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Statistical Crosstalk Analysis via Probabilistic
Machine Learning Surrogates

Paolo Manfredi and Riccardo Trinchero
EMC Group, Department of Electronics and Telecommunications, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy
E-mail: {paolo.manfredi,riccardo.trinchero}@polito.it

Abstract—This paper discusses the application of a proba-
bilistic surrogate modeling technique, based on Gaussian pro-
cess regression (GPR), to the uncertainty quantification (UQ)
of crosstalk. Compared to traditional deterministic surrogate
models, the GPR provides a stochastic process that carries an
estimate of the model uncertainty. This allows assigning confi-
dence bounds to the model prediction and, in an UQ scenario, to
statistical estimates. The advocated method is illustrated through
its application to a literature test case.

Index Terms—Crosstalk, Gaussian process regression, machine
learning, surrogate modeling, uncertainty quantification.

I. INTRODUCTION

In the past few years, the increasing impact of manufactur-
ing variability on the performance of large-scale integration
circuits has drawn an enormous attention on techniques for
uncertainty quantification (UQ). While polynomial chaos ex-
pansion emerged as a robust and powerful method [1]–[3],
more recent works investigated the use of machine learning
methods for UQ tasks [4], [5].

An attractive feature of machine learning techniques is that
they are nonparametric. This means that the model complexity
is mainly determined by the available training data, rather
than by the problem dimensionality. Therefore, compared to
conventional parametric approaches like the ones based on
polynomial chaos expansion [1], it scales more favorably with
the number of random variables. While most methods, such
as those based on plain neural networks or support vector
machine regression, provide deterministic surrogates, Gaussian
process regression (GPR) models inherently carry an estimate
of the model uncertainty [6]. In an UQ scenario, this informa-
tion can be suitably propagated to obtain a probabilistic esti-
mate of the statistics of interest, such as mean value, variance,
and probability density function (PDF), with the inclusion
of confidence levels. This paper discusses the application of
probabilistic GPR models to the UQ of crosstalk. Moreover,
analytical estimates are provided for the prediction of the mean
and the variance, and for their confidence bounds.

II. PROBLEM STATEMENT

Let us consider a generic system in the form of

y =M(x), (1)

where x ∈ Rd is a set of uncertain design parameters, y
is a scalar output quantity of interest, and M : Rd → R
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Fig. 1. Interconnect network for the considered application example, repro-
duced from [3]: (a) network topology; (b) cross-section of the transmission
line sections.

denotes a function (the “full computational model”) that allows
computing y for a given configuration of the parameters x.
Extension to multiple outputs will be discussed in an expanded
paper.

For illustration purposes, in this paper we analyze the high-
speed interconnect depicted in Fig. 1, which was investigated
in [3]. We consider two test cases, summarized in Table I. In
Test Case #1, there are d = 2 uncertain parameters, namely
the substrate thickness h and the gap g between the traces.
In Test Case #2, there are d = 6 uncertain parameters, i.e.,
the widths wn and the vertical positions dn (with n = 1, 2, 3)
of the traces in each of the three subnetworks. All parameters
are assumed to be Gaussian distributed with a 10% relative
standard deviation from the nominal value. The output of
interest is the maximum crosstalk over time produced at the
0.5-pF termination by the transmission of a voltage pulse with
an amplitude of 5 V, rise and fall times of 100 ps, and duration
of 1 ns. The full computational model (1) is in this case an
HSPICE transient simulation of the network, performed with
a maximum step size of 1 ps.

III. PROBABILISTIC GPR MODEL

As opposed to most surrogates, a GPR model is a stochastic
process rather than a deterministic function [6]. Specifically,
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TABLE I
DESCRIPTION OF THE TWO TEST CASES.

