
18 October 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

How imitation learning and human factors can be combined in a model predictive control algorithm for adaptive motion
planning and control / Karimshoushtari, M.; Novara, C.; Tango, F.. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO.
- 21:12(2021). [10.3390/s21124012]

Original

How imitation learning and human factors can be combined in a model predictive control algorithm for
adaptive motion planning and control

Publisher:

Published
DOI:10.3390/s21124012

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2929657 since: 2021-10-07T15:41:53Z

MDPI AG

sensors

Article

How Imitation Learning and Human Factors Can Be Combined

in a Model Predictive Control Algorithm for Adaptive Motion

Planning and Control

Milad Karimshoushtari
1,

*
,†

, Carlo Novara
1

and Fabio Tango
2

!"#!$%&'(!
!"#$%&'

Citation: Karimshoushtari, M.;

Novara, C.; Tango, F. How Imitation

Learning and Human Factors Can Be

Combined in a Model Predictive

Control Algorithm for Adaptive

Motion Planning and Control. Sensors

2021, 21, 4012. https://doi.org/

10.3390/s21124012

Academic Editors: Jorge Godoy,

Antonio Artuñedo and Jorge Villagra

Received: 7 May 2021

Accepted: 3 June 2021

Published: 10 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Deparment of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy;
carlo.novara@polito.it

2 Centro Ricerche Fiat, 10043 Torino, Italy; fabio.tango@crf.it
* Correspondence: milad.karimshoushtari@polito.it
† Current address: Deparment of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli

Abruzzi 24, 10129 Torino, Italy.

Abstract: Interest in autonomous vehicles (AVs) has significantly increased in recent years, but
despite the huge research efforts carried out in the field of intelligent transportation systems (ITSs),
several technological challenges must still be addressed before AVs can be extensively deployed
in any environment. In this context, one of the key technological enablers is represented by the
motion-planning and control system, with the aim of guaranteeing the occupants comfort and safety.
In this paper, a trajectory-planning and control algorithm is developed based on a Model Predictive
Control (MPC) approach that is able to work in different road scenarios (such as urban areas and
motorways). This MPC is designed considering imitation-learning from a specific dataset (from
real-world overtaking maneuver data), with the aim of getting human-like behavior. The algorithm
is used to generate optimal trajectories and control the vehicle dynamics. Simulations and Hardware-
In-the-Loop tests are carried out to demonstrate the effectiveness and computation efficiency of the
proposed approach.

Keywords: trajectory planning; vehicle dynamics control; Model Predictive Control; learning;
overtaking maneuver

1. Introduction

In recent years, as a consequence of the fact that safety aspects have gained huge
importance in society and in the transportation industry, the advent of automated driving
systems (ADSs) marks one of the biggest events in transportation research. In fact, traffic
volumes are constantly increasing (at least they had been before the COVID-19 pandemic)
and the number of vehicle accidents has also equally increased, with large effects on
people’s safety and quality of life, as well as on social financial expenses. As claimed in [1],
in 2016, for example, the World Health Organization estimated that the number of deaths
related to road accidents was over 3400 per day, with associated costs having an impact
of nearly 3% of the world’s Gross Domestic Product. In this picture, it is assumed that
autonomous cars can reduce the quantity of road accidents and injuries, improving traffic
operations and making them easier. In addition, these autonomous vehicles (AVs) will
enable aged or disabled people to go anywhere, independently, at any time.

Despite the clear advantages that intelligent transportation systems (ITSs) can offer
and the huge research efforts carried out in this field, several technological challenges must
still be addressed, because AVs require deep information about the surroundings and the
identification of route/trajectory planning. In particular, AVs require motion-planning
methods to generalize unpredictable situations in a timely manner, presenting smooth
behavior in order to guarantee comfort, safety and efficiency to the vehicle’s occupants.

Sensors 2021, 21, 4012. https://doi.org/10.3390/s21124012 https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 4012 2 of 18

Different approaches to motion/trajectory planning can be found in the literature,
including graph-based algorithms (A*, D*, Theta*, etc.), Artificial Potential Field (APF)
techniques, probabilistic methods (Probabilistic Road Maps (PRM), several variants of
rapid-exploring random trees (RRT), etc.), Voronoi Diagram techniques, and so on. A*
and its variants are based on weighted graphs and they aim to find an optimal path from
the starting node to the target note, trying to minimize suitable costs (e.g., the distance
traveled) [2]. D* is a dynamic version of A*, where the graph weights may change in
time [3]. Theta* is a variant of A* that propagates information along the graph edges
without constraining the paths to the edges [4]. APF techniques are based on the design
of a suitable potential field so that the vehicle, subjected to the force obtained from this
potential, reaches its goal, avoiding possible obstacles [5]. PRM methods proceed in two
phases: a learning phase and a query phase [6]. In the learning phase, a probabilistic
road map is first constructed. The roadmap is then stored as a graph, where the vehicle
configurations are the nodes and the possible paths are the edges. In the query phase, the
path is obtained by a suitable search algorithm (e.g., A*). RRT and its variants are based on
the construction of a random space-filling tree [7]. The tree is generated incrementally in
such a way as to grow towards unexplored regions. Voronoi Diagram techniques allow the
generation of a road map with a maximum space from the obstacles, and the corresponding
graph is fully connected [8]. Given this map, the path is planned by a suitable search
algorithm (e.g., A*). All these methods are typically used for global path planning, that is,
planning of a suitable path between two points on a given map. This planning is carried out
at the beginning of the trip and possibly updated in the case of changes of the road scenario.
Global path planning often requires subsequent local trajectory planning, which is carried
out on-line in order to provide smooth trajectories which can better adapt to the road
scenario near the vehicle. In any case, both global and local plannings provide a geometric
path, which is generally inconsistent with the vehicle dynamics. As a consequence, it may
be hard for the vehicle to track the planned path.

