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ABSTRACT: 
 
During the last few years, the technical and scientific advances in the Geomatics research field have led to the validation of new 
mapping and surveying strategies, without neglecting already consolidated practices. The use of remote sensing data for damage 
assessment in post-disaster scenarios underlined, in several contexts and situations, the importance of the Geomatics applied techniques 
for disaster management operations, and nowadays their reliability and suitability in environmental emergencies is globally recognized. 
In this paper, the authors present their experiences in the framework of the 2016 earthquake in Central Italy and the 2019 Cyclone Idai 
in Mozambique. Thanks to the use of image-based survey techniques as the main acquisition methods (UAV photogrammetry), damage 
assessment analysis has been carried out to assess and map the damages that occurred in Pescara del Tronto village, using DEEP 
(Digital Engine for Emergency Photo-analysis) a deep learning tool for automatic building footprint segmentation and building damage 
classification, functional to the rapid production of cartography to be used in emergency response operations. The performed analyses 
have been presented, and the strengths and weaknesses of the employed methods and techniques have been outlined. In conclusion and 
based on the authors' experience, some operational suggestions and best practices are provided and future research perspectives within 
the same research topic are introduced. 
 
 

1. INTRODUCTION 

1.1 Geomatics tools for damage assessment 

Disasters that hit communities and places strongly affect our 
history and culture. Nevertheless, disaster events can be 
monitored, sometimes predicted and their effect mitigated using 
the right tools.  
Among different strategies and techniques applied in this specific 
context, Geomatics had a prominent role in documenting and 
archiving spatial 3D information, using image-based and range-
based metric survey systems. 
The easiness of deploying UAV platform and performing aerial 
photogrammetric survey made aerial photogrammetry the best 
rapid mapping method for performing emergency cartography, 
supporting the intervention in the field of firefighters and first 
responders (Calantropio et al., 2018) 
Different kinds of damage classification grades have been 
introduced over time. While Copernicus EMS uses five damage 
classes (Grünthal, 1998), the BAR Methodology uses four 
classes ("critical visible damage"; "significant visible damage"; 
"minimal visible damage" and "no visible damage"); the 
UNOSAT classification uses a binary approach ("damaged"; "not 
damaged"). An exhaustive analysis of the different damage scales 
used for building damage assessment by the main satellite-based 
emergency mapping service has been discussed (Cotrufo et al., 
2018), stating that different damage classes and detailed 
interpretation guidelines with operational examples are crucial 
for assuring the suitable analysis of the analyzed data. 

 
*  Corresponding author 
 

Damages can be categorized based on the observation of the 
building's morphological features and their spectral features 
(distribution of brightness, the regularity of the texture, etc.) (Li 
& Tang, 2018). 
A method is to use both pre-event and post-event data, which 
unfortunately are not always available - like pre-event and post-
event TerraSAR-X (TSX) radar images, VHR remote sensing 
imagery from satellite (including DigitalGlobe's WorldView 
satellites), UAV and ground-level images.  
Building footprints are usually the easiest kind of data to retrieve 
and are obtainable from different sources, such as pre-event 
vector maps or cadastral maps. These sources are unfortunately 
not always up to date; for this reason, when building vector 
footprints are not available or outdated, it is possible to exploit 
other kinds of pre-event data, such as VHR satellite image or 
aerial image that (if relatively recent) allows a manual 
interpretation of the building's boundaries (Li & Tang, 2018). 
Some experience (Cotrufo et al., 2018) underlined that it is 
impossible to directly apply the damage classification scales 
proposed (Grünthal, 1998) for addressing slight structural 
damages using remotely sensed images. Even if satellite images 
can achieve sub-meter resolution, there are still issues in 
identifying partially damaged buildings; for this reason, data 
integration from UAV-derived information remains crucial (Li & 
Tang, 2018). Pre-earthquake condition imagery data can be 
retrieved from online platforms that use different sources for 
providing RGB orthophotos (derived from UAV or aerial or 
satellite photogrammetry). Unfortunately, online data are limited 
in time and space (i.e., only certain regions are mapped). 
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1.2 WFP experience in Mozambique after cyclone Idai: 
Artificial intelligence for geospatial data analysis in 
emergency contexts 

