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SEU Evaluation of Hardened-by-Replication 
Software in RISC-V Soft Processor 

Abstract—The interest of the space industry around soft 

processors is increasing. However, the advantages in terms of 

costs and customizability provided by soft processors are 

countered by the reliability issues deriving by Single Event 

Effects, especially Single Event Upsets. Several techniques have 

been proposed to tackle these issues, both at the hardware- and 

software levels. Software approaches rely on replicating data 

and computations to cope with SEUs affecting the memory 

where the binary code is stored. Thanks to open licenses, RISC-

V solutions are steadily growing in popularity among the set of 

available soft processors. In this works, we present a reliability 

evaluation of four different benchmarks running on the RI5CY 

soft processor implemented on SRAM-based FPGAs. The 

reliability of the baseline and hardened-by-replication versions 

of the software benchmarks are evaluated against SEUs-

induced faults both at the software and hardware architecture 

levels through fault injection campaigns in the microprocessor 

memory and configuration memory, respectively. Results assess 

how the adoption of the hardening-by-replication technique at 

the software level slightly improves reliability against software-

related faults but degrades reliability against architectural 

faults, making it an inefficient solution when it is not combined 

with hardware robustness. 

  

Keywords—Fault injection, Reliability, Reconfigurable, SoC, 

RISCV, SEU, SRAM-based FPGA. 

I. INTRODUCTION 

In the last years, programmable-hardware devices, in 
particular Field Programmable Gate Arrays (FPGAs), have 
been adopted in many mission-critical applications. Their 
high performance, along with the advantages they offer in 
terms of flexibility and costs compared to Application-
Specific Integrated Circuits (ASICs), made programmable-
hardware devices a suitable choice for automotive and space 
applications [1][2][3]. A soft microprocessor is one of the 
cores commonly implemented using programmable 
hardware. A microprocessor as an IP Core provides an easy 
way for combining a microprocessor with hardware 
acceleration, coupling the high performance of hardware with 
the flexibility granted by the software. Among the available 
solutions, soft microprocessors based on the RISC-V ISA are 
attracting a lot of interest in recent years. The open license 
along with the wide support of the community have made 
RISC-V solutions (e.g., NOEL-V or Taiga) attractive for 
space, automotive and avionic industries too [4][5][6]. 
However, when using a soft microprocessor in mission-
critical applications, the reliability issues deriving from the 
exposure of the devices to ionizing radiation, such as Single 
Event Upsets (SEUs) should be taken into account.  
Several approaches have been proposed for improving 
application reliability against SEU-induced errors. Even if 

approaches based on hardware redundancy given proof to be 
very effective, they are also very costly in terms of design 
time, area overhead, and power consumption. On other hand, 
software approaches are easier to apply and less demanding. 
Software approaches replicate the data in memory and the 
operations are performed many times using redundant code 
and verifying the consistency during the execution [7][8]. 
Even if they are less performing, they usually provide a low-
cost reliability improvement against SEUs.  

Differently from hardwired microprocessors, soft 
microprocessors implemented on SRAM-based FPGAs have 
another criticality due to the presence of the configuration 
memory (CRAM), that defines the netlist implemented in the 
programmable hardware. This memory can be corrupted by 
SEUs in a similar way to the main memory, leading to 
hardware architectural fault. This paper is dedicated to 
analyzing the benefits and drawbacks of hardened-by-
replication software applications running on soft 
microprocessors.  

The main contribution of this work is evaluating the 
impact of SEUs in the main and configuration memory of a 
soft RISC-V soft processor implemented on an FPGA device. 
In the paper, we evaluate the SEUs occurring in main and 
configuration memory affecting the baseline and hardened-
by-replication versions of a software benchmark suite. 
Reliability evaluations are based on fault injection 
campaigns, and the proposed methodology is elaborated in 
detail in the paper. The twofold analysis allows to 
comprehensively evaluate the effects of using hardened-by-
replication software. Results report that hardening-by-
replication techniques at the software level improve 
reliability against in-memory SEUs only marginally, but they 
degrade the reliability against hardware architectural faults. 