Once a suitable trajectory has been planned, a control action is needed to make the
vehicle track such a trajectory. This task is accomplished by a feedback control system
which, on the basis of the current vehicle state and the planned trajectory, provides the
throttle and steering commands, allowing trajectory tracking. Several control approaches
can be found in the literature, including the Proportional Integral Derivative (PID), Stanley
controller, Eigenvalue Placement, Linear Quadratic Regulator (LQR) and its version with
the integral action (LQI), Gain Scheduling, Sliding Mode Control, Adaptive Control, and
Model Predictive Control (MPC) (see, e.g., [9–16] and the references therein). It can be
noted that in the majority of these approaches, trajectory planning and vehicle control are
carried out separately, resulting in possibly non-optimal vehicle motion.

In this paper, a MPC approach is adopted. MPC is a general methodology for con-
trol and trajectory optimization of complex linear and nonlinear dynamic systems. This
methodology is based on two key operations: (1) prediction of the behavior of the system
of interest over a finite time interval; and (2) optimization of the system trajectory, based
on its predicted behavior, and calculation of the optimal trajectory and control law. The
main features/advantages of MPC are the following:
• MPC jointly performs (local) trajectory planning and control. As mentioned above, the

optimization process provides a suitable vehicle trajectory together with the control
command, making the vehicle track the trajectory.

• The planned trajectories are:
– Optimal (over a finite time interval). In fact, they are obtained as solutions of a

suitable optimization problem.
– Consistent with the vehicle dynamics. A constraint is directly imposed in the

optimization problem, forcing the trajectories to satisfy the vehicle dynamics/
kinematics equations.

• Trajectory planning is performed on-line. This allows the ego vehicle to adapt in real
time to the road scenario and to promptly react when unexpected events occur.

Sensors 2021, 21, 4012 3 of 18

• MPC can systematically deal with constraints. Besides the dynamics/kinematics
constraint, other constraints can be inserted in the optimization problem, which
can account for command saturations, obstacles which may affect the trajectory,
boundaries in the trajectory domain, and so forth.

• MPC can efficiently manage the trade-off between performance and energy consump-
tion. Indeed, trajectory planning is attained by minimization of an objective function
consisting of two terms describing the maneuver precision, and one term quantifying
the command effort (that is related to energy consumption). These terms are charac-
terized by suitable weight matrices, which can be designed to systematically manage
the aforementioned trade-off.
To the best of our knowledge, MPC is the only method characterized by all these

features together. As discussed above, most state-of-the-art approaches cannot perform
trajectory planning and control jointly. These two tasks are typically carried out separately,
and this may result in non-optimal vehicle motion. Moreover, the planned trajectory
may not be fully consistent with the vehicle dynamics/kinematics, and this may lead to
unexpected behaviours of the vehicle and/or ineffective obstacle avoidance.

In order to properly cope with the nonlinear behavior of the vehicle dynamics, a
Nonlinear MPC (NMPC) algorithm is developed in this paper. A key innovative feature
of the algorithm is that its parameters are learned from experimental data collected in
real scenarios (i.e., lane-change and overtaking maneuvers in motorway conditions). The
motivation for this choice is to make the planning behavior more comfortable and more
human-like, thus facilitating the acceptability and usability of AVs.

Another important feature is the numerical efficiency of the NMPC algorithm. Indeed,
a general drawback common to most MPC approaches is the high computational cost. Nev-
ertheless, the algorithm developed here is characterized by a relatively low computational
cost, allowing its real-time implementation on the embedded processors that are used in
automotive applications.

Thanks to this feature, another innovation of the proposed NMPC algorithm consists
of the applicative perspective: the algorithm will be implemented and used in real-time on
a real prototype car, within the European project PRYSTINE [17] (in the use-cases of this
project, the required sampling time is 100 ms or lower).

2. Vehicle Prototype Description and Model

In this section, the use-case is presented and, moreover, Sections 2.1 and 2.2 provide a
description of the test-vehicle and of the related experiments. In addition, Section 2.4 gives
an overview of the model that is used.

2.1. Use-Cases Definition and Description
In order to collect the dataset used for the development and training of the MPC

algorithm, we defined the following use-case: the host-vehicle is approaching a slower
object (i.e., another vehicle) ahead in a motorway scenario, and therefore an overtaking
maneuver is needed. The situation is sketched in Figure 1.

Prototype Vehicle Overtake Maneuver Data Collection

Time [s]

D
ist

an
ce

 L
an

e
[m

]

Figure 1. Type of tests for real-data collection.

Sensors 2021, 21, 4012 4 of 18

2.2. Prototype Vehicle
In order to prepare the dataset for algorithm training, a data-logger was prepared and

a dedicated experimental phase was executed by using a specifically equipped prototype
vehicle shown in Figure 2.

30 October, 2015 1

External Camera Rear corner radars

Figure 2. Prototype vehicle with installed sensors.

The prototype vehicle is a “Fiat 500x 1.6 Mjet” (120 cv–LOUNGE version), equipped
with the following components:

• External camera, with a Field of View (FoV) of 52�, to detect obstacles and lanes on
the road.

• External rear-corner radars, with a FoV of 150� (±75�) and maximum distance of 90 m,
to detect objects coming from the rear, in the adjacent lane.

• The dSpace MicroAutoBox II is used to manage the CAN board, in particular to
control the data synchronization and acquisition; the control panel is used to activate
the logging system and the start-up of sensors (cameras, above all).

2.3. Experimental Phase
The procedure for the experiments is described as follows. Ten users participated in

the experiments. When asked by the experimenter, they were told to execute a specific
maneuver of overtaking. The full maneuver was labelled in different sequences:

1. Approaching the (slower) vehicle ahead (car following/approaching);
2. Left lane change (LC);
3. Passing the vehicle aside, travelling on the right lane (this can also be multiple passing,

if more than one vehicle is present);
4. Right LC;
5. Lane-keeping (LK) or free-riding—means the end of the overtaking maneuver.

