
29 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SEU Evaluation of Hardened-by-Replication Software in RISC-V Soft Processor / De Sio, Corrado; Azimi, Sarah;
Portaluri, Andrea; Sterpone, Luca. - ELETTRONICO. - (2021), pp. 1-6. ((Intervento presentato al convegno IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) tenutosi a Athens
(GR) nel 6-8 October 2019 [10.1109/DFT52944.2021.9568342].

Original

SEU Evaluation of Hardened-by-Replication Software in RISC-V Soft Processor

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DFT52944.2021.9568342

Terms of use:
openAccess

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2923836 since: 2022-04-13T15:42:33Z

IEEE

978-1-6654-1609-2/21/$31.00 ©2021 IEEE

SEU Evaluation of Hardened-by-Replication
Software in RISC-V Soft Processor

Abstract—The interest of the space industry around soft

processors is increasing. However, the advantages in terms of

costs and customizability provided by soft processors are

countered by the reliability issues deriving by Single Event

Effects, especially Single Event Upsets. Several techniques have

been proposed to tackle these issues, both at the hardware- and

software levels. Software approaches rely on replicating data

and computations to cope with SEUs affecting the memory

where the binary code is stored. Thanks to open licenses, RISC-

V solutions are steadily growing in popularity among the set of

available soft processors. In this works, we present a reliability

evaluation of four different benchmarks running on the RI5CY

soft processor implemented on SRAM-based FPGAs. The

reliability of the baseline and hardened-by-replication versions

of the software benchmarks are evaluated against SEUs-

induced faults both at the software and hardware architecture

levels through fault injection campaigns in the microprocessor

memory and configuration memory, respectively. Results assess

how the adoption of the hardening-by-replication technique at

the software level slightly improves reliability against software-

related faults but degrades reliability against architectural

faults, making it an inefficient solution when it is not combined

with hardware robustness.

Keywords—Fault injection, Reliability, Reconfigurable, SoC,

RISCV, SEU, SRAM-based FPGA.

I. INTRODUCTION

In the last years, programmable-hardware devices, in
particular Field Programmable Gate Arrays (FPGAs), have
been adopted in many mission-critical applications. Their
high performance, along with the advantages they offer in
terms of flexibility and costs compared to Application-
Specific Integrated Circuits (ASICs), made programmable-
hardware devices a suitable choice for automotive and space
applications [1][2][3]. A soft microprocessor is one of the
cores commonly implemented using programmable
hardware. A microprocessor as an IP Core provides an easy
way for combining a microprocessor with hardware
acceleration, coupling the high performance of hardware with
the flexibility granted by the software. Among the available
solutions, soft microprocessors based on the RISC-V ISA are
attracting a lot of interest in recent years. The open license
along with the wide support of the community have made
RISC-V solutions (e.g., NOEL-V or Taiga) attractive for
space, automotive and avionic industries too [4][5][6].
However, when using a soft microprocessor in mission-
critical applications, the reliability issues deriving from the
exposure of the devices to ionizing radiation, such as Single
Event Upsets (SEUs) should be taken into account.
Several approaches have been proposed for improving
application reliability against SEU-induced errors. Even if

approaches based on hardware redundancy given proof to be
very effective, they are also very costly in terms of design
time, area overhead, and power consumption. On other hand,
software approaches are easier to apply and less demanding.
Software approaches replicate the data in memory and the
operations are performed many times using redundant code
and verifying the consistency during the execution [7][8].
Even if they are less performing, they usually provide a low-
cost reliability improvement against SEUs.

Differently from hardwired microprocessors, soft
microprocessors implemented on SRAM-based FPGAs have
another criticality due to the presence of the configuration
memory (CRAM), that defines the netlist implemented in the
programmable hardware. This memory can be corrupted by
SEUs in a similar way to the main memory, leading to
hardware architectural fault. This paper is dedicated to
analyzing the benefits and drawbacks of hardened-by-
replication software applications running on soft
microprocessors.