In recent years, AI (artificial intelligence) techniques, such as ML 
(machine learning) and, more specifically, DL (deep learning), 
have evolved, supporting human activities in different fields. 
Apart from examples related to disaster management and damage 
assessment based on pre-event and post-event data (Nia & Mori, 
2017), there are wide-ranging examples of Deep Learning 
techniques such as convolutional networks for biomedical image 
segmentation (Ronneberger et al., 2015) employed for medical 
purposes such as cancer detection (Hu et al., 2018; Shen, 2017; 
Shen et al., 2017)1. 
2012 was a crucial year for Deep learning, after discussing the 
ImageNet contest results (Krizhevsky et al., 2017) and the 
demonstrated capability to recognize objects comparing millions 
of images without human-codified instruction. When big data 
trained-sets are available, deep learning constitutes a good 
alternative compared to classical algorithms such as Support 
Vector Machine (Cortes & Vapnik, 1995) or Random Decision 
Forests (Ho, 1995), which usually better perform on structured 
data, such as tables and images. 
After an emergency strikes, people affected are in the most 
vulnerable situation and taking the right decision at the right time 
is fundamental to minimize the impact on their lives. The WFP 
(World Food Programme) has seen that with an appropriate UAV 
prepositioning workflow (developed during the SEARCH 
project)2, it is possible to collect high-value data in a small 
amount of time. The most significant limitation of this approach, 
amplified by the offline environment, is that it takes days to 
manually analyze the information in a structured and reliable 
way. 
WFP, therefore, developed its open-source solutions tailored to 
the emergency context where object recognition can enrich and 
expedite humanitarian decision-making: DEEP (Digital Engine 
for Emergency Photo-analysis)3. 
After Idai hit Mozambique in June 2019, DEEP was tested in 
Maputo, Mozambique, with partners from the INGC (Instituto 
Nacional de Gestão de Calamidades - National Institute of 
Disaster Management - Mozambique) and students from Eduardo 
Mondlane University. Ten participants annotated UAV imagery 
during a ten-day training workshop, later fed into the DEEP 
algorithm, thereby grasping machine learning basics 
(Codastefano, 2019). DEEP automated the analysis and 
processing of high-resolution images – a process that can 
significantly speed up humanitarian response4 . Its ease of use 
and modular design based on traditional computing (instead of 
cloud computing) is a perfect solution for emergency settings 
where power is limited and internet connectivity patchy. The 
software, designed by TECF, can be installed on any laptop to 
run a model that can automatically extract objects from drone 
imagery, classify them as damaged or intact, and plot these on a 
map (Figure 1). 
As such, models need to be trained and able to use drone images 
at various resolutions, depending on resource availability and 
field conditions. With the correct data, DEEP can also help with 
diverse tasks such as identifying standing water pools following 
a cyclone to help monitor potential cholera and malaria 
outbreaks. 

 
1 https://github.com/lishen/end2end-all-conv 
2 https://medium.com/world-food-programme-insight/this-workshop-

came-along-at-the-right-time-14ed453915ef 
3 https://www.wfp.org/stories/joining-dots-how-ai-and-drones-are-

transforming-emergencies 
4 https://medium.com/world-food-programme-insight/human-itarian-

face-of-technology-e74b822b58cc 

In 2019, Cyclones Idai and Kenneth ravaged large swaths of 
southern and northern Mozambique, destroying homes, 
livelihoods and displacing nearly two million people. Working 
closely with the government and partners on the field, it was the 
first time WFP deployed drones during an emergency response. 
A few months later, INGC and WFP drones' combined effort 
provided a wealth of valuable data and insight, including maps 
and aerial imagery. Using this data is a unique opportunity to 
develop machine learning capacity in a real-world situation. 
 