The paper is organized as follows. Section II is dedicated 
to the background on SEUs in microprocessor memory and 
configuration memory, and software mitigation techniques. 
Section III reports related works while Section IV describes 
the fault injection environment and methodology.  In Section 
V, the experimental analyses are reported along with the 
obtained results. Finally, Section VI elaborates on 
conclusions and future works. 

II. BACKGROUND 

A. Single Event Upsets in Memories 

An SEU is the modification of the content of a memory 
cell (i.e., a memory bit) caused by the energy released by a 
particle. This phenomenon corrupts the information stored in 
the memory cell, producing a fault that can produce errors. 
Due to the high density of transistor nodes, memories are very 
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sensitive to SEUs. Both hard and soft microprocessors use 
memory for storing data and machine code for the software 
execution. Hence, SEUs can corrupt the binary machine code 
stored in the memory leading to soft errors or misbehaviors 
in the software application. SEUs can be observed also in the 
hardware resources of the processing unit, such as flip-flops 
and registers, even as an effect of transient faults [9]. 
However, the lower density of memory elements makes this 
a less common scenario. Soft microprocessors present an 
additional issue related to their implementation on 
programmable hardware. To elaborate more, soft 
microprocessors are implemented using programmable 
hardware. Programmable hardware consists of a set of basic 
elements, such as look-up tables, flip-flops, block memories, 
DSP, and others, that can be configured to implement specific 
behaviors (e.g., the truth-table for LUTs). Interconnection 
between basic elements is also programmable and based on a 
combination of hardwired lines and Programmable-
Interconnection-Points (PIPs). Since programmable 
hardware devices usually rely on an SRAM-based 
configuration memory for storing configuration data, SEUs 
affecting configuration memory can produce faults in the 
programmed hardware modifying the netlist of the 
implemented cores, soft microprocessor included, producing 
faults in the hardware architecture, such as open nets, 
antennas or gates misbehaviors [10][11]. While occasional 
SEUs and errors are acceptable for some applications, they 
are not for mission-critical applications where a failure can 
produce catastrophic outcomes in terms of costs or human 
lives.   

B. Hardening-By-Replication Software Techniques 

Nowadays, many hardware and software techniques have 
been explored for satisfying high reliability requirements. 
Software hardening-by-replication techniques were proposed 
as one of the first solutions to improve the fault tolerance of 
critical systems [7][12][13]. Even if software-based fault 
mitigation has proven to be less effective than demanding 
hardware techniques like Triple Modular Redundancy 
(TMR), the simplicity of implementation has resulted in them 
being commonly implemented. Already in the early 2000s, 
NASA was recommending the use of software techniques 
based on replication for improving fault tolerance of mission-
critical applications [7]. Software hardening-by-replication 
techniques are based on the redundancy of data and 
computations. To cope with SEUs affecting data in memory, 
input data is replicated in the memory. The hardened-by-
replication software is written such as it executes a 
computation multiple times using different in-memory copies 
of the same input and intermediary results. Depending on the 
required granularity and tolerable overhead, a number of 
detection and correction checkpoints are inserted in the code. 
In the detection and correction checkpoints, the values of the 
temporary results are compared to each other to detect errors 
in the computations. Erroneous values are then corrected by 
majority voting during each detection and correction 
checkpoint as well as on the final output. A conceptual 
schema is illustrated in Fig. 1. Computational data flow 
illustrated in (a) is triplicated in (b) and checkpoints have 
been added to correct errors affecting one of the data paths 
through comparison. 

III. RELATED WORKS 

Several works addressed the reliability issues of software 
applications and hardware platforms. About the effectiveness 
of software mitigation techniques, the authors at [8] proposed 
a methodology for detecting soft errors in code and data 
exploiting a software replication approach. In [14], SWIFT is 
proposed as a performing approach for software fault 
detection relying on unused instruction-level parallelism 
resources. A software technique implementing both detection 
and correction based on data and code replication has been 
presented in [15]. In [16], both hardware and software 
techniques are evaluated by fault injection campaigns against 
SEUs affecting microprocessors. Even if FPGAs are involved 
in the analysis, the authors evaluated faults affecting the 
storage elements without considering configuration memory. 
On the soft microprocessor side, the authors at [17] presented 
a comprehensive analysis of the SEU-induced errors on a set 
of software benchmarks running on RISCV soft 
microprocessors. A similar analysis has been published in 
[18]. However, to the best of our knowledge, no work 
evaluated the effect of hardening-by-replication software 
techniques against SEUs affecting configuration memory of 
soft microprocessors implemented on SRAM-based FPGAs.  