The main contribution of this work is evaluating the
impact of SEUs in the main and configuration memory of a
soft RISC-V soft processor implemented on an FPGA device.
In the paper, we evaluate the SEUs occurring in main and
configuration memory affecting the baseline and hardened-
by-replication versions of a software benchmark suite.
Reliability evaluations are based on fault injection
campaigns, and the proposed methodology is elaborated in
detail in the paper. The twofold analysis allows to
comprehensively evaluate the effects of using hardened-by-
replication software. Results report that hardening-by-
replication techniques at the software level improve
reliability against in-memory SEUs only marginally, but they
degrade the reliability against hardware architectural faults.

The paper is organized as follows. Section II is dedicated
to the background on SEUs in microprocessor memory and
configuration memory, and software mitigation techniques.
Section III reports related works while Section IV describes
the fault injection environment and methodology. In Section
V, the experimental analyses are reported along with the
obtained results. Finally, Section VI elaborates on
conclusions and future works.

II. BACKGROUND

A. Single Event Upsets in Memories

An SEU is the modification of the content of a memory
cell (i.e., a memory bit) caused by the energy released by a
particle. This phenomenon corrupts the information stored in
the memory cell, producing a fault that can produce errors.
Due to the high density of transistor nodes, memories are very

Corrado De Sio, Sarah Azimi, Andrea Portaluri, Luca Sterpone
Dipartimento di Automatica e Informatica (DAUIN)

Politecnico di Torino

Turin, Italy
{corrado.desio, sarah.azimi, andrea.portaluri luca.sterpone}@polito.it

sensitive to SEUs. Both hard and soft microprocessors use
memory for storing data and machine code for the software
execution. Hence, SEUs can corrupt the binary machine code
stored in the memory leading to soft errors or misbehaviors
in the software application. SEUs can be observed also in the
hardware resources of the processing unit, such as flip-flops
and registers, even as an effect of transient faults [9].
However, the lower density of memory elements makes this
a less common scenario. Soft microprocessors present an
additional issue related to their implementation on
programmable hardware. To elaborate more, soft
microprocessors are implemented using programmable
hardware. Programmable hardware consists of a set of basic
elements, such as look-up tables, flip-flops, block memories,
DSP, and others, that can be configured to implement specific
behaviors (e.g., the truth-table for LUTs). Interconnection
between basic elements is also programmable and based on a
combination of hardwired lines and Programmable-
Interconnection-Points (PIPs). Since programmable
hardware devices usually rely on an SRAM-based
configuration memory for storing configuration data, SEUs
affecting configuration memory can produce faults in the
programmed hardware modifying the netlist of the
implemented cores, soft microprocessor included, producing
faults in the hardware architecture, such as open nets,
antennas or gates misbehaviors [10][11]. While occasional
SEUs and errors are acceptable for some applications, they
are not for mission-critical applications where a failure can
produce catastrophic outcomes in terms of costs or human
lives.

B. Hardening-By-Replication Software Techniques

Nowadays, many hardware and software techniques have
been explored for satisfying high reliability requirements.
Software hardening-by-replication techniques were proposed
as one of the first solutions to improve the fault tolerance of
critical systems [7][12][13]. Even if software-based fault
mitigation has proven to be less effective than demanding
hardware techniques like Triple Modular Redundancy
(TMR), the simplicity of implementation has resulted in them
being commonly implemented. Already in the early 2000s,
NASA was recommending the use of software techniques
based on replication for improving fault tolerance of mission-
critical applications [7]. Software hardening-by-replication
techniques are based on the redundancy of data and
computations. To cope with SEUs affecting data in memory,
input data is replicated in the memory. The hardened-by-
replication software is written such as it executes a
computation multiple times using different in-memory copies
of the same input and intermediary results. Depending on the
required granularity and tolerable overhead, a number of
detection and correction checkpoints are inserted in the code.
In the detection and correction checkpoints, the values of the
temporary results are compared to each other to detect errors
in the computations. Erroneous values are then corrected by
majority voting during each detection and correction
checkpoint as well as on the final output. A conceptual
schema is illustrated in Fig. 1. Computational data flow
illustrated in (a) is triplicated in (b) and checkpoints have
been added to correct errors affecting one of the data paths
through comparison.