The following data were collected during each experiment:

• Vehicle dynamics:
– Speed;
– Steering wheel;
– Yaw rate;
– Acceleration;
– Brake and accelerator pedal positions.

• Road information:
– Number and type of lanes;
– Road curvature;
– Variation of road curvature (when present);

Sensors 2021, 21, 4012 5 of 18

– Position of the ego-vehicle in the lane;
– Heading angle.

• Environmental information (of obstacles):
– (Relative) speed;
– Distance;
– Angular position.

Figure 3 shows an example of the data collected by the on-board sensors during an
overtaking maneuver.

Figure 3. An example of the data collected by the on-board sensors.

Figure 4 describes the test site considered in these experiments:

Figure 4. Test site around CRF location for the data collection on overtaking maneuver.

The test site starts from the CRF location in Orbassano, arrives at Pinerolo town
(following A55 motorway), and then comes back. It included two scenarios: motorway and

Sensors 2021, 21, 4012 6 of 18

extra-urban roads (both with two lanes for each carriage). The total length was 58.6 km.
Then, the related datasets were post-processed (to remove invalid data, correct the labels
manually written down, and so on) to be used for parameter-tuning of the MPC algorithm.

2.4. Single-Track Model
In this section, a standard model of the lateral and longitudinal dynamics of a vehicle

is presented, called the dynamic single-track model [11]. Although simple, this model
captures the main aspects of the vehicle dynamics and, for this reason, it is suitable for
the design and preliminary tests of vehicle control systems. It can be mentioned that the
single-track model is often called a "bicycle model" in the literature. In the following, the
model will be named the Dynamic Single-Track with Pacejka’s formula model (DSTP)
for short. The model will be used for the design of the MPC trajectory-planning and
control algorithm.

The DSTP model variables and parameters are the following (see Figure 5):
• Vehicle variables:

X, Y: coordinates of the vehicle’s center of gravity (CoG) in an inertial reference frame;
y: yaw angle;
ẏ: yaw rate;
~v ⌘ V: velocity vector in the inertial frame;
vx: longitudinal speed = ~v component along the longitudinal axis;
vy: lateral speed = ~v component along the transverse axis;
ax: longitudinal acceleration;
d f : front wheel steering angle;
b: vehicle slip angle = angle between the vehicle longitudinal axis and velocity;
b f , br: tire slip angles = angles between the tires’ longitudinal axis and velocity.

• Vehicle parameters:
m, Iz: mass and yaw polar inertia;
l f : distance CoG - front wheel center;
lr: distance CoG - rear wheel center;
lw: vehicle width;
c f , cr: front/rear cornering stiffnesses;
h f , hr: front/rear vertical load factors.

!!

!"
"!

#!

#"

#

"̇ "

$#
$$

$⃗

&%!

&%"

&&!

&&"

'()

*

+

longitudinal axis

lateral axis

!

!!

!""#"! #$

#%

#
$

Figure 5. (left) Single-track model, (right) path-tracking errors.

Sensors 2021, 21, 4012 7 of 18

The state equations of the DSTP model are:

Ẋ = vx cos y � vy sin y

Ẏ = vx sin y + vy cos y

v̇x = vyẏ + ax

v̇y = �vxẏ +
2
m

⇣
Fy f + Fyr

⌘

ÿ =
2
Iz

⇣
l f Fy f � lrFyr

⌘
.

(1)

Fx f , Fy f , Fxr, and Fyr are longitudinal and lateral forces between the wheels and
the vehicle.

ax =
2
m
(Fx f + Fxr)

Fx f = Fu f cos(d f)� Fl f sin(d f)

Fy f = Fu f sin(d f) + Fl f cos(d f)

Fxr = Fur

Fyr = Flr,

(2)

where Fl f and Flr are the lateral forces exchanged between the tire and road. The following
tire force model is considered (see [11]):

Fl f = � fP(b f) Flr = � fP(br)

b f = atan
✓

vy+l f ẏ
vx

◆
� d f br = atan

⇣
vy�lrẏ

vx

⌘
.

fP(b) is given by Pacejka’s magic formula:

fP(b)
.
= p1 sin(p2 atan(p3b � p4(p3b � atan(p3b)))),

where p1 is the peak value, p2 is the shape factor, p3 is the stiffness factor and p4 is the
curvature factor. Pacejka’s tire model is illustrated in Figure 6 for different road conditions.

Figure 6. Pacejka’s tire model.

The model (1) will be used in Section 3.2 to design a Trajectory Planning and Control
(TPC) algorithm for an ego vehicle. To this aim, it is also convenient to introduce the
following path-tracking errors (see Figure 5):
• ey (lateral error): lateral deviation of the vehicle CoG from the reference path S.
• ey (orientation error): angular deviation between the vehicle orientation and the

direction of the reference path S.

Sensors 2021, 21, 4012 8 of 18

The time evolution of these errors is described by the following equations (see [11]):

ėy = vy + vxey

ėy = ẏ � vxrS,
(3)

where rS is the local curvature of the reference path S. Equations (1) and (3) constitute the
basic model for the TPC algorithm that will be proposed in Section 3.2. The state of this
model is x = (X, Y, vx, vy, y, ẏ, ey, ey), whereas the input is u = (ax, d f).

3. Methods

In this section, a general formulation of the Nonlinear Model Predictive Control
(NMPC) approach is presented. This approach will be adopted in Section 3.2 to design and
implement a Trajectory Planning and Control (TPC) algorithm.