Test case d Parameter Nominal value Standard deviation

#1 2
h 200 µm

10% Gaussian
g 150 µm

#2 6

w1 150 µm

10% Gaussian

w2 130 µm
w3 170 µm
d1 100 µm
d2 140 µm
d3 70 µm

GPR seeks for y a probabilistic model in the form of

y ≈ M̂(x) ∼ GP(m(x), c(x,x′)), (2)

meaning that the surrogate M̂ is a Gaussian process with mean
function m(x) and covariance function c(x,x′). Hence, for a
given value of the input parameters x, the output prediction is
a Gaussian random variable with mean m(x) and standard
deviation

√
c(x,x). This fact can be exploited to obtain

probabilistic predictions of statistical moments and PDFs. In
order to do so, however, it is important to correctly take into
account the correlation in the output distribution described by
the covariance function.

The process mean and covariance are found by choos-
ing a prior Gaussian process with a given mean µ(x) and
covariance k(x,x′), also called “kernel”, and by condition-
ing it to interpolate a set of available training observa-
tions {(x†l , y

†
l )}Ll=1, with y†l = M(x†l ), calculated using the

full computational model (1). The prior mean could be any
function, including another surrogate model. However, taking
µ(x) = 0 is a common option that we shall adopt in this
paper. Exponential, squared exponential, and Matérn functions
are popular choices for the kernel. Without loss of generality,
we shall use a Matérn 5/2 kernel, i.e.,

k(x,x′) = σ2
f

(
1 +

√
5r

σl
+

5r2

3σ2
l

)
exp

(
−
√

5r

σl

)
, (3)

where r =
√

(x− x′)T(x− x′) is the Euclidean distance
between x and x′, whereas σf and σl are two hyperparameters
that are estimated when training the model.

With the above definitions, it is possible to sample (2)
with a finite number of samples {x∗i }Ni=1 of the uncertain
input parameters, as is typically done when performing UQ
using Monte Carlo (MC) analysis in conjunction with sur-
rogate models. However, the substantial difference here is
that the result is not an ensemble of deterministic predic-
tions, but rather a set of N correlated Gaussian random
variables y∗ ∼ N (µy,Σy). The random variables are char-
acterized by the mean vector

µy = K∗K
−1y† (4)

and covariance matrix

Σy = K∗∗ −K∗K−1KT
∗ , (5)

where
• y† ∈ RL is a column vector with entries y†l =M(x†l );
• K ∈ RL×L is a matrix with entries Klm = k(x†l ,x

†
m);

• K∗ ∈ RN×L is a matrix with entries Kil = k(x∗i ,x
†
l );

• K∗∗ ∈ RN×N is a matrix with entries Kij = k(x∗i ,x
∗
j );

A random draw of y∗ yields one possible prediction (real-
ization) of the MC samples. An ensemble of predictions allows
one to estimate statistical moments and PDFs in a probabilistic
way, e.g., in terms of expectation and confidence bounds.
Moreover, lengthy derivations lead to analytical expressions
for the expectation of the mean

µ̄y = 1
N

∑N
i=1 µy,i (6)

and the variance

σ̄2
y = 1

N−1

[∑N
i=1(µy,i − µ̄y)2 + tr(Σy)

]
(7)

of y, as well as for their standard deviation:

Std{µ̄y} = 1
N

√∑N
i=1

∑N
j=1(Σy)ij (8)

Std{σ̄2
y} = 2

N−1

√
(µy − µ̄y)TΣy(µy − µ̄y) + 1

2 tr(Σ2
y).

(9)
The derivation of the above expressions is deferred to an
expanded paper.

IV. NUMERICAL RESULTS

The proposed probabilistic method is applied to the inter-
connect of Fig. 1 and the two test cases described in Table I.
Reference results for the maximum crosstalk are generated
with a MC analysis using 5000 samples of the uncertain
parameters, drawn according to a Latin hypercube sampling
(LHS) scheme. With HSPICE, this analysis takes about 1 h
25 min for each test case.

TABLE II
GPR PREDICTION OF THE MEAN AND VARIANCE OF THE MAXIMUM

CROSSTALK.