III. RELATED WORKS

Several works addressed the reliability issues of software
applications and hardware platforms. About the effectiveness
of software mitigation techniques, the authors at [8] proposed
a methodology for detecting soft errors in code and data
exploiting a software replication approach. In [14], SWIFT is
proposed as a performing approach for software fault
detection relying on unused instruction-level parallelism
resources. A software technique implementing both detection
and correction based on data and code replication has been
presented in [15]. In [16], both hardware and software
techniques are evaluated by fault injection campaigns against
SEUs affecting microprocessors. Even if FPGAs are involved
in the analysis, the authors evaluated faults affecting the
storage elements without considering configuration memory.
On the soft microprocessor side, the authors at [17] presented
a comprehensive analysis of the SEU-induced errors on a set
of software benchmarks running on RISCV soft
microprocessors. A similar analysis has been published in
[18]. However, to the best of our knowledge, no work
evaluated the effect of hardening-by-replication software
techniques against SEUs affecting configuration memory of
soft microprocessors implemented on SRAM-based FPGAs.

IV. ANALYSIS ENVIRONMENT AND METHODOLOGY

The current section elaborates on the hardware platform,
soft microprocessor, software benchmark applications, and
fault models involved in the experimental analyses.
Additionally, it illustrates the fault injection platform adopted
and extended for performing the reliability analyses as well
as the fault injection methodology. The RISC-V soft
microprocessor implemented on a hardware configurable
device is the evaluated hardware platform. A set of software
applications are adopted as the benchmark suite for the
reliability evaluations. Each software application has been
implemented in both unhardened, aka baseline, and

Fig. 1. Schema of the code (a) Unhardened (b) Hardened-by-Replication of
data and operation and with insertion of detection and correction checkpoint.

output

Detection and correction checkpoint

output

(a)

input Data

temporary

Data

output A

input Data

A

temporary

Data A

output B

input Data

B

temporary

Data B

output C

input Data

C

temporary

Data C

(b)

Computation

#1

Computation

#2

Computation

#1

Computation

#2

Computation

#3

Detection and correction checkpoint

Computation

#2

Computation

#2

Computation

#2

hardened-by-replication versions. Using the developed fault
injection platforms, the fault model is emulated in the
memory of the microprocessor and the configuration memory
of the hardware platform while the software of the benchmark
suite is executing.

A. RISC-V Soft Microprocessor

The RISC-V is an open-source standard Instruction Set
Architecture (ISA), supported by RISC-V Foundation. RISC-
V-based soft microprocessors are an attractive solution that
can keep costs down by combining open licensing with the
use of open-source cores to be implemented on
programmable devices, without the costs need for a
semiconductor fabrication plant. In addition, the open
architecture has made these solutions easier to customize (in
terms of cost and difficulty) than traditional solutions such as
licensed and hard microprocessors. Among open-source
solutions, we selected PULPissimo as the microcontroller
architecture for reliability evaluation analysis [19].
PULPissimo is a single-core platform including the RI5CY
Core, developed by the PULP project, a collaboration
between the ETH Zurich and the University of Bologna.
PULPissimo is a microcontroller implementable on FPGA
devices, and it is designed for high energy efficiency. RI5CY
core is an in-order single-issue core. It is provided with 4
pipeline stages and supports RV32I, RV32C, RV32M, and
RV32F instruction set. For the purpose of this work, we
implemented PULPissimo on a Nexys Video Artix-7
platform. Table I reports the device utilization when
implementing the PULPissimo platform.

TABLE I. RESOURCES UTILIZATION OF PULPISSIMO

Resources Available [#] Used [#] Utilization [%]

Logic Slices 33,650 14,150 42.05

Flip-Flops 269,200 21,531 8.00

Memories 365 128 35.07

DSPs 740 12 1.62

B. Software Benchmark Application

As software applications, a set of four software
benchmarks have been adopted. Applications have been
selected to cover different domains, such as signal and image
processing. In this paper, they are referred to as:

- CoreMark: CoreMark software implements the CoreMark

benchmark of EMBC. It involves list processing, matrix

manipulation, state machine execution, and cyclic

redundancy check.