IV. ANALYSIS ENVIRONMENT AND METHODOLOGY 

The current section elaborates on the hardware platform, 
soft microprocessor, software benchmark applications, and 
fault models involved in the experimental analyses. 
Additionally, it illustrates the fault injection platform adopted 
and extended for performing the reliability analyses as well 
as the fault injection methodology. The RISC-V soft 
microprocessor implemented on a hardware configurable 
device is the evaluated hardware platform. A set of software 
applications are adopted as the benchmark suite for the 
reliability evaluations. Each software application has been 
implemented in both unhardened, aka baseline, and 

 

Fig. 1. Schema of the code (a) Unhardened (b) Hardened-by-Replication of 
data and operation and with insertion of detection and correction checkpoint.
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hardened-by-replication versions. Using the developed fault 
injection platforms, the fault model is emulated in the 
memory of the microprocessor and the configuration memory 
of the hardware platform while the software of the benchmark 
suite is executing.  

A. RISC-V Soft Microprocessor  

The RISC-V is an open-source standard Instruction Set 
Architecture (ISA), supported by RISC-V Foundation. RISC-
V-based soft microprocessors are an attractive solution that 
can keep costs down by combining open licensing with the 
use of open-source cores to be implemented on 
programmable devices, without the costs need for a 
semiconductor fabrication plant. In addition, the open 
architecture has made these solutions easier to customize (in 
terms of cost and difficulty) than traditional solutions such as 
licensed and hard microprocessors. Among open-source 
solutions, we selected PULPissimo as the microcontroller 
architecture for reliability evaluation analysis [19]. 
PULPissimo is a single-core platform including the RI5CY 
Core, developed by the PULP project, a collaboration 
between the ETH Zurich and the University of Bologna. 
PULPissimo is a microcontroller implementable on FPGA 
devices, and it is designed for high energy efficiency. RI5CY 
core is an in-order single-issue core. It is provided with 4 
pipeline stages and supports RV32I, RV32C, RV32M, and 
RV32F instruction set. For the purpose of this work, we 
implemented PULPissimo on a Nexys Video Artix-7 
platform. Table I reports the device utilization when 
implementing the PULPissimo platform. 

 
TABLE I. RESOURCES UTILIZATION OF PULPISSIMO 

Resources Available [#] Used [#] Utilization [%] 

Logic Slices 33,650 14,150 42.05 

Flip-Flops 269,200 21,531 8.00 

Memories 365 128 35.07 

DSPs 740 12 1.62 

 

B. Software Benchmark Application 

As software applications, a set of four software 
benchmarks have been adopted. Applications have been 
selected to cover different domains, such as signal and image 
processing. In this paper, they are referred to as: 

- CoreMark: CoreMark software implements the CoreMark 

benchmark of EMBC. It involves list processing, matrix 

manipulation, state machine execution, and cyclic 

redundancy check. 

- Dhrystone: Dhrystone is a performance benchmark. It 

focuses on string processing, without the use of any 

floating-point operation. 

- FFT: FFT software implements the Fast Fourier Transform. 

widely used in signal processing. The specific 

implementation has been selected from MiBench 

Benchmark Suite. 

- Sobel: Sobel software implements the Sobel operator, used 

in image processing for edge detection.  
In order to evaluate the benefits of the software 

hardening-by-replication approach, a hardened version of 
each software application has been developed. In particular, 
according to [7], single-version software fault tolerance 
techniques have been applied to each software application. 

Input data, variables, and functions have been triplicated in 
the memory. The software has been modified to perform the 
same operations sequentially on the different data copies 
stored in the memory. Detection and correction checkpoints 
have been inserted during statement execution.    