   
Figure 1. On the left: Orthophoto of Beira in 2019 after the 

cyclone Idai. On the right: WFP's DEEP software shows 
damaged houses in red and undamaged ones in purple — 

patchwork drone imagery turned into a detailed map. 
Image: WFP. 

 
DEEP is wholly based on Open-Source dependencies and 
specifically (but not only) on QGIS5 and GDAL6. During its 
development, the QGIS guidelines have been followed to create 
a widely compatible and standardized solution that can provide a 
high degree of deployability comparable to similar commercial 
solutions.  
Because a neural network is not capable to efficiently work on a 
large image (such as a UAV-generated orthoimage), the primary 
requirement and the preliminary step of the workflow is to 
subdivide it into tiles of 1024x1024 pixels each; DEEP exploits 
the VRT format to keep the georeferentiation of the generated 
tiles, simplifying the ML task. The other important characteristic 
of DEEP is that it is possible to access different libraries for 
managing the VRT (thanks to GDAL), recompacting files, using 
a filter (SIEVE) that allows ignoring segmented geometries with 
an area lower than a specified number of square pixels and, in the 
end, transforming the generated raster of the segmentation into a 
geojson file using the option "poligonize" (initially bugged, this 
option has been corrected in the framework of this research). 
The original idea of the workflow on which DEEP is based is 
inspired by the Zanzibar Aerial Mapping Project7 adapted with a 
custom implementation to extract the building segmented by the 
segmentation model (building/not building) to reclassify them 
according to the damage level (not damaged/damaged/empty). 
UNET8 (Ronneberger et al., 2015), based on KERAS9, was 
successfully tested on the Zanzibar dataset, and therefore 
implemented in DEEP. To tackle the emergency generated by 

5 https://www.qgis.org/ 
6 https://gdal.org/ 
7 https://github.com/daveluo/zanzibar-aerial-mapping 
8 https://github.com/zhixuhao/unet 
9 https://keras.io/api/ 
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Idai, the model was re-trained using images acquired on the field 
after the disaster. 
In March 2020, the Open Cities AI Challenge: Segmenting 
Buildings for Disaster Resilience10 took place, and after studying 
the result of the challenge, it turned out that the 3rd classified 
solution, provided by Michael Busta11 and based on (Lin et al., 
2016),  had suitable characteristics for being included (after 
practical implementations in pre-processing and post-processing) 
in DEEP, therefore substituting its original embedded ML 
segmentation model. 
The damage classification model considers a minimum tile that 
includes the previously segmented buildings and classifies them 
according to the damage. The level of damage is assigned as an 
attribute of the previously segmented shape of the building 
footprint. 
Because image classification (a whole image is classified and a 
single label is given as an output) is generally more 
straightforward than image segmentation (each pixel of the image 
is classified and a label is assigned to each pixel) (Blaschke, 
2003), through negative mining, it is possible to create an 
"empty" class to detect (using the classification model) the 
segmented part of the images that were erroneously classified as 
buildings, to purge them from the final classification output. In 
this way, the "empty" class allows an optimization of the 
segmentation output, exploiting the fact that the classification 
model performs better in this task compared to the segmentation 
one. 
DEEP works well with UAV-generated orthoimages at the 
current optimization and development (from 6 to 9 cm/pix GSD). 
For this reason, the use of satellite images, which are usually 
lower in resolutions, does not produce good results. 
 