- Dhrystone: Dhrystone is a performance benchmark. It

focuses on string processing, without the use of any

floating-point operation.

- FFT: FFT software implements the Fast Fourier Transform.

widely used in signal processing. The specific

implementation has been selected from MiBench

Benchmark Suite.

- Sobel: Sobel software implements the Sobel operator, used

in image processing for edge detection.
In order to evaluate the benefits of the software

hardening-by-replication approach, a hardened version of
each software application has been developed. In particular,
according to [7], single-version software fault tolerance
techniques have been applied to each software application.

Input data, variables, and functions have been triplicated in
the memory. The software has been modified to perform the
same operations sequentially on the different data copies
stored in the memory. Detection and correction checkpoints
have been inserted during statement execution.

C. Fault Models

SEUs are one of the main sources of errors, especially
when memories are involved. Due to its architecture and
technology, soft microprocessors have a traditional
microprocessor memory (e.g., main memory and cache
levels) and configuration memory. These memories can be
both affected by SEUs, causing very different faults and
eventually errors. In this paper, we evaluated the reliability of
applications running on soft processors against SEUs in
microprocessor memory and configuration memory,
separately. An SEU is a bit flip in the content of a memory
cell. An SEU in the microprocessor memory may corrupt
either data or code segments of the program loaded in that
part of memory. This can lead to different outcomes, such as
errors (e.g., data value corruption) or system halt. On other
hand, SEUs in configuration memory will introduce faults
directly in the hardware architecture of the soft processors.
For example, if an SEU in configuration memory introduced
a fault in the ALU, arithmetic operations performed by
software applications could be affected by errors.

D. Fault Injection Platform and Methodology

Two different fault injection platforms have been adopted
for emulating SEUs in microprocessor memory and
configuration memory.

SEU in the main memory has been emulated acting
directly on the Executable and Linking Format (ELF) to be
loaded in the main memory of the microprocessors. In detail,
a python-based fault injection platform has been developed
for performing the fault injection process, loading the binary
code in the memory of the PULPissimo microcontroller, and
collecting the output of the injected applications. The fault
injection step is performed by flipping a bit of the ELF so that
a faulty ELF file is generated. Using Open On-Chip
Debugger (OpenOCD) and GDB, the faulty ELF file is
loaded in the memory of the microcontroller by
communicating with the RISC-V debug module via the JTAG
interface. All these steps are performed automatically by the
platform, which automatically instruments the OpenOCD and
GDB tools. The platform will wait for the results of the
software computation on the serial port. A timeout
mechanism is used to handle the halt of the processor due to
injected faults.

For emulating SEUs in the configuration memory, the
PyXEL platform has been used [20]. PyXEL is a python-
based platform for performing FPGA fault injection
campaigns, able to manipulate FPGAs bitstreams to be
loaded in configuration memory to inject faults. In order to
support the reliability analysis workflow presented in this
work, PyXEL has been extended for supporting Artix-7
XC7A200T FPGA. It has been used to emulate SEUs in the
configuration memory by corrupting a bit of the bitstream to
be loaded in the configuration memory. Additionally, PyXEL
automatizes the steps for configuring the FPGA platform with
the bitstream implementing the RISC-V soft microprocessor
and platform resetting in case of a halt due to fault injection,

as well as the steps for loading and running the software
applications on the soft microprocessors and collecting the
results.

V. EXPERIMENTAL ANALYSES AND RESULTS

We carried out reliability analyses for evaluating the
benefits and drawbacks of applying hardening-by-replication
software techniques to software applications running on a soft
microprocessor. The baseline and hardened software
benchmark applications have been evaluated against SEUs in
the soft microprocessor memory and the hardware-
configurable platform configuration memory through fault
injection campaigns. The fault injection platforms reported in
Section IV have been used in the reliability evaluation for the
two fault models. Results have been collected, categorized,
and discussed. Reliability analysis involved a RI5CY soft
microprocessor implemented within the PULPissimo
microcontroller on the Artix-7 XC7A200T FPGA. The
software benchmarks run as bare-metal, without any
operative system.