3.1. NMPC General Formulation
NMPC is a general and flexible approach to control the complex nonlinear

systems [18–20]. NMPC provides optimal solutions (over a finite time-interval), can
deal with input/state/output constraints, and can systematically manage the trade-off
between performance and command activity. Successful applications of NMPC can be
found in many areas, such as automotive engineering, aerospace engineering, chemical
process management, robotics, biomedicine, and so forth. Here, a concise but self-contained
formulation of NMPC is provided.

Consider a Multiple-Input-Multiple-Output (MIMO) nonlinear system described by
the following state equations:

ẋ = f (x, u)
y =h(x, u),

(4)

where x 2 Rnx is the state, u 2 Rnu is the command input and y 2 Rny is the output;
f : Rnx+nu ! Rnx and g : Rnx+nu ! Rny are two functions characterizing the system
dynamics and output variables, respectively. Assume that the state is measured in real-
time, with a sampling time Ts, according to

x(tk), tk = Tsk, k = 0, 1. . . .

If the state is not measured, an observer has to be employed, or a model of (4) in
input–output form.

Suppose that the system output y(t) is required to track a desired reference signal
r(t). The state, output and input variables may be subject to constraints, and it may be of
interest to have a suitable trade-off between performance and command effort.

NMPC is a suitable approach to tackle such a control problem and it is based on two
key operations: prediction and optimization. At each time t = tk, the system state and
output are predicted over the time interval [t, t + Tp], where Tp � Ts is called the prediction
horizon. The prediction is obtained by integration of the model Equation (4). For any
t 2 [t, t + Tp], the predicted output ŷ(t) is a function of the “initial” state x(t) and the
input signal:

ŷ(t) ⌘ ŷ(t, x(t), u(t : t)),

where u(t : t) denotes the input signal in the interval [t, t]. The basic idea of NMPC (and
of the most predictive approaches) is to look for an input signal u⇤(t : t) at each time t = tk,
such that the prediction ŷ(t, x(t), u⇤(t : t)) has the desired behavior in the time interval
[t, t + Tp]. The concept of desired behavior is formalized by defining the objective function

J
�
u(t : t + Tp)

� .
=

Z t+Tp

t

⇣��ỹp(t)
��2

Q + ku(t)k2
R

⌘
dt +

��ỹp(t + Tp)
��2

P, (5)

where ỹp(t)
.
= r(t)� ŷ(t) is the predicted tracking error, r(t) 2 Rny is the reference to

track, and k·k⇤ is a weighted vector norm. For a generic vector w and a positive definite

Sensors 2021, 21, 4012 9 of 18

weight matrix Q, this norm is defined as kwk2
Q

.
= w>Qw. In most cases, diagonal weight

matrices are used, since the non-diagonal terms are generally difficult to manage/interpret
and their utilization usually does not yield any relevant advantage.

The input signal u⇤(t : t + Tp) was chosen as one minimizing the objective func-
tion J

�
u(t : t + Tp)

�
. In particular, at each time t = tk, for t 2 [t, t + Tp], the following

optimization problem is solved:

u⇤(t : t + Tp) = arg min
u(·)

J
�
u(t : t + Tp)

�

subject to:
˙̂x(t) = f (x̂(t), u(t)), x̂(t) = x(t)

ŷ(t) = h(x̂(t), u(t))

x̂(t) 2 Xc, ŷ(t) 2 Yc, u(t) 2 Uc,

(6)

where 0  Ts  Tp. The fist two constraints in this problem ensure that the predicted state
and output are consistent with the system Equations (4). The sets Xc and Yc account for
other constraints that may hold for the predicted state/output (e.g., obstacles, barriers).
The set Uc accounts for input constraints (e.g., input saturation).

Note that the optimization problem (6) is generally non-convex. Moreover, the decision
variable u(·) is a signal, and optimizing a function with respect to a signal is generally a
difficult task. To overcome this problem, a suitable parametrization of the input signal u
is taken. In particular, the prediction interval [t, t + Tp] is divided into sub-intervals [t +
ti, t + ti+1] ⇢ [t, t + Tp], i 2 {1, 2, . . . , nI + 1}, where the tis are called the nodes. Then, u is
assumed constant on each sub-interval, so that the optimization problem reduces to a finite-
dimension problem, which is solved using an efficient numerical optimization algorithm.

The NMPC feedback command is obtained by solving the optimization problem (6) at
each sampling time t = tk, according to a so-called receding horizon strategy:
• At time t = tk:

– Compute u⇤(t : t + Tp) by solving (6);
– Apply to the system only the first input value: u(t) = u⇤(tk) and keep it constant

for 8t 2 [tk, tk+1];
• Repeat the two steps above for t = tk+1, tk+2. . . .

Such a receding horizon strategy is important in order to have a feedback control
action, which may be crucial in order to stabilize unstable systems, attenuate external
disturbances and properly react if sudden changes occur in the scenario where the system
of interest is operating.

Remark 1. An interesting feature of NMPC (and of its linear version) is its capability to jointly
perform (local) trajectory planning and control. Indeed, the predicted state signal x̂(t : t + Tp)
obtained by solving problem (6) is an optimal trajectory (over a finite time interval). The correspond-
ing control input u⇤(tk) is the command making the system track this optimal trajectory. Note that
the optimal trajectory and command are computed in real time and updated at each sampling time
according to the receding horizon strategy, allowing the vehicle to promptly adapt to possible road
scenario variations.

3.2. TPC Design and Implementation
In this section, a trajectory planning and control (TPC) algorithm is designed, based on the

NMPC approach described in Section 3.1 and then implemented on an embedded processor.

3.2.1. TPC Design
Consider the block diagram in Figure 7. We can distinguish the following blocks:

• Ego vehicle. Autonomous vehicle whose trajectory must be planned and controlled.
• Scenario, Perception. Provides road and obstacle information.