1.3 Politecnico di Torino experience in 2016 Central Italy 
earthquake 

The 2016 earthquake experience in central Italy has been a 
validation field for many survey and mapping strategies proposed 
during recent years by the Geomatics research community. 
Exploiting the last decade's technical and technological advances 
for emergency response purposes is one of the more crucial 
topics, intending to obtain and efficiently organize high-scale 
reliable geospatial data for the early warning, impact, and 
recovery phases. In this sense, Geomatics applied techniques in 
DM (disaster management) are primarily devoted to enhancing 
search and rescue, analysis and assessment, damage monitoring, 
and emergency management activities. 
BDA (building damage assessment) operations involve 
experimental sensors and approaches that work together or are 
combined with more traditional and consolidated practices. 
Remote sensing data in BDA is traditionally used through visual 
interpretation of operators; this is a time-consuming task. The 
new requests from the FR (first responders) are nowadays 
oriented towards quasi-real-time data processing and fast 
production of emergency cartography on different scales. 
Based on previous similar experiences (Calantropio et al., 2018), 
UAV flights over damage sites capturing high-resolution video 
footage and photos for obtaining 3D models, and orthoimages 
using SfM techniques are nowadays consolidated methodologies 
for obtaining rapid and reliable information of the areas affected 
by a disaster.  
In this scenario, different tests have been carried out during the 
post-earthquake documentation activities conducted by the 
Politecnico di Torino Geomatics group in cooperation with the 

 
10 https://github.com/ntarn/open-cities-ai-challenge 
11https://github.com/drivendataorg/open-cities-ai-

challenge/tree/master/3rd%20Place 

SAPR team of the Italian Fire Fighters and the GEER 
association12 (Geotechnical Extreme Events Reconnaissance 
association). 
Politecnico di Torino is an Italian technical university that has 
contributed to this direction, applying knowledge and resources 
to the study of calamities and disasters and their effect on the 
natural and built environment. Especially after the seismic 
swarms that hit Italy in August 2016, a task force made of 
volunteers among professors and researchers was created to 
document and study each phase of the event and their effects and 
guide the necessary interventions. Several UAVs and sensors 
were employed to define standards and guidelines for data 
acquisition and processing according to the different platforms, 
payloads, imaging sensors, and required accuracy of the final 
output. 
Summarising the obtained results and according to the achieved 
final products, it is possible to define some essential items that 
need to be considered to get suitable outputs for the BDA 
operations. Concerning the image-acquisition phase, it is 
recognized that, in addition to the nadir acquisitions, the use of 
oblique images (Aicardi et al., 2016; Duarte et al., 2017; Ezequiel 
et al., 2014) is crucial and fundamental for improving the 3D 
reconstruction part (especially in urban areas) and it is also 
essential during the BBA (bundle block adjustment) since the use 
of those images allow to increase the rigidity of the 
photogrammetric block and, consequently, allowing the 
possibility of decreasing the number of the used GCPs (ground 
control points) when platforms without RTK/PPK are employed 
(Nesbit & Hugenholtz, 2019; Ostrowski & Bakuła, 2016). 
Another important aspect is related to the GCPs acquisition and 
the accuracy evaluation. If, on the one hand, it is crucial to obtain 
data very quickly during an emergency, on the other hand, it is 
essential to verify the final accuracy of the achieved output. To 
follow these objectives, using a minimum number (4-5) of well-
measured points on the field is an essential requirement in case 
of acquisition performed using platforms without RTK/PPK 
capability. Following this practice could be a plus for the 
platforms with accurate onboard GNSS since the use of the 
surveyed data is necessary for evaluating the final accuracy 
(using them as checkpoints) or to improve the quality of the 
camera calibration (Gabrlik et al., 2018). 
Finally, concerning the data-processing and apart from the 
possibility of having in a short time reliable and high-resolution 
3D models useful for BDA activities, the possibility of 
combining multi-temporal acquisitions in a typical project 
(Aicardi et al., 2016) allows the monitoring of the affected area 
across time accurately. 
Following the strategy mentioned above, the experiences carried 
out during the 2016 Earthquakes were deployed mainly using 
COTS (commercial off-the-shelf) multi-rotor and fixed-wing 
platforms. In September, October, November 2016, and February 
2017, the acquisitions were performed over different villages 
with multi-sensors documentation of buildings and urban areas 
heavily and repeatedly damaged by the numerous seismic events. 
Several villages have been surveyed, such as Pescia, Pescara del 
Tronto, Cittareale, Accumoli, Norcia, Castelluccio, Amatrice, 
Campi di Norcia, etc. Multi-scale documentation has been 
achieved to allow the different researchers involved in the 
emergency activities to enrich the knowledge of the areas 
affected by the events. 
In the next chapter of this paper, the first results of the use of 
DEEP are described and analyzed, starting from the achieved 
orthophoto to the performed building damage assessment. 

12   http://www.geerassociation.org 
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2. APPLICATION OF DEEP ON THE 2016 CENTRAL 
ITALY EARTHQUAKE DATASET 

According to the experiences carried out by the WFP on the 
development of DEEP and the expertise of the Geomatics group 
of the Politecnico di Torino, in 2020, a joint research project 
focused on testing the possibilities offered by the proposed Deep 
Learning approach on the data collected during the 2016 post-
earthquake surveys. The first tests related to the Village of 
Pescara del Tronto (Figure 2), seriously affected by the different 
shocks, are reported in detail in the following sections. These 
tests' primary objective is to develop an entirely new automatic 
methodology for damage assessment, not affected by a subjective 
evaluation that could be found in the Copernicus EMS 
classification. 
 
2.1 Segmentation model 

The first test concerned the segmentation model of DEEP that 
can be used (in addition to the existing cartography) to 
automatically detect the building footprint, which will be later 
classified by the classification module.  
After the preliminary test, the building segmentation model was 
performed as expected on the Pescara del Tronto orthophoto 
(Figure 3). Therefore, there was no need to perform any 
additional adjustments to the model. The preliminary evaluation 
of the results showed that a minor amount of non-building items 
(roads, parking lots, etc.) was segmented (recognized as 
buildings). To mitigate the abovementioned issue, a "sieve" filter 
has been applied before generating the final building footprint 
vector, excluding all the items with an area lower than 5 m2. 
It is essential, however, to state that the segmentation model is 
valid only when the building footprint is still clearly 
recognizable; for this reason, in case of destroyed buildings, in a 
situation in which even a trained operator would have difficulties 
in recognizing the original building footprint, it is necessary to 
employ an existing layer of cartography that can provide the 
building footprint. Therefore, the segmentation model will be 
used to detect new buildings or additions built after the ones 
represented in the existing cartography to provide a 
comprehensive and updated cartographic base for the following 
BDA. 
This step's output is a GeoJSON format file containing each 
shape of the buildings with a unique ID and a closed geometry. 
 
2.2 Classification model 

The second step was using the image classification model, 
previously trained with Mozambique and Zanzibar open data, for 
running a preliminary test using the Keras implementation of the 
VGG16 classification algorithm (Simonyan & Zisserman, 2015) 
on the orthophoto of Pescara del Tronto (Figure 3), generated by 
using UAV images gathered on August 2016 (after the first 
seismic swarm). 
The results are shown in the following image (Figure 4). As it is 
possible to observe, the results are inconsistent and do not 
resemble the actual damage classification provided by 
Copernicus, sometimes providing random outputs.  
The reported results were expected because the typology of 
debris produced by Mozambique's catastrophic event are 
substantially different from those in central Italy. It is essential to 
clarify that the challenge of applying this system and method to 
different cities and countries is related to the fact that various 
material and construction techniques generate different debris 
patterns; therefore, the features recognized by the DEEP 
classification model are not comparable at this stage. 
 

 
Figure 2. Orthophoto of Pescara del Tronto (Italy) after the 

2016 seismic event. 
 

 
Figure 3. Automatic building segmentation performed by Deep 

on the Pescara del Tronto 2016 orthophoto. The recognized 
building footprints are represented in blue color. 

 

 
Figure 4. The image shows the damage classification 

performed by DEEP on the Pescara del Tronto 2016 orthophoto, 
using the Mozambique classification model. The not-affected 

buildings are marked in white, while the damaged buildings are 
marked in red colors. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-1-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-1-2021-113-2021 | © Author(s) 2021. CC BY 4.0 License.

 
116



 

With the aim of improving the results obtained in this test, the 
classification layers of the CNN (Convolutional neural network) 
of the image classification model have been re-trained using data 
samples obtained from the UAV surveys performed in three other 
villages affected by the same seismic swarm in Central Italy 
(Figure 5). Thus, the additional samples were selected from the 
orthophotos of the cities of Amatrice, Accumoli, and Norcia 
(August 2016). Moreover, the preliminary test showed the 
adopted solution was still not optimal, as there were again some 
areas of the orthophoto segmented as building. This problem 
outlined the need for more advanced training with three classes: 
"not damaged", "damaged", and "empty". This additional class 
"empty" can be later used to refine the erroneously segmented 
items, eliminating them before the BDA operation. 
 

 
Figure 5. The image shows the neural network blocks that have 

been re-trained in two steps: at first, the classification layers 
(block 6); then the classification layer plus the last block of the 

feature extraction part (block 6 + block 5). 
 
2.3 Training and validation: the dataset 

The training and validation dataset comprises 440 damaged 
buildings, 440 not affected buildings, and 440 Negative examples 
(roads, crop fields, etc.), taken from the orthophotos of Accumoli, 
Norcia, and Amatrice after the seismic swarm of August 2016. 
UAV orthophoto used in the training and validation dataset refers 
to flights performed between the first and the second seismic 
event. So, they are in line and thus comparable with the 
Copernicus EMSR activations 17713 and 19014. 
However, even if the initial data was already labelled and divided 
into five damage classes, according to EMS98 (Grünthal, 1998), 
the different classes were highly unbalanced. Moreover, 
Copernicus's damage classification was performed on aerial data 
(lower resolution than the UAV orthophotos used in this 
research). The classification was subject to human errors, as it 
was an operator-dependent classification. 
For the reasons mentioned above, the data have been divided into 
2 classes of damage, using a binary classification of "not 
damaged" (class 0) and damaged (class 1). As previously 
mentioned, a class "empty" containing negative examples have 
been introduced. 
 
The dataset was therefore divided as follows: 

- 80% Training set. 
- 20% Validation set. 

 
And contained: 

- 440 damaged buildings. 
- 440 not affected buildings. 
- 440 negative examples (roads, crop fields, etc.). 

 
 
 

 
13 https://emergency.copernicus.eu/mapping/list-of-

components/EMSR177 

The data augmentation parameters used for the training phase are 
reported in the appendix at the end of the article. With a batch 
size of 8, there were 660 steps per epoch. 
 
2.4 Training and validation: the results 

Step A: At first, only a re-training of the classification layer has 
been performed. Since the model was already pre-trained on the 
Mozambique data, there was no need for a long training process. 
It was interrupted after epoch 4 – validation accuracy improved 
from 0.91 to 0.95. The details of this step are reported in Table 1 
and Table 2. 
 

 
Actual Class 

Undamaged Damaged Empty 

P
re

di
ct

ed
 

C
la

ss
 Undamaged 78 10 0 

Damaged 2 85 1 

Empty 0 1 87 

Table 1. The confusion matrix (264 images belonging to 3 
classes) shows the validation results obtained after the first 

training. 
 

Class Precision Recall f1-score support 
Undamaged 0.97 0.89 0.93 88 
Damaged 0.89 0.97 0.92 88 

Empty 0.99 0.99 0.99 88 
     

Accuracy   0.95 264 
Macro avg.1 0.95 0.95 0.95 264 

Weighted avg.2 0.95 0.95 0.95 264 
1 averaging the unweighted mean per label. 

2 averaging the support-weighted mean per label. 

Table 2. Main classification metrics after the first training 
(epoch 4 – validation accuracy improved from 0.91 to 0.95 – 

validation loss: 0.14). The table shows a summary of the 
precision, recall, and F1 score for each class. 

 

Step B: In this step, a fine-tuning of the whole neural network 
has been performed, re-training not only the last layer as done in 
the first step but also the last feature extraction block. The process 
was interrupted after epoch 2 – validation accuracy improved 
from 0.89 to 0.97. The details of this step are reported in Table 3 
and Table 4. 
 

 
Actual Class 

Undamaged Damaged Empty 

P
re

di
ct

ed
 

C
la

ss
 Undamaged 83 5 0 

Damaged 3 85 0 

Empty 1 0 87 

Table 3. The confusion matrix (264 images belonging to 3 
classes) shows the validation results obtained after the second 

training. 

 
 

14 https://emergency.copernicus.eu/mapping/list-of-
components/EMSR190 
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Class Precision Recall f1-score support 
Undamaged 0.95 0.94 0.95 88 

Damaged 0.94 0.97 0.96 88 
Empty 1.00 0.99 0.99 88 

     
Accuracy   0.97 264 

Macro avg.1 0.97 0.97 0.97 264 
Weighted avg.2 0.97 0.97 0.97 264 

1 averaging the unweighted mean per label. 
2 averaging the support-weighted mean per label. 

Table 4. Main classification metrics after the second training 
(epoch 2 – validation accuracy improved from 0.89 to 0.97 – 

validation loss: 0.10). The table shows a summary of the 
precision, recall, and F1 score for each class. 

 
2.5 Binary shades for multi classes classification 

After the training and the validation phases, the classification 
model has been tested again on the Pescara del Tronto 
orthophoto. It is essential to clarify that the models have never 
seen Pescara del Tronto's data during the training and validation 
phases. 
After the segmentation, the buildings detected by DEEP were 
subtracted from the buildings provided in the existing 
cartography, generating a layer containing only buildings not 
present in the current cartography. The 3-class classification 
model ("not damaged"; "damaged"; and "empty") has been 
performed only on this last layer, as it might contain wrongly 
segmented items (erroneously segmented as buildings). The 
items classified as "empty" were therefore discarded. The other 
buildings extracted from the existing cartography were classified 
using the 2-class classification model ("not damaged" and 
"damaged") because it was sure that they contained only 
buildings. 
To further improve the quality of the final output, and to make it 
comparable with other damage classification standards (such as 
EMS-98), instead of assigning to each building a value "not 
damaged" or "damaged", it was considered the classification 
likelihood score (from 0 to 1) of belonging to one of the two 
classes. This value has been assumed as a function of the level of 
damage for each of the analyzed buildings. 
The whole workflow is summarized in Figure 6, and the 
classification output is reported in Figure 7. 
All the steps detailed in this chapter were undertaken to refine the 
results initially obtained in Figure 4. The output is a heatmap of 
the damages that exploits the doubts of the classification model, 
using the probability of a building to be "not damaged" or 
"damaged" and assigning a score from 0 to 1 (from white to red). 
However, it is essential to check how the model performed 
compared to the ground truth data (obtained by Copernicus 
EMS). 
 
 
 
 
 
 

 

 
 
 

 
Figure 6. DEEP operative workflow. The diagram shows all the 
steps performed, from image acquisition to damage assessment. 
 

 
 

Figure 7. Damage classification performed by DEEP on the 
Pescara del Tronto 2016 orthophoto, using the new 

classification model based on the central Italy earthquake 
dataset. The color scale shows the classification likelihood score 
of belonging to the "not damaged" class (0 - in white) or to the 

"damaged" class (1 - in red). 
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2.6 Copernicus verification and comparison 

It is not easy to define at the current moment the interval of the 
DEEP's scores that correspond to each of the classes in 
compliance with the EMS-98 classification adopted by 
Copernicus. For this reason, a confusion matrix of the actual and 
predicted level of damages cannot be provided. To give an idea 
for quantifying the method's performance in this specific case, it 
is possible to provide a qualitative comparison between the 
likelihood score assigned by DEEP (0-1 white-red color ramp) 
and the damage level set by Copernicus (Figure 8). 
At this stage, the possibility of assigning, for each class, an 
interval of the score is possible. It will require further tests 
involving a higher number of ground-truth data that can be used 
for a suitable calibration of the score conversion. 
It will also be necessary to re-create a ground-truth dataset, as 
Copernicus's classification is not only subject to bias because of 
its operator-related nature but also performed on aerial images 
with a lower GSD that makes it difficult to assign the right level 
of damage unequivocally. 
Moreover, the next step of the implementation will be to use 3 
level of damage ("not damaged"; "damaged"; "destroyed"; plus 
the "empty" class) because it is relatively easy to distinguish 
between "damaged" and "destroyed" buildings, but the thematic 
accuracy of the intermediate classes of the EMS-98 is not 
sufficient due to the right-from-above point of view of the 
orthophotos (Cotrufo et al., 2018). This additional step will, of 
course, require a re-training and a new fine-tuning of DEEP with 
opportunely classified classes. 
 

 
Figure 8. For each of the classified buildings, a box plot 

diagram shows the damage class assigned by Copernicus (on 
the x-axis) and the relative likelihood score given by DEEP (on 

the y-axis) for each of the items (buildings). The whiskers 
indicate the variability outside the first and last quartiles; the X 

symbol indicates the average value for a given class. 

3. CONCLUSIONS 

During the development of the tests related to this research, it has 
been observed that DEEP works well with orthoimages that have 
a GSD of 9 cm ± 3 cm; this is a good compromise in terms of the 
orthoimages' quality, the number of images required for its 
generation, flight altitude, and time of flight. For example, a DJI 
Phantom 4 RTK can obtain a 9 cm/pix GSD with a flight altitude 
of about 330 m, while the SenseFly eBeeX can get a 9 cm/pix 
GSD with a flight altitude of approximately 390 m.  
It is important to note that the optimal resolution in real case 
scenarios is a function of the flight altitude (and not vice-versa) 
because in the early aftermath of the emergency the drone might 
have to perform a flight. Simultaneously, other aircraft (such as 
helicopters) might need to operate to assist with the ground 
operations and logistics. 
It has also been observed that higher resolutions (lower GSD) 
introduce false positive detections during the segmentation phase 
and increase the overall processing time; lower resolutions 
(higher GSD) instead does not make the classification model 
working correctly, making it difficult or impossible to detect the 
level of damage accurately. 
The proposed method can deliver a thematic map for a very early 
assessment of the situation in less than one hour after the arrival 
on the site (10-15 min flight time, 5 min data transfer, 20 min 
orthophoto generation, 10 min DEEP classification). The DEEP 
segmentation model is helpful if one wants to update the existing 
cartography if the retrieved building shapes are not updated. 
The following steps will be devoted to investigating this tool's 
potentialities in real case applications, thanks to an ongoing 
collaboration with the Italian National Fire Corps - Corpo 
Nazionale dei Vigili del Fuoco, in two steps. A first step through 
creating a comprehensive dataset of orthophotos acquired in 
emergencies that can provide valuable material for the 
optimization of DEEP, to improve its performance in the future. 
A second step concerns the automatization of the processing part 
(reading the orthophoto, auto-detect the GSD, and opportunely 
set a value for the sieve filter, and so forth) to enhance the 
algorithm deployability on the field. 
Principal errors are related to the fact that the training set does 
not contain a relatively sufficient number of terraces or other 
kinds of roofs and some dubious situations where even a human 
operator will have difficulty assigning a damage level. 
Per the publication date of this paper, this is the very first research 
presented about the DEEP network (that has not yet – but will be 
soon - publicly released and will be freely accessible and usable). 
Future research work will be focused on implementing an 
instance segmentation model that will substitute the current 
segmentation model (due to some issues reported in the case of 
buildings too close to each other, recognized as a single entity). 
Moreover, the possibility of performing a visual interpretation of 
more orthoimages will provide an up-to-date and reliable ground 
truth that will allow performing a more comprehensive validation 
of the employed method. 
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APPENDIX 

Data augmentation parameters used during the training phase: 
 
train_datagen = ImageDataGenerator( 
      rescale=1. / 255, 
      rotation_range=60, 
      horizontal_flip=True, 
      vertical_flip=True,  
      brightness_range=[0.2, 1.0], 
      zoom_range=0.2, 
      fill_mode='nearest') 
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