A. Cross Sections

In order to perform an accurate radiation analysis, we
performed the radiation characterization of the memory cell,
representing the used technology in the memory cell where
the ELF binary file is loaded as well as the configuration
memory. The characterization is performed in terms of cross-
section, defined as the radiation sensitivity of the cell with
respect to the physical characteristic of the technology. We
developed the electrical model of the memory cell, exploiting
the FreePDK physical library tuned for 28 nm, as the
technology of the used hardware adopting the electrical
Predictive Technology Model (PTM) for bulk CMOS. Using
the K-layout tool, the layout description of the memory cell
has been designed and extracted in terms of Graphic Data
System-II (GDS-II). Based on the netlist and layout of the
memory cell, we have performed a radiation analysis using
our in-house Monte Carlo bases simulation tool, described in
detail in [21], using the Heavy Ion Profile related to the
Université Catholique de Louvain (UCL) facility [22]. We
have performed a simulation of 10,000 particles. The
obtained cross-section is shown in Fig. 2.

B. Errors Categorization

As a result of the fault injections, different misbehaviors
may occur. Errors are detected through a comparison of the
outcomes of the fault injection experiments and the golden
runs (i.e. where each faulty-free software application has
been executed on the faulty-free soft microprocessor). The
collected results have been categorized into three categories:
correct, silent data corruption, and halt. They are defined as
follow:

- Correct: The task terminates correctly and the output

matches the golden one.

- Silent Data Corruption: The task terminates but the output

does not match with the golden one.

- Halt: the soft microprocessor does not complete the task. It

can be due to different causes, such as infinite loops, illegal

code instructions, or others. It can be generated either by a

fault in the binary code or at the hardware architecture level.
Error Rate is defined as the percentage of results that deviate
from the nominal behavior, in other words, the percentage of
the outcomes that are categorized as Silent Data Corruption
(SDC) or Halt.

C. Baseline Software Evaluation against SEU in Memory

The reliability of the baseline software against SEUs in
the memory has been evaluated through a fault injection
campaign. We carried out 10,000 experiments for each of the
software benchmarks reported in Section IV. SEU
coordinates (i.e., the bit to flip in the binary code) have been
chosen independently and randomly for each experiment.
The errors generated by the injected faults have been detected
by comparison between the outputs of the faulty and faulty-
free binary code. Results have been classified into three
categories. The results are reported in Fig. 3, while the
categories are illustrated in Table II.

TABLE II. BASELINE SOFTWARE AGAINST SEU IN MEMORY

Software Correct [#] SDC [#] Halt [#]

Coremark 9,673 172 155

Dhrystone 9,861 69 70

FFT 9,813 80 107

Sobel 9,845 81 74

D. Baseline Software Evaluation against SEU in CRAM

After the evaluation of baseline software against SEUs
affecting the microprocessor memory, we analyzed also the
effects of an SEU in the configuration memory of the FPGA
implementing the soft microprocessor. The corruption of the
configuration memory content introduces errors in the
architecture of the netlist implemented on the programmable
hardware. Due to the characteristics of programmable

Fig. 2 Single Event Upset (SEU) cross-section [cm2] for static radiation
analysis of memory cell in 28 nm.

Fig. 3. Number of Errors of Baseline Software out of 10,000 SEUs in the
Microprocessor Memory.