Sensors 2021, 21, 4012 10 of 18

• TPC. Trajectory planning and control algorithm which includes the NMPC controller
and a planner.

TPC

NMPC Vehicle
Dynamics
(ego vehicle)

Scenario,
Sensors,

Perception

DSTP

Optimizer

Planner

Decision Making

Reference Maneuver

!!, !", ##, %̇,
&$, &%, '&

(',)(! * ,
))"(*),))#(*)

-#, .*

Figure 7. Block diagram of the TPC algorithm.

The main variables of the block diagram in Figure 7 are as follows:
• S: reference path
• rS: curvature of the reference path
• rvx : reference speed
• rey : reference lateral deviation
• rey : reference heading angle deviation
• u = (ax, d f): ego vehicle command input

The planner includes a decision-making block that is a state machine based on the
Markovian Decision Process (MDP) which decides the maneuvers that the autonomous
vehicle should execute depending on its current driving scenario. The set of maneuvers
which are planned should take the rules of the road into account and the interactions with
all static and dynamic objects in the environment. The set of decisions made must ensure
vehicle safety and efficient motion through the environment. Although the definition
of this block is out of the scope of this paper, in Section 3.3 a subset of the necessary
conditions to execute an overtaking maneuver is presented. Based on the output of the
decision-making block, we then calculate a path and velocity reference depending on the
type of the maneuver (for the overtaking maneuver, see Section 3.3). Then, the computed
references are given to the NMPC controller.

Remark 2. The reference path is a geometric curve indicating to the ego vehicle where to move in a
two-dimensional domain. It is important to note that, in general, this kind of path is not consistent
with the vehicle dynamics. On the contrary, the trajectory planned by the NMPC algorithm satisfies
the vehicle dynamics equations. We can say that the NMPC provides a trajectory close to the desired
path, and this trajectory is consistent with the vehicle dynamics.

The NMPC is designed according to Section 3.1 with a slight modification of the
objective function (5); instead of the second term u(t), its derivative is used since we
are interested in minimizing the amplitude of the jerk and steering speed instead of the
acceleration and steering angle. The details of the NMPC design are as follows:
• Prediction model: DSTP Equations (1) and (3).

state: x = (X, Y, vx, vy, y, ẏ, ey, ey),
output: y = (vx, ey, ey),
command input: u = (ax, d f).

Sensors 2021, 21, 4012 11 of 18

• Input constraints:
d f 2 [p

6 , p
6] , ax 2 [�5, 3]

• State/output constraints:
road constraint: �(w1 � lw/2) < ey < (w2 � lw/2)
obstacle collision constraints: ce /2 co
where ce is the set of ego vehicle body geometry positions and co is the set of
all obstacle/vehicle body geometry position predictions.

• Sampling time: Ts = 0.1
• Prediction horizon: Tp = 1
• Input nodes: ti = 0.5
• Weight matrices: Q = diag(1, 10, 10), P = diag(0, 0, 0), R = diag(1, 0.1).

3.2.2. TPC Implementation
The TPC algorithm has been implemented and tested in Matlab/Simulink, and

hardware-in-the-loop tests were also performed using the Nvidia Jetson Nano board
(see Figure 8).

In order to implement the algorithm on hardware, the algorithm was converted from
a Matlab/Simulink code to C++ code by means of the Matlab/Simulink automatic code-
generation tool. Then, the C++ code was deployed and built on the Jetson Nano board.
Hardware-in-the-loop tests were carried out to validate the algorithm, where the vehicle
was simulated in real-time on a PC, using the Matlab Automated Driving toolbox and
Simulink Desktop Real-Time, while the TPC algorithm was running on the Jetson board.

The tests showed that the algorithm is computationally efficient to make its implemen-
tation possible on an embedded processor and executed in real-time. More specifically, the
Jetson Nano board has a Quad-core ARM A57 processor with a clock speed of 1.43 GHz,
and the time required by a single core of the processor to compute the optimal trajectory
and the related command inputs is 25 ± 5 ms, allowing adequate sampling time for the
algorithm (typically, sampling times of 50 to 100 ms are adequate for effective vehicle
dynamics control).

Nvidia Jetson Nano

Figure 8. Hardware-in-the-loop (HIL) simulation.

It is worth mentioning that the computation time of the algorithm on a PC with a
core i7-7700 3.6 GHz processor was 20 ± 6 ms, which is not much different from the one
obtained with the embedded processor. Indeed, even though the PCs processor is much
more powerful, the code running on the embedded processor is optimized and compiled
into machine language unlike the PC, where the code runs in Matlab without compilation.

Sensors 2021, 21, 4012 12 of 18

For comparison, a state-of-the-art approach for on-line trajectory planning and control
has been considered. The approach is based on A* (trajectory planning), PID (longitudinal
control) and Stanley (lateral control). On the same PC described above, using the A*
algorithm of Matlab, the approach took 260 ± 150 ms for computing the optimal trajectory
and the related command inputs.

3.3. Overtaking Maneuver
Overtaking is one of the most frequently used and challenging maneuvers for AVs.

Although there are several papers regarding the design of an overtaking trajectory [21–23],
as discussed in the introduction, the majority of these approaches, such as trajectory
planning and vehicle control, are carried out separately, resulting in possibly non-optimal
vehicle motion. In this section, we parameterize the overtaking maneuver, and in the next
section the parameters are learned from real-world experimental data in order to imitate
human behaviour.