C. Fault Models 

SEUs are one of the main sources of errors, especially 
when memories are involved. Due to its architecture and 
technology, soft microprocessors have a traditional 
microprocessor memory (e.g., main memory and cache 
levels) and configuration memory. These memories can be 
both affected by SEUs, causing very different faults and 
eventually errors. In this paper, we evaluated the reliability of 
applications running on soft processors against SEUs in 
microprocessor memory and configuration memory, 
separately. An SEU is a bit flip in the content of a memory 
cell. An SEU in the microprocessor memory may corrupt 
either data or code segments of the program loaded in that 
part of memory. This can lead to different outcomes, such as 
errors (e.g., data value corruption) or system halt. On other 
hand, SEUs in configuration memory will introduce faults 
directly in the hardware architecture of the soft processors. 
For example, if an SEU in configuration memory introduced 
a fault in the ALU, arithmetic operations performed by 
software applications could be affected by errors. 

D. Fault Injection Platform and Methodology 

Two different fault injection platforms have been adopted 
for emulating SEUs in microprocessor memory and 
configuration memory. 

SEU in the main memory has been emulated acting 
directly on the Executable and Linking Format (ELF) to be 
loaded in the main memory of the microprocessors. In detail, 
a python-based fault injection platform has been developed 
for performing the fault injection process, loading the binary 
code in the memory of the PULPissimo microcontroller, and 
collecting the output of the injected applications. The fault 
injection step is performed by flipping a bit of the ELF so that 
a faulty ELF file is generated. Using Open On-Chip 
Debugger (OpenOCD) and GDB, the faulty ELF file is 
loaded in the memory of the microcontroller by 
communicating with the RISC-V debug module via the JTAG 
interface. All these steps are performed automatically by the 
platform, which automatically instruments the OpenOCD and 
GDB tools. The platform will wait for the results of the 
software computation on the serial port. A timeout 
mechanism is used to handle the halt of the processor due to 
injected faults. 

For emulating SEUs in the configuration memory, the 
PyXEL platform has been used [20]. PyXEL is a python-
based platform for performing FPGA fault injection 
campaigns, able to manipulate FPGAs bitstreams to be 
loaded in configuration memory to inject faults. In order to 
support the reliability analysis workflow presented in this 
work, PyXEL has been extended for supporting Artix-7 
XC7A200T FPGA. It has been used to emulate SEUs in the 
configuration memory by corrupting a bit of the bitstream to 
be loaded in the configuration memory. Additionally, PyXEL 
automatizes the steps for configuring the FPGA platform with 
the bitstream implementing the RISC-V soft microprocessor 
and platform resetting in case of a halt due to fault injection, 



as well as the steps for loading and running the software 
applications on the soft microprocessors and collecting the 
results. 

V. EXPERIMENTAL ANALYSES AND RESULTS 

We carried out reliability analyses for evaluating the 
benefits and drawbacks of applying hardening-by-replication 
software techniques to software applications running on a soft 
microprocessor. The baseline and hardened software 
benchmark applications have been evaluated against SEUs in 
the soft microprocessor memory and the hardware-
configurable platform configuration memory through fault 
injection campaigns. The fault injection platforms reported in 
Section IV have been used in the reliability evaluation for the 
two fault models. Results have been collected, categorized, 
and discussed. Reliability analysis involved a RI5CY soft 
microprocessor implemented within the PULPissimo 
microcontroller on the Artix-7 XC7A200T FPGA. The 
software benchmarks run as bare-metal, without any 
operative system.  

A. Cross Sections 

In order to perform an accurate radiation analysis, we 
performed the radiation characterization of the memory cell, 
representing the used technology in the memory cell where 
the ELF binary file is loaded as well as the configuration 
memory.  The characterization is performed in terms of cross-
section, defined as the radiation sensitivity of the cell with 
respect to the physical characteristic of the technology. We 
developed the electrical model of the memory cell, exploiting 
the FreePDK physical library tuned for 28 nm, as the 
technology of the used hardware adopting the electrical 
Predictive Technology Model (PTM) for bulk CMOS. Using 
the K-layout tool, the layout description of the memory cell 
has been designed and extracted in terms of Graphic Data 
System-II (GDS-II). Based on the netlist and layout of the 
memory cell, we have performed a radiation analysis using 
our in-house Monte Carlo bases simulation tool, described in 
detail in [21], using the Heavy Ion Profile related to the  
Université Catholique de Louvain (UCL) facility [22]. We 
have performed a simulation of 10,000 particles. The 
obtained cross-section is shown in Fig. 2. 

 

B. Errors Categorization 

As a result of the fault injections, different misbehaviors 
may occur. Errors are detected through a comparison of the 
outcomes of the fault injection experiments and the golden 
runs (i.e. where each faulty-free software application has 
been executed on the faulty-free soft microprocessor). The 
collected results have been categorized into three categories: 
correct, silent data corruption, and halt. They are defined as 
follow: 

- Correct: The task terminates correctly and the output 

matches the golden one. 

- Silent Data Corruption: The task terminates but the output 

does not match with the golden one. 

- Halt: the soft microprocessor does not complete the task. It 

can be due to different causes, such as infinite loops, illegal 

code instructions, or others. It can be generated either by a 

fault in the binary code or at the hardware architecture level. 
Error Rate is defined as the percentage of results that deviate 
from the nominal behavior, in other words, the percentage of 
the outcomes that are categorized as Silent Data Corruption 
(SDC) or Halt. 

C. Baseline Software Evaluation against SEU in Memory 

The reliability of the baseline software against SEUs in 
the memory has been evaluated through a fault injection 
campaign. We carried out 10,000 experiments for each of the 
software benchmarks reported in Section IV. SEU 
coordinates (i.e., the bit to flip in the binary code) have been 
chosen independently and randomly for each experiment. 
The errors generated by the injected faults have been detected 
by comparison between the outputs of the faulty and faulty-
free binary code. Results have been classified into three 
categories. The results are reported in Fig. 3, while the 
categories are illustrated in Table II.   

TABLE II. BASELINE SOFTWARE AGAINST SEU IN MEMORY 

Software Correct [#] SDC [#] Halt [#] 

Coremark 9,673 172 155 

Dhrystone 9,861 69 70 

FFT 9,813 80 107 

Sobel  9,845 81 74 

D. Baseline Software Evaluation against SEU in CRAM  

After the evaluation of baseline software against SEUs 
affecting the microprocessor memory, we analyzed also the 
effects of an SEU in the configuration memory of the FPGA 
implementing the soft microprocessor. The corruption of the 
configuration memory content introduces errors in the 
architecture of the netlist implemented on the programmable 
hardware. Due to the characteristics of programmable 

 

Fig. 2 Single Event Upset (SEU) cross-section [cm2] for static radiation 
analysis of memory cell in 28 nm. 

 
Fig. 3. Number of Errors of Baseline Software out of 10,000 SEUs in the 
Microprocessor Memory. 
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hardware, where only a subset of the resources are used and 
programmed (as reported in Table I), the error rate resulting 
from SEUs in configuration memory is usually low, since 
only a subset of the bits of the configuration memory is 
usually used by the design. However, since these errors 
permanently affect the microprocessor operation until the 
next reconfiguration or power cycle, they play a critical role 
in the reliability evaluation. The current fault injection 
campaign consists of 10,000 faults, injected singularly and 
randomly in the configuration memory. Each software 
benchmark has been evaluated while running on each of the 
faulty configurations. Since different software uses different 
logic of the soft microprocessor, they will be characterized by 
different error rates even if running on the same faulty 
configurations. Similar to the previous campaign, results 
have been collected and categorized. Fig. 4 summarizes the 
application failures, while Table III reports results 
classification. 

TABLE III. BASELINE SOFTWARE AGAINST SEU IN CRAM 

Software Correct [#] SDC [#] Halt [#] 

Coremark 9,933 20 47 

Dhrystone 9,946 12 42 

FFT 9,926 28 46 

Sobel  9,926 10 64 

E. Hardened Software Evaluation against SEU in Memory 

The hardened version of the software benchmarks has 
been used in similar fault injection campaigns for evaluating 
the effects introduced by the hardening technique. The first 
analysis on hardened software resembles the one reported in 
section V-B. We performed 10,000 experiments on each 
hardened software application. We evaluated the effect of 
SEUs in memory by flipping a bit in the binary code in each 
experiment and evaluating the results. The coordinates where 
to inject the fault have been chosen randomly for each 
experiment. Fig. 5 illustrates the obtained results. Results 
have been categorized accordingly with their behavior in 
Table IV. For the experiments carried out in Section V-B, the 

overall error rate slightly decreases for all the applications. 
From the categorization represented in Table IV, we observe 
that while SDC errors decreased, Halt errors slightly 
increased. This is reasonable since, without an operating 
system, exceptions (e.g., OPCODE exceptions) caused by 
fault injection cannot be handled. 

 
TABLE IV. HARDENED SOFTWARE AGAINST SEU IN MEMORY 

Software Correct [#] SDC [#] Halt [#] 

Coremark 9,711 122 167 

Dhrystone 9,878 41 81 

FFT 9,836 56 108 

Sobel  9,850 80 70 

F. Evaluation of Hardened Software against SEU in CRAM 

The last fault injection campaign is for evaluating the 
hardened-by-replication software against SEUs affecting the 
configuration memory. The hardened-by-replication software 
applications have been evaluated against the same faults 
injected in Section V-C. Results are illustrated in Fig. 5. 
Results categorization is reported in Table V.  

 
TABLE V. HARDENED SOFTWARE AGAINST SEU IN CRAM 

Software Correct [#] SDC [#] Halt [#] 

Coremark 9,932 19 49 

Dhrystone 9,942 11 47 

FFT 9,909 30 61 

Sobel  9,921 9 70 

G. Results Analysis 

As a result of the comparison between the reliability of 
the baseline and hardened software, some interesting results 
should be noticed. Firstly, results report software hardening 
slightly increases the reliability of all the applications against 
SEUs affecting processor memory. However, the trend is not 
the same with SEUs in configuration memory, which reports 
reliability degradation. Reasonably, there are two causes for 
the observed behavior. Firstly, software replication 
techniques are not useful when errors affect hardware 
elements of the microprocessors. In particular, performing 
the same operation twice on the same faulty hardware will 
likely produce the same erroneous output. There are some 
exceptions to this (e.g., errors generated in the reading of a 
specific memory cell can be corrected by reading replicated 
data that are stored in different memory cells). However, due 
to this effect, the mitigation benefits are reduced compared to 
faults affecting microprocessor memory. Secondly, the 
introduction of the code for implementing the detection and 

correction checkpoint could stimulate sections of the 

 

Fig. 4. Number of Errors of Baseline Software out of 10,000 SEUs in the  
Configuration Memory. 

 

Fig.6. Number of Errors of Hardened Software out of 10,000 SEUs in the 
Configuration Memory. 

Fig. 5. Number of Errors of Hardened Software out of 10,000 SEUs in the 
microprocessor. 
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electronic circuit that were not used by an unhardened version 
of the software. This could cause that hardware faults that 
formerly were not propagated to the application outputs, now 
produce a deviation from the nominal behavior of the 
software application. 

VI. CONCLUSIONS AND FUTURE WORKS 

In the current work, we initially provided an evaluation of 
the reliability of software applications running on a soft 
microprocessor against SEU affecting configuration memory 
and microprocessor memory. Then, the benefits of a  
hardening-by-replication software technique have been 
evaluated comparing the reliability of the hardened software 
with the baseline implementation. Results highlighted some 
interesting behavior. The Hardening-by-replication software 
technique produces an increase of the reliability against SEU 
at the software level (i.e., SEU in microprocessor memory). 
However, it does not provide any improvement against 
hardware-level faults caused by SEU in the configuration 
memory of the soft microprocessor. In fact, the hardened 
version of the software showed a decrease in reliability in all 
the evaluated applications against SEUs in the configuration 
memory. In the future, we plan to evaluate the effects of the 
software hardening technique during radiation test 
experiments. Additionally, we want to extend reliability 
evaluation analysis of baseline and hardened-by-replication 
software running on a hardware-hardened platform. 
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Fig. 5. Comparison between Error Rates of Baseline and Hardened Software for SEU in the processor memory and in the configuration memory.  
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