5,02E-14

1,99E-13
2,91E-13

3,63E-13

1,00E-14

1,00E-13

1,00E-12

0 10 20 30 40 50 60 70

S
E

E
 C

ro
ss

-S
e

ct
io

n
 [

C
m

2
]

LET [MeV/mgcm2]

SRAM

327

139

187
155

0

50

100

150

200

250

300

350

Coremark Dhrystone FFT Sobel

E
rr

o
rs

 [
#

]

Software Application

Number of Errors of Baseline Software for SEU in the Memory

hardware, where only a subset of the resources are used and
programmed (as reported in Table I), the error rate resulting
from SEUs in configuration memory is usually low, since
only a subset of the bits of the configuration memory is
usually used by the design. However, since these errors
permanently affect the microprocessor operation until the
next reconfiguration or power cycle, they play a critical role
in the reliability evaluation. The current fault injection
campaign consists of 10,000 faults, injected singularly and
randomly in the configuration memory. Each software
benchmark has been evaluated while running on each of the
faulty configurations. Since different software uses different
logic of the soft microprocessor, they will be characterized by
different error rates even if running on the same faulty
configurations. Similar to the previous campaign, results
have been collected and categorized. Fig. 4 summarizes the
application failures, while Table III reports results
classification.

TABLE III. BASELINE SOFTWARE AGAINST SEU IN CRAM

Software Correct [#] SDC [#] Halt [#]

Coremark 9,933 20 47

Dhrystone 9,946 12 42

FFT 9,926 28 46

Sobel 9,926 10 64

E. Hardened Software Evaluation against SEU in Memory

The hardened version of the software benchmarks has
been used in similar fault injection campaigns for evaluating
the effects introduced by the hardening technique. The first
analysis on hardened software resembles the one reported in
section V-B. We performed 10,000 experiments on each
hardened software application. We evaluated the effect of
SEUs in memory by flipping a bit in the binary code in each
experiment and evaluating the results. The coordinates where
to inject the fault have been chosen randomly for each
experiment. Fig. 5 illustrates the obtained results. Results
have been categorized accordingly with their behavior in
Table IV. For the experiments carried out in Section V-B, the

overall error rate slightly decreases for all the applications.
From the categorization represented in Table IV, we observe
that while SDC errors decreased, Halt errors slightly
increased. This is reasonable since, without an operating
system, exceptions (e.g., OPCODE exceptions) caused by
fault injection cannot be handled.

TABLE IV. HARDENED SOFTWARE AGAINST SEU IN MEMORY

Software Correct [#] SDC [#] Halt [#]

Coremark 9,711 122 167

Dhrystone 9,878 41 81

FFT 9,836 56 108

Sobel 9,850 80 70

F. Evaluation of Hardened Software against SEU in CRAM

The last fault injection campaign is for evaluating the
hardened-by-replication software against SEUs affecting the
configuration memory. The hardened-by-replication software
applications have been evaluated against the same faults
injected in Section V-C. Results are illustrated in Fig. 5.
Results categorization is reported in Table V.

TABLE V. HARDENED SOFTWARE AGAINST SEU IN CRAM

Software Correct [#] SDC [#] Halt [#]

Coremark 9,932 19 49

Dhrystone 9,942 11 47

FFT 9,909 30 61

Sobel 9,921 9 70

G. Results Analysis

As a result of the comparison between the reliability of
the baseline and hardened software, some interesting results
should be noticed. Firstly, results report software hardening
slightly increases the reliability of all the applications against
SEUs affecting processor memory. However, the trend is not
the same with SEUs in configuration memory, which reports
reliability degradation. Reasonably, there are two causes for
the observed behavior. Firstly, software replication
techniques are not useful when errors affect hardware
elements of the microprocessors. In particular, performing
the same operation twice on the same faulty hardware will
likely produce the same erroneous output. There are some
exceptions to this (e.g., errors generated in the reading of a
specific memory cell can be corrected by reading replicated
data that are stored in different memory cells). However, due
to this effect, the mitigation benefits are reduced compared to
faults affecting microprocessor memory. Secondly, the
introduction of the code for implementing the detection and

correction checkpoint could stimulate sections of the

Fig. 4. Number of Errors of Baseline Software out of 10,000 SEUs in the
Configuration Memory.

Fig.6. Number of Errors of Hardened Software out of 10,000 SEUs in the
Configuration Memory.