The overtaking maneuver consists of three phases. Phase 1 is diversion from the lane,
Phase 2 is driving straight in the adjacent lane, and Phase 3 is returning to the lane (see
Figure 9). pe(S, t) and po(S, t) are the positions of the ego vehicle and the overtaken vehicle
projected along path S (path S is the center of the right lane in Figure 9, and dp(t) is the
path length between pe(S, t) and po(S, t). In order to determine the beginning and ending
of each phase, we can parameterize the overtaking maneuver as follows:
• Phase 1 starts if dp(t) < d1
• Phase 2 starts if dp(t) < d2
• Phase 3 starts if dp(t) > d3
• Phase 3 ends if dp(t) > d4

!!(#)
!"(#)

%#

%$
%%

%&

= ## # = #$
= #%

= #&

'"((, #) '!((, #)

(

Figure 9. Overtaking maneuver, Phase 1: 8t 2 [t1, t2), Phase 2: 8t 2 [t2, t3], Phase 3: 8t 2 (t3, t4].

The distances di, i = 1, 2, 3, 4 are not constant. A reasonable assumption is then to
consider them as functions of ego vehicle speed (ve):

di = kive(ti) for i = 1, 2, 3, 4. (7)

The speed of the ego vehicle in Phase 2 must be greater than the speed of the overtaken
vehicle vo(t). Therefore,

8t 2 [t2, t3]

ve(t) = vo(t) + dv if ve(t) < vo(t) + dv
ve(t) = ve(t1) if ve(t) � vo(t) + dv.

(8)

Sensors 2021, 21, 4012 13 of 18

Finally, the vehicle must return to its original speed at the end of Phase 3:

ve(t4) = ve(t1). (9)

We can compute the reference acceleration as follows:

a(t) = min(a,
(ve(t2)� vo(t))2 � (ve(t)� vo(t))2

2(dp(t)� d2)
) 8t 2 [t1, t2)

a(t) = 0 8t 2 [t2, t3]

a(t) = max(a,
(ve(t4)� vo(t))2 � (ve(t)� vo(t))2

2(d4 � dp(t))
) 8t 2 (t3, t4],

(10)

where a, a are the maximum and minimum acceleration during the overtaking maneuver.
Let’s assume the parameters k1, k2, k3, k4, dv, a, and a are known; in the next section, we
use real overtaking data to learn these parameters. Then, we compute the time required to
finish each phase, which is denoted by T(t):

dp(t)� d2 =
1
2

a(t)T(t)2 + (ve(t)� vo(t))T(t) 8t 2 [t1, t2)

d3 + dp(t) = (ve(t)� vo(t))T(t) 8t 2 [t2, t3]

d4 � dp(t) =
1
2

a(t)T(t)2 + (ve(t)� vo(t))T(t) 8t 2 (t3, t4].

(11)

Finally, the references for the NMPC controller are computed as follows: the reference
speed (rvx) is computed according to Equations (8)–(10), and the reference lateral deviation
and heading angle (rey , rey) are computed as follows:

rey (t) = ey(t) + (L � ey(t))(10(
t

T(t)
)3 � 15(

t
T(t)

)4 + 6(
t

T(t)
)5) 8t 2 {[t1, t2) [(t3, t4]}

rey (t) = w 8t 2 [t2, t3]

rey (t) = arctan(
rey (t + Ts)� rey (t)

rvx (t)Ts
),

(12)

where w is the lane width, L = w during Phase 1, and L = 0 during Phase 3.

3.4. Parameter Learning
In this section, the parameters defined in Section 3.3 are learned using the experimental

data described in Section 2.3. By using the data generated for each set of experimental over-
taking maneuvers, an equivalent MATLAB scenario has been created in order to compare
the maneuvers done by a real driver and the maneuvers done by the TPC algorithm.

In order to tune the parameters, first we define an objective function which gives us
a quantitative measure of how close the real and the TPC algorithm maneuvers are. The
objective function is defined as:

J(k1, k2, k3, k4, dv, a, a) =
N

Â
i=1

Z tr
3

tr
1

����
es

y(t + Dt(i), i)� er
y(t, i)

dps(t + Dt(i), i)� dpr(t, i)

����dt (13)

Dt(i) = tr
2(i)� ts

2(i), (14)

where N is the number of experimental scenarios. The purpose of Equation (14) is to
synchronize the real and the TPC algorithm maneuvers in time according to a common
event, such as the moment that the ego vehicle passes the overtaken vehicle and the two
vehicles are aligned wrt to their lateral axis (see Figure 10). The objective function 13
compares the distance of the ego vehicle to the overtaken vehicle and the ego vehicle lateral
deviation in the time-frame of the real maneuver to the TPC algorithm maneuver. The

Sensors 2021, 21, 4012 14 of 18

parameters have been learned by solving the following optimization problem by means of
Monte Carlo simulations:

(k1, k2, k3, k4, dv, a, a)⇤ = arg min
k1,k2,k3,k4,dv,a,a

J(k1, k2, k3, k4, dv, a, a), (15)

where the star indicates the solution of the optimization problem. The values obtained
from this optimization process are shown in Table 1.

!!"(#)

%#$(&, !, #) %%(&, !, #)

&
%#"(&, !, #)

(&$(!, #) (&"(!, #)

!'" # , !'$(#) !("(#)
!!$(#)

!($(#)

Figure 10. The yellow line/vehicle is the real driver denoted by superscript r; the blue line/vehicle is the TPC algorithm
simulation denoted by superscript s; i is an index for the i-th experimental scenario.

Table 1. Overtaking maneuver parameters.

k1 k2 k3 k4 dv a a

2 0.5 0.5 1.6 6.5 (m/s) 0.4 �0.3

4. Results and Discussion

To illustrate the efficiency of the proposed method, the TCP algorithm has been
tested in simulation on a subset of the experimental scenarios, described in Section 2.3,
that was not used for parameter learning in Section 3.4. The experimental scenarios
consist of overtaking maneuvers performed by 10 participants. The vehicle speed in
these experiments range from 90 km/h to 130 km/h. For each set of data collected in
the experiments, an equivalent MATLAB scenario was created, where the ego vehicle is
driven by the TPC algorithm instead of the participants. We can observe that this setting
is possible only if the participants did not cause the other vehicles to behave differently.
Therefore, the scenarios are independent from the trajectory of the ego vehicle. The vehicle
model used in the simulations (Figure 7, vehicle dynamics block) has been taken from the
MATLAB Vehicle Dynamics Toolbox called the “Vehicle Body 3DOF Dual Track”, with the
following parameter values: distance from CoG to the front/rear wheels center l f = 1.58 m,
lr = 1.58 m, mass m = 2100 kg, yaw polar inertia Iz = 4000 kg m2, front/rear cornering
stiffness c f = 27 ⇥ 103 N/rad, cr = 20 ⇥ 103 N/rad.

To evaluate the performance of the TPC algorithm, different criteria have to be con-
sidered. Firstly, the algorithm should be able to successfully accomplish the required task
(overtaking maneuver), also providing a certain precision in terms of reference maneuver
tracking. Secondly, we have to guarantee a safe maneuver by ensuring an adequate dis-
tance from the other vehicles/obstacles in the scenario. Finally, the maneuver should be
comfortable, or in other words, the trajectory of the vehicle must be sufficiently smooth.

In terms of task achievement, in all the performed simulations, the TPC algorithm
accomplished the overtaking maneuver with satisfactory precision. In terms of safety, the
vehicle was able to keep a safe distance from the other vehicles and road boundaries. In this
regard, it is worth mentioning that there are two levels of safety measures considered in the
algorithm. The first one is in charge of the decision-making block, which decides collision-
free maneuvers that the autonomous vehicle should execute (see Section 3.2). The second
one is given by the dynamic constraints in the NMPC controller (see Section 3.1). The

Sensors 2021, 21, 4012 15 of 18

constraints in the controller guarantee that the ego vehicle trajectory is collision-free as long
as it is physically possible to avoid a collision in the considered prediction time interval.
Finally, in terms of comfort, the maneuvers performed by the TPC algorithm generally
turned out to be smoother than those performed by the human driver. To mathematically
assess these three general criteria, the following KPIs were considered:
• KPI1: Root Mean Square (RMS) value of the lateral acceleration
• KPI2: RMS value of the longitudinal jerk
• KPI3: RMS value of the steering velocity (rad/s)
• KPI4: RMS value of lateral deviation from lane center during Phase 2 of the overtake

All the above KPIs can be considered as quantitative measures of the maneuver
precision, safety, and passenger comfort. The KPI mean values obtained by simulations
on five different scenarios created from the real experiment data are reported in Table 2,
where the values given by the proposed TPC MPC algorithm are compared with the ones
obtained by the human driver in the real driving maneuvers and with the ones given by
a state-of-the-art approach based on the well-known Stanley controller. In this approach,
trajectory planning is performed in two steps: (1) a set of points is defined, describing a
discontinuous change from the current lane center to the overtaking lane center and back;
(2) the set of points is smoothed by means of the Lowess algorithm. Since no scenario
variations occurred in the simulations carried out, trajectory planning was performed only
at the beginning of the overtaking maneuver. If the road scenario is subject to changes (e.g.,
arrival of other vehicles or obstacles), this simple trajectory planning approach is no longer
adequate and a more sophisticated one, working on-line, has to be used (e.g., A*, RRT). A
PID regulator is used for longitudinal dynamics control, and the Stanley algorithm is used
for lateral control. Stanley is the controller that won the 2005 DARPA Grand Challenge [12].

Table 2. KPI mean values ± standard deviation obtained by simulations on five different scenarios
created from real experiment data.

Simulation KPI1 KPI2 KPI3 KPI4

Human driver 0.53 ± 0.20 0.022 ± 0.012 0.004 ± 1 ⇥ 10�3 0.226 ± 0.041
TPC Stanley 0.46 ± 0.11 0.044 ± 0.015 0.025 ± 1 ⇥ 10�2 0.47 ± 0.05
TPC MPC 0.21 ± 0.09 2.3 ⇥ 10�4 ± 7.3 ⇥ 10�5 0.004 ± 9 ⇥ 10�4 0.020 ± 0.005

It can be seen from the data in Table 2 that all the KPIs have lower values in the ma-
neuvers done by the TPC MPC algorithm, which interestingly indicates that the algorithm
outperforms the human driver and the TPC Stanley in terms of comfort and precision. Ad-
ditionally, the Stanley controller has some oscillations at high speeds, since it was originally
designed for low-speed maneuvers. As an example, Figure 11 provides longitudinal and
lateral accelerations, steering angles, and lateral deviation from the center of the first lane
for one of the above-mentioned scenarios. The ego vehicle initial speed was 108 km/h, and
the algorithm was able to accelerate and overtake very smoothly with much less lateral
acceleration and no overshoot in the lateral deviation compared to the real driver.

Apart from task achievement, safety and comfort, the goal of tuning the algorithm
parameters (see Section 3.4) was to imitate the behaviour of a human driver for the overall
overtaking maneuver. This similarity can be seen visually in Figure 12, where both the
real and TCP maneuvers are animated for the same scenario used in Figure 11. Although
the experiment scenario in this animation was not used for parameter learning, we can
see how similar the two maneuvers are, or in other words, how much the TCP algorithm
imitates the human driver.

Sensors 2021, 21, 4012 16 of 18

Figure 11. Simulation results. Blue lines: real maneuver data; Black lines: TPC maneuver data.

Figure 12. Comparison of the real maneuver and the TPC maneuver. Please view with Adobe Acrobat to see animations.

In summary, these results show that the proposed TPC algorithm and the formulation
to tune its parameters using real maneuver data is not only able to perform an overtaking

Sensors 2021, 21, 4012 17 of 18

maneuver similar to a human driver, but also explicitly guarantee a safe trajectory in a
comfortable manner.

5. Conclusions

In this paper, we presented a trajectory planning and control algorithm, based on a
Model Predictive Control (MPC) approach, able to work in different road scenarios (such
as urban areas and the motorway). The proposed MPC has been designed considering
imitation-learning from a specific dataset (real-world overtaking maneuver data), with
the aim of getting human-like behavior. This algorithm was used to generate (optimal)
trajectories (for lane-change maneuvers and related overtaking). In conclusion, the MPC
algorithm is able to imitate the human behavior accurately, also providing better KPI values
with respect to the human driver.

As next steps, some possible activities are taken into account. First is the possibility to
consider more complex situations and traffic maneuvers, such as double lane-switching
or intersections, especially in urban scenarios. For this purpose, a cooperative control
approach for AVs can be considered and developed, in order to extend our nonlinear MPC
technique to a system with multiple vehicles (AVs and those that are not). Of course, one
of the problems to face is the computational feasibility in real time, in which each vehicle
computes its own control inputs using estimated states of neighboring vehicles.

Author Contributions: Writing—review and editing, M.K., C.N. and F.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Electronic Components and Systems for European
Leadership Joint Undertaking (ECSEL), which funded the PRYSTINE project under Grant 783190.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Severino, A.; Curto, S.; Barberi, S.; Arena, F.; Pau, G. Autonomous Vehicles: An Analysis Both on Their Distinctiveness and the
Potential Impact on Urban Transport Systems. Appl. Sci. 2021, 11, 3604. [CrossRef]

2. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst.
Sci. Cybern. 1968, 4. [CrossRef]

3. Stentz, A. Optimal and efficient path planning for partially-known environments. In Intelligent Unmanned Ground Vehicles;
Springer: Boston, MA, USA, 1994; pp. 203–220.

4. Uras, T.; Koenig, S. An Empirical Comparison of Any-Angle Path-Planning Algorithms. In Eighth Annual Symposium on
Combinatorial Search; AAAI Publications: Palo Alto, CA, USA, 2015.

5. Warren, C.W. Global path planning using artificial potential fields. IEEE Int. Conf. Robot. Autom. 1989, 316–317. [CrossRef]
6. Kavraki, L.E.; Švestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Trans. Robot. Autom. 1996, 12. [CrossRef]
7. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Annu. Res. Rep. 1998, 129.
8. Roque, W.L.; Doering, D. Trajectory planning for lab robots based on global vision and Voronoi roadmaps. Robotica 2005, 23.

[CrossRef]
9. Narendran, V.; Hedrick, J. Autonomous Lateral Control of Vehicles in an Automated Highway System. Veh. Syst. Dyn. 1994,

23, 307–324.
[CrossRef]

10. Ji, J.; Khajepour, A.; Melek, W.W.; Huang, Y. Path planning and tracking for vehicle collision avoidance based on model predictive
control with multiconstraints. IEEE Trans. Veh. Technol. 2006, 66, 952–964. [CrossRef]

11. Rajamani, R. Vehicle Dynamics and Control; Springer: Boston, MA, USA, 2006.
12. Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.; Diebel, J.; Fong, P.; Gale, J.; Halpenny, M.; Hoffmann, G.; et al.

Stanley: The robot that won the DARPA Grand Challenge. J. Field Robot. 2006, 23, 661–692. [CrossRef]
13. Soudbakhsh, D.; Eskandarian, A. Vehicle Lateral and Steering Control. In Handbook of Intelligent Vehicles; Eskandarian, A., Ed.;

Springer: London, UK, 2012; pp. 209–232. [CrossRef]

Sensors 2021, 21, 4012 18 of 18

14. Huang, J. Vehicle Longitudinal Control. In Handbook of Intelligent Vehicles; Eskandarian, A., Ed.; Springer: London, UK, 2012;
pp. 167–190.

15. Tseng, H.E. Vehicle Dynamics Control. In Encyclopedia of Systems and Control; Baillieul, J., Samad, T., Eds.; Springer: London, UK,
2020; pp. 1–9.

16. Dominguez-Quijada, S.; Ali, A.; Garcia, G.; Martinet, M. Comparison of Lateral Controllers for Autonomous Vehicle: Experimental
Results. HAL Archives. 2020. Available online: https://hal.archives-ouvertes.fr/hal-02459398/document (accessed on
10 June 2021).

17. Prystine. Programmable Systems for Intelligence in Automobiles, ECSEL Joint Undertaking. Available online: https://prystine.
automotive.oth-aw.de (accessed on 10 June 2021).

18. Findeisen, R.; Allgower, F. An Introduction to Nonlinear Model Predictive Control. In Proceedings of the 21st Benelux Meeting
on Systems and Control, Veldhoven, The Netherlands, 19–21 March 2002; Volume 11, pp. 119–141.

19. Magni, L.; Raimondo, D.; Allgower, F. Nonlinear Model Predictive Control—Towards New Challenging Applications. In Lecture
Notes in Control and Information Sciences; Springer: Heidelberg, Germany, 2009.

20. Grune, L.; Pannek, J. Nonlinear Model Predictive Control—Theory and Algorithms. In Communications and Control Engineering;
Springer: London, UK, 2011.

21. Németh, B.; Gáspár, P.; Hegedűs, T. Optimal control of overtaking maneuver for intelligent vehicles. J. Adv. Transp. 2018, 2018,
2195760. [CrossRef]

22. Zhang, M.; Zhang, T.; Yang, L.; Xu, H.; Zhang, Q. An autonomous overtaking maneuver based on relative position information.
In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018.

23. Shamir, T. How should an autonomous vehicle overtake a slower moving vehicle: Design and analysis of an optimal trajectory.
IEEE Trans. Autom. Control 2004, 49, 607–610. [CrossRef]

