired data, a frame rate analysis was carried out, obtaining
an average frame rate of about 59.0 Hz instead of the nominal

TABLE I
DIFFERENCES BETWEEN THE PREVIOUS [25] AND CURRENT SSVEP

DETECTION ALGORITHM WITH th1, th2 = 0.5

Parameters Quantity Previous [25] Current
T = 0.5 s Accuracy (%) 78.5 ± 6.4 79.6 ± 9.7
// Time response (s) 1.22 ± 0.33 1.23 ± 0.13
T = 0.8 s Accuracy (%) 88.1 ± 4.8 91.0 ± 6.2
// Time response (s) 2.63 ± 0.63 2.54 ± 0.27
T = 1.0 s Accuracy (%) 92.6 ± 3.6 93.8 ± 6.0
// Time response (s) 3.71 ± 0.92 3.42 ± 0.31

60.0 Hz. Consequently, the stimuli frequency shifted (i.e. from
12.0 Hz to 11.8 Hz).
By taking into account this shift, the new performances were
evaluated and compared with the results reported in [25].
Table I summarizes the difference between the two algorithms,
with a focus on the performance for th1, th2 fixed to 0.5.
The current accuracy and time response values were measured
at 3-σ (99.7% confidence level), obtaining a level of accuracy
higher than 93 % with about 3.4 s of time response.

III. IMPLEMENTATION

In this section, the implementation of the proposed system
is described. More details are given about (i) the ECU; (ii)
the OR Equipment; and (iii) the AR-BCI Integrated System,
focusing also on the communication between the devices.

A. Hardware

1) ECU: The used ECU is a laptop with 16 GB RAM, and
two USB 2.0 ports, used for the communication with the OR
Equipment. The WiFi IEEE 802.11a/b/g/n is employed for the
wireless communication with the EEG Processing Unit.

2) OR Equipment: Two electromedical instruments were
used for the implementation of the system [28]:
• a ventilator (Drager Evita Infinity V500 [29]), equipped

with a LAN interface and three serial Interfaces, with the
possibility to fetch the parameters using the MEDIBUS
protocol at different Baud Rates.

• a patient monitor (Philips IntelliVue MP90 [30]),
equipped with a LAN interface; data can be collected
in real-time only by means of a dedicated proprietary
software, namely Medicollector.

3) AR-BCI Integrated System: The AR-BCI Integrated Sys-
tems includes a set of AR Glasses, an EEG Acquisition Unit
and, finally, an EEG Processing Unit.
• AR Glasses: Epson Moverio BT-350 [31] (Fig. 2-a),

an AR optical see-through (OST) device with a 30 Hz
nominal refresh rate; an angle of view of 23 degrees
diagonally; and a 720p display.

• EEG Acquisition Unit: Olimex EEG-SMT [32] (Fig. 2-b),
a 10 bit, 256 Sa/s Analog to Digital converter. Three dry
electrodes are placed on the user scalp in a single-channel
differential configuration. The two active electrodes are
placed in position Oz, Fz (according to the 10-20 Inter-
national System [25]) and connected respectively to the
CH+ and CH- of the Olimex. Then, a passive electrode is



Fig. 2. AR-BCI Hardware: a) Epson Moverio BT-350; b) Olimex EEG-SMT;
c) Raspberry Pi 3.

placed on the earlobe and connected to the Driven Right
Leg (DRL) channel, aiming to reduce the common mode
interference.

• EEG Processing Unit: the portable EEG Processing Unit
chosen is the Raspberry Pi 3 [33] (Fig. 2-c), a single-
board computer equipped with LAN, USB, HDMI in-
terfaces. The Raspberry receives via UART the signal
digitized by the Olimex and, after the processing, sends
to the ECU the results.

B. Communication

The communication between all the devices was handled by
implementing a dedicated software.

• ECU-Equipment: a script in MATLAB environment was
implemented on the ECU to collect the data from the OR
Equipment. A subsection of this code realized the MED-
IBUS protocol, to configure and receive in real-time the
ventilator parameters over serial interface, by means of
a RS232-USB adapter. Furthermore, a second subsection
was developed exchanging data with Medicollector, the
software that acquires in real-time the waveforms coming
from the monitor. After Medicollector is running on the
ECU, the MATLAB code receives in real-time the desired
Monitor waveforms over TCP/IP protocol by means of
the Medicollector adapter, a particular LAN-USB adapter.

• EEG Acquisition Unit-Processing Unit: once the EEG
signals is acquired and digitized by the EEG Acquisition
Unit, data are sent to the EEG Processing Unit via UART
through USB interface, by means of a software written
in C and installed on the Processing Unit. The software
also acts as a TCP Client, sending to the ECU (acting as
TCP Server) the result of the processing.

• EEG Processing Unit-ECU: a TCP Server was imple-
mented and integrated on the ECU in MATLAB with
the code related to the acquisition of the vital signs
from the OR equipment. The TCP Server establishes
the communication with the EEG Processing Unit to
receive the results of the processing over TCP/IP protocol.
Therefore, the Laptop sends to the Glasses the parameters
according to the user selection.

Fig. 3. User’s view during the selection by BCI. Reprinted from [28],
Copyright 2021, with permission from Elsevier.

• ECU-Glasses: the afore mentioned TCP Server is also
used to communicate with the AR Glasses. The ECU
(TCP Server) sends only the parameters selected by BCI
to the user over TCP/IP protocol. An Android application
was realized on the Glasses to receive over TCP/IP
protocol the vital signs, and display them in real-time.

IV. CASE STUDY

First, the frame rate drop related to the generation of
the flickering stimuli was assessed. Then, the on-field
results related to SSVEP classification accuracy and time
response with four stimuli were obtained. Finally, the delay
regarding the real-time acquisition and visualization of the
vital signs coming from the OR equipment is measured
and compared with the aforementioned typical monitoring
systems requirements.
Fig. 3 shows a picture of the user point of view while wearing
the AR Glasses, with the OR Equipment in background.
Four flickering stimuli at the edges of the display are visible.
By looking at any of the stimuli, the user can select the
vital sign to be displayed among four different choices:
electrocardiogram (ECG), oxygen saturation (O2Sat), hearth
rate (HR) and respiration rate (RR).

A. Preliminary AR-BCI Functional Validation

Before acquiring the SSVEP signals, the frame rate drop
produced by the application running on the AR Glasses was
measured, obtaining an average frame rate of about 32 fps,
higher than the nominal 30 Hz. This leads to the presence
of undesired multiple frames. The classification algorithm
was modified accordingly taking into account the average fps
obtained. Fig. 4 shows what the user sees after selecting the
ECG waveform by SSVEP. The user sees the main parameters
from the ventilator (i.e., Compliance Cdyn, the Minimum,
Mean, and Peak Airway Pressure Pmin, Pmean, and PIP,
the Minute Volume MV, and the Spontaneous Expired Total
Volume VTespon). At the bottom, the real-time variation of



Fig. 4. User’s view during the visualization of the patient’s vitals. Reprinted
from [28], Copyright 2021, with permission from Elsevier.

TABLE II
RESULTS OF SSVEP PROCESSING FOR EACH RUN DURING THE

EXPERIMENTAL SESSION

#Run Frequency [Hz] [0-2 s] [2-4 s] [4-6 s]
#1 8 Hz 3
#2 10 Hz 3
#3 12 Hz 3
#4 15 Hz 3
#5 8 Hz 3
#6 10 Hz 3
#7 12 Hz 7
#8 15 Hz 7
#9 8 Hz 3
#10 10 Hz 7

the selected vital sign coming from the monitor (in this case,
the ECG) is displayed.

B. Experimental characterization of the SSVEP performance

After the validation of the AR-BCI functionalities of the
system, the on-field SSVEP performance were evaluated. The
four flickering frequencies chosen to let the user select the
waveforms coming from the patient monitor are 8 Hz, 10 Hz,
12 Hz and 15 Hz.
Table II summarizes the user’s choices, with the related time
response of the algorithm. It can be noticed that, in three
cases, the algorithm could not recognize the correct frequency
observed.
As shown in Table III, the frequency value that showed the best
performance in terms of both accuracy and time response was
8 Hz, since highest frequencies are more sensitive to the frame
rate variations. For instance, a frame rate drop from 32.0 Hz
to 30.0 Hz leads to frequency shift from 15.0 Hz to 14.1 Hz,
and from 8.0 Hz to 7.5 Hz. Therefore, the higher probability
to correctly detect the stimuli is at 8 Hz, 10 Hz, rather than
at 12 Hz, 15 Hz. The luminosity of the environment (147 ±
2) lx and the presence of four squares instead of two, also
contributed to the drop of the overall accuracy with respect to
the results obtained offline. After the selection through BCI,
the vital signs are displayed on the AR Smart Glasses.

TABLE III
SUMMARY OF SSVEP PERFORMANCE AFTER THE EXPERIMENTAL

SESSION

Frequency [Hz] Accuracy [%] Time response [s]
8 Hz 100.0 2.67
10 Hz 66.7 4.00
12 Hz 50.0 5.00
15 Hz 50.0 5.00
Total 70.0 4.00

C. Evaluation of the system transmission

The experimental session consisted in 10 runs. Since the
Medicollector was used in free-trial mode, each run had a
maximum duration of 180 s. For each run, the time interval
necessary to display on the Glasses the selected data received
by the Laptop over TCP/IP protocol was assessed, by means
of the MATLAB stopwatch timer tic. At the end of the session,
the mean value at the 3-sigma uncertainty were evaluated. The
TCP/IP delay measured was (10±3)·10−4 s, a value that fully
satisfied the requirements reported in [34], [35].

V. CONCLUSION

An integrated, wearable BCI-AR based real-time monitoring
applications was proposed. By means of the integration of
AR with BCI (employing the SSVEP paradigm), the user can
select hands-free which data to display in AR. As a case
study, the real-time visualization of patient’s vitals in OR was
considered. The data were collected from the OR equipment,
and displayed in real-time on the user’s AR glasses. The
user could select by brain activity which parameter should
be displayed and monitored.
After a preliminary validation, which ensured the working
functionalities, the SSVEP accuracy and time response, along
with the data transmission delay, were measured, demon-
strating the effectiveness the proposed monitoring system. In
particular, it was observed that the measured delay introduced
by the Android application to receive the vital signs is neg-
ligible, preserving the real-time requirements and confirming
the improvement of AR in the Health 4.0 framework. The on-
field characterization of the single-channel SSVEP-based BCI
with four flickering stimuli showed an accuracy of 70% with
a latency of approximately 4.00 s.
Further work will be dedicated to improve the SSVEP-
detection algorithm, also introducing a time-frequency analysis
to mitigate the effects caused by the frame-rate drop and, thus,
improve the classification accuracy.
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