Fig. 5. Number of Errors of Hardened Software out of 10,000 SEUs in the
microprocessor.

67

54

74 74

0
10
20
30
40
50
60
70
80
90

100

Coremark Dhrystone FFT Sobel

E
rr

o
rs

 [
#

]

Software Application

Number of Errors of Baseline Software for SEU in the CRAM

68
58

91

79

0
10
20
30
40
50
60
70
80
90

100

Coremark Dhrystone FFT Sobel

E
rr

o
rs

 [
#

]

Software Application

Number of Errors of Hardened Software for SEU in the CRAM

289

122

164 150

0

50

100

150

200

250

300

350

Coremark Dhrystone FFT Sobel

E
rr

o
rs

 [
#

]

Software Application

Number of Errors of Hardened Software for SEU in the Memory

electronic circuit that were not used by an unhardened version
of the software. This could cause that hardware faults that
formerly were not propagated to the application outputs, now
produce a deviation from the nominal behavior of the
software application.

VI. CONCLUSIONS AND FUTURE WORKS

In the current work, we initially provided an evaluation of
the reliability of software applications running on a soft
microprocessor against SEU affecting configuration memory
and microprocessor memory. Then, the benefits of a
hardening-by-replication software technique have been
evaluated comparing the reliability of the hardened software
with the baseline implementation. Results highlighted some
interesting behavior. The Hardening-by-replication software
technique produces an increase of the reliability against SEU
at the software level (i.e., SEU in microprocessor memory).
However, it does not provide any improvement against
hardware-level faults caused by SEU in the configuration
memory of the soft microprocessor. In fact, the hardened
version of the software showed a decrease in reliability in all
the evaluated applications against SEUs in the configuration
memory. In the future, we plan to evaluate the effects of the
software hardening technique during radiation test
experiments. Additionally, we want to extend reliability
evaluation analysis of baseline and hardened-by-replication
software running on a hardware-hardened platform.

REFERENCES

[1] S. Azimi, et al., “A new CAD tool for Single Event Transient Analysis
and mitigation on Flash-based FPGAs”, Integration, Volume 67, 2019,
pp. 73-81, ISSN 0167-9260, DOI: 10.1016/j.vlsi.2019.02.001.

[2] A. Hofmann, R. Wansch, R. Glein and B. Kollmannthaler, "An FPGA
based on-board processor platform for space application," 2012
NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
2012, pp. 17-22, doi: 10.1109/AHS.2012.6268653.

[3] L. Chen et al., "Surrounding Vehicle Detection Using an FPGA
Panoramic Camera and Deep CNNs," in IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 12, pp. 5110-5122,
Dec. 2020, DOI: 10.1109/TITS.2019.2949005.

[4] D. A. Santos, et al., "A Low-Cost Fault-Tolerant RISC-V Processor for
Space Systems," 2020 15th Design & Technology of Integrated
Systems in Nanoscale Era (DTIS), 2020, pp. 1-5, DOI:
10.1109/DTIS48698.2020.9081185.

[5] A. Waterman, et al., "The RISC-V instruction set manual volume i:
Base user-level isa", EECS Dept., vol. 116, 2011.

[6] J. Andersson, "Development of a NOEL-V RISC-V SoC Targeting
Space Applications," 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-
W), 2020, pp. 66-67, DOI: 10.1109/DSN-W50199.2020.00020.

[7] Torres-pomales, Wilfredo. (2000). Software Fault Tolerance: A
Tutorial.

[8] M. Rebaudengo, M. Sonza Reorda, M. Torchiano, and M. Violante,
"Soft-error detection through software fault-tolerance
techniques," IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (EFT'99), 1999, pp. 210-218.

[9] S. Azimi et al., “On the analysis of radiation-induced Single Event
Transient on SRAM-based FPGAs”, Microelectronics Reliability, vol.
88-90, 2018, pp. 936-940, ISSN 0026-2714, DOI:
https://doi.org/10.1016/j.microrel.2018.07.135.