Moment MC GPR

Test Case #1
Mean (V) 0.9537 [0.9449,0.9533, 0.9617]

Variance (V2) 0.0223 [0.0185,0.0227, 0.0269]

Test Case #2
Mean (V) 0.9413 [0.9368,0.9402, 0.9437]

Variance (V2) 0.0202 [0.0193,0.0205, 0.0218]

GPR models are trained by considering L = 10 ·d samples,
also drawn by means of LHS, leading to L = 20 for Test
Case #1 and L = 60 for Test Case #2. Table II reports the
mean and the variance of the maximum crosstalk computed
from the MC samples, as well as the ones predicted with the
GPR models based on the same set of parameter samples.
The expected value of the GPR prediction, obtained with (6)
and (7), is highlighted with bold font, whereas the upper
and lower 95% confidence bounds, corresponding to ±1.96
times the standard deviation computed with (8) and (9), are
denoted with overlines and underlines, respectively. It is noted



that the expected value of the prediction is always very close
to the reference MC value, with errors below 0.2% for the
mean and 1.8% for the variance. The latter corresponds to
an error below 0.9% for the standard deviation. The accuracy
of the prediction is further confirmed by the tightness of the
confidence intervals, which include the reference result and
amount to less than 0.9% of the expected value for the mean
and 19% for the variance. The information on the model
accuracy is summarized in Table III. Experiments demonstrate
that the confidence interval can be reduced by increasing the
number of training samples and/or choosing a more complex
prior kernel (results not shown here due to the lack of space).

TABLE III
ACCURACY OF THE GPR PREDICTIONS.

Moment Prediction error Confidence tightness

Test Case #1
Mean < 0.1% 0.9%

Variance 1.8% 18.5%

Test Case #2
Mean 0.1% 0.4%

Variance 1.5% 6.3%

The GPR models are further used to provide a probabilistic
estimate of the PDF of the maximum crosstalk, based on 5000
realizations of the posterior random variable y∗. From each
realization, a different prediction of the PDF is obtained. Fig-
ure 2 shows, with a blue line, the distribution of the reference
MC samples. The 67%, 95%, and 99% confidence intervals of
the GPR prediction are shown instead with different shades of
red. It is noted that the reference MC distribution is well within
the confidence bounds, and mostly within the tightest 67%
interval. Moreover, the confidence bounds for Test Case #2
are tighter, consistently with the higher accuracy observed in
Table III.

TABLE IV
EFFICIENCY OF THE GPR MODELS.

Model training Model Total Speed-up

Samples Building evaluation time w.r.t. MC

Test Case #1 27.3 s 0.5 s 52.3 s 80.1 s 63.7×
Test Case #2 80.3 s 0.1 s 52.7 s 133.1 s 38.3×

Finally, Table IV provides the relevant figures concerning
the efficiency of the proposed method. The computational time
consists of two components: the model training and the model
evaluation. The former can be further broken down into the
time required by the simulation of the training samples and by
the model building. Of these three contributions, the first one is
typically dominant, especially when the simulation of the full
computational model is expensive. As opposed to parametric
models, the second contribution is only determined by the
number of available training samples, regardless of the model
complexity in terms of number of uncertain parameters, and it
is therefore usually negligible. The third contribution is related
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Fig. 2. PDF of the maximum crosstalk for the two test cases. Blue line:
reference distribution of the MC samples; shades of red: confidence levels of
the GPR prediction.

to the post-processing for the extraction of the statistical
information. In the considered application, it is dominated
by the calculation of the posterior covariance matrix and of
the kernel density estimates of the PDF for the probabilistic
assessment of the crosstalk distribution reported in Fig. 2. All
in all, the speed-up w.r.t. the MC analysis is remarkable.

V. CONCLUSIONS

This paper introduced a probabilistic surrogate model for
UQ based on GPR. The proposed method allows calculating
not only predictions of relevant statistical information, but
also an estimate of their confidence bounds. The technique
was illustrated via the UQ of the maximum crosstalk in an
interconnect network.
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