[10] B. Du et al., "Ultrahigh Energy Heavy Ion Test Beam on Xilinx Kintex-
7 SRAM-Based FPGA," in IEEE Transactions on Nuclear Science,
vol. 66, no. 7, pp. 1813-1819, July 2019, DOI:
10.1109/TNS.2019.2915207.

[11] L. Sterpone et al., "A Novel Error Rate Estimation Approach for
UltraScale+ SRAM-based FPGAs," 2018 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), 2018, pp. 120-126, DOI:
10.1109/AHS.2018.8541474.

[12] L. Sterpone et al., "A selective mapper for the mitigation of SETs on
rad-hard RTG4 flash-based FPGAs," 2016 16th European Conference
on Radiation and Its Effects on Components and Systems (RADECS),
2016, pp. 1-4, doi: 10.1109/RADECS.2016.8093152.

[13] S. Azimi and L. Sterpone, "Digital Design Techniques for Dependable
High Performance Computing," 2020 IEEE International Test
Conference (ITC), 2020, pp. 1-10, doi:
10.1109/ITC44778.2020.9325281.

[14] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan and D. I. August,
"SWIFT: software implemented fault tolerance," International
Symposium on Code Generation and Optimization, 2005, pp. 243-254.

[15] M. Rebaudengo, M. S. Reorda, and M. Violante, "A new software-
based technique for low-cost fault-tolerant application," Annual
Reliability and Maintainability Symposium, 2003, pp. 25-28.

[16] C. Bolchini, et al. "Software and Hardware Techniques for SEU
Detection in IP Processors" Journal of Electronic Testing, 24, 35–
44,2008.

[17] L. A. Aranda, et al. "Analysis of the Critical Bits of a RISC-V
Processor Implemented in an SRAM-Based FPGA for Space
Applications" Electronics 9, no. 1: 175, 2020.

[18] A. Ramos, J. A. Maestro, P. Reviriego “Characterizing a RISC-V
SRAM-based FPGA implementation against Single Event Upsets
using fault injection”, Microelectronics Reliability, Volume 78, 2017,
Pages 205-211.

[19] P. D. Schiavone, et al., "Quentin: an Ultra-Low-Power PULPissimo
SoC in 22nm FDX," 2018 IEEE SOI-3D-Subthreshold
Microelectronics Technology Unified Conference (S3S), 2018, pp. 1-3,
DOI: 10.1109/S3S.2018.8640145.

[20] L. Bozzoli, et al., "PyXEL: An Integrated Environment for the
Analysis of Fault Effects in SRAM-Based FPGA Routing," 2018
International Symposium on Rapid System Prototyping (RSP), 2018,
pp. 70-75, DOI: 10.1109/RSP.2018.8632000.

[21] L. Sterpone, et al., "A 3-D Simulation-Based Approach to Analyze
Heavy Ions-Induced SET on Digital Circuits," in IEEE Transactions on
Nuclear Science, vol. 67, no. 9, pp. 2034-2041, Sept. 2020.

[22] A. O. Akhmetov et al., "IC SEE Comparative Studies at UCL and
JINR Heavy Ion Accelerators," 2016 IEEE Radiation Effects Data
Workshop, Portland, OR, USA, 2016, pp. 1-4.

Fig. 5. Comparison between Error Rates of Baseline and Hardened Software for SEU in the processor memory and in the configuration memory.

3.27%

1.39%

1.87%

1.55%

2.89%

1.22%

1.64%
1.50%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

Coremark Dhrystone FFT Sobel

E
rr

o
r

R
a

te
s

Error Rate Comparison between Baseline and Hardened Software for SEUs in the Memory

Baseline Hardened-by-ReplicationSoftware Version:

0.67%

0.54%

0.74% 0.74%
0.68%

0.58%

0.91%

0.79%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

1.00%

Coremark Dhrystone FFT Sobel

E
rr

o
r

R
a

te
s

Error Rate Comparison between Baseline and Hardened Software for SEUs in the CRAM

Baseline Hardened-by-ReplicationSoftware Version:

