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ABSTRACT
Darknets are passive probes listening to traffic reaching IP addresses
that host no services. Traffic reaching them is unsolicited by
nature and often induced by scanners, malicious senders and
misconfigured hosts. Its peculiar nature makes it a valuable source
of information to learn about malicious activities. However, the
massive amount of packets and sources that reach darknets makes it
hard to extract meaningful insights. In particular, multiple senders
contact the darknet while performing similar and coordinated
tasks, which are often commanded by common controllers (botnets,
crawlers, etc.). How to automatically identify and group those
senders that share similar behaviors remains an open problem.

We here introduce DarkVec, a methodology to identify clusters of
senders (i.e., IP addresses) engaged in similar activities on darknets.
DarkVec leverages word embedding techniques (e.g., Word2Vec) to
capture the co-occurrence patterns of sources hitting the darknets.
We extensively test DarkVec and explore its design space in a case
study using one month of darknet data. We show that with a proper
definition of service, the generated embeddings can be easily used
to (i) associate unknown senders’ IP addresses to the correct known
labels (more than 96% accuracy), and (ii) identify new attack and
scan groups of previously unknown senders.We contribute DarkVec
source code and datasets to the community also to stimulate the
use of word embeddings to automatically learn patterns on generic
traffic traces.

CCS CONCEPTS
• Networks → Network monitoring; Network management;
• Security and privacy→ Network security.

1 INTRODUCTION
Darknets are sensors that observe traffic received by networks
that are announced on the Internet but hosting neither production
services nor client hosts [24]. Such unsolicited packets represent
a privileged source of information for network security and
debugging activities [23, 26], exposing threats like scans, brute-force
attempts, and misconfigured hosts [17].

Even small darknets receive traffic from hundreds of thousands
of senders targeting practically all TCP/UDP ports. Extracting
meaningful insights from such a large amount of data remains
a challenge. Each received packet can be mapped into three
dimensions: (i) the target service, coarsely represented by the
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used transport protocol and destination port; (ii) the time of
arrival; and (iii) the space, represented by the sender source IP
address. All dimensions show a highly variable picture, with
new senders arriving over time, disappearing and reappearing,
targeting different ports and changing their sending rates. These
senders are often part of different efforts to scan the Internet, with
group of senders that take part to the same action. These include
botnets looking for vulnerable machines, scanners from security
companies (and researchers) that build maps of the IPv4 Internet,
and misconfigured hosts that contact the darknet in the search
for a non-existent or moved server. Often, senders are victims of
attacks that reply to spoofed IP addresses. The darknet traffic is a
superposition of the diverse patterns that each group of senders
generates, making it hard to identify relevant events in such an
aggregate. The analysis of darknet traffic would clearly benefit from
automatically (i) grouping senders that produce similar patterns
and (ii) associating new senders to previously known groups of
senders.

This paper presents our efforts in addressing these two points.
We introduce DarkVec, a methodology to process darknet traffic and
automatically extract complex patterns from raw traces. We borrow
techniques from Natural Language Processing (NLP), making the
parallel between words that co-occur in sentences and sources
that hit the darknet following a given pattern. We rely on word
embedding, which is a recognized method to associate rich features
to words in a language. By exploiting the mere co-occurrence
of words in a context, word embedding techniques can project
such categorical variables to a latent space, in which the words are
arranged in an interesting syntactic and semantic way that is easy
to infer and exploit by algorithms [29]. For example, it is possible
to retrieve the relationship between countries and their capital
cities through simple algebraic operations on the word vectors, or
map words to their translation in another language with almost no
supervision [30].

Similarly here, we set out to project the sources reaching the
darknet in a latent space in which senders that share common
traits are easy to detect and group using classic machine learning
techniques. DarkVec uses darknet traffic to define sentences where
each sender IP address is a word, and temporal sequences of source
IP addresses form sentences. We consider packets going to different
sets of transport-layer ports, which we call services, as belonging
to different sequences. Hence, we have many sequences of sender
IP addresses. For instance, the source IP addresses reaching port
23 are words for one service, which is different from the services
built using port 80/443/8080 packets. Given a time interval, each
sequence of words of the same service defines a sequence. The set
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of all sequences in all services forms our corpus, which we then
process to create our embedding with NLP techniques.

We systematically explore the design space of DarkVec and
show its capabilities with a comprehensive set of experiments
on a one-month long darknet trace. We find that the embedding
produced by DarkVec map senders performing the same activity
into the same latent space regions. Using a labeled dataset, we show
that DarkVec correctly assigns sources to activity groups with 96%
of accuracy. Parameter tuning is not critical, thanks to the robust
embedding produced by the definition of proper services.

Given the promising results on labeled data, we apply
unsupervised approaches to automatically identify clusters of
senders from the generated embedding. We identify new scan and
attack patterns and extend our understanding of groups taking
part in previously known activities. In a nutshell, DarkVec exposes
several novel groups of senders that were not present in security
databases.

Overall, we show how word embedding sheds light on noisy
darknet traces. Beyond the darknet traffic use case, we hope our
results and methodological insights can inspire the application of
DarkVec to the analysis of other network traffic traces too. For that,
we release DarkVec source code and an anonymized version of the
dataset used in the paper.1

After discussing related work (Section 2) and the properties of
observed darknet traffic (Section 3), wemotivate DarkVec (Section 4)
and describe DarkVec service and embedding definition (Section 5).
We then show how representative the embedding is (Section 6) and
how to extract clusters and new patterns (Section 7), summarizing
our findings (Section 8).

2 RELATEDWORK
The literature is rife with studies that analyze darknet traffic for
various purposes. Data coming from darknets helped profiling
attack strategies [23, 26, 32, 40], detecting and characterizing
Internet scans [21, 22, 35] and studying malware spread [41]. Such
prior studies relied on ad-hoc algorithms to characterize darknet
traffic and have repeatedly proved the value of such networks.
Here we propose a methodology to automate such an analysis,
applying word embedding to simplify the understanding of senders
contacting darknets.

Darknet traffic has been modelled using complex networks.
Authors of [27, 28] adopt such an approach, modelling the traffic
as a graph to detect transport-layer ports co-targeted by scanners.
Authors of [39] build a bipartite graph for representing darknet
traffic and then apply community detection on it, obtaining clusters
of autonomous systems characterized by similar behavior. These
approaches are complementary to DarkVec, as they focus on
particular features of the traffic. We propose an approach that puts
together multiple dimensions, e.g., finding patterns characterized
not only by the type of activity performed by senders, but also by
the time and sequence such activities occur.

The closest to our work are DANTE [20] and IP2VEC [37]. Both
apply Word2Vec [29, 31], to extract features from traffic traces.
DANTE is even closer since it also considers darknets as a traffic

1https://github.com/SmartData-Polito/darkvec

Table 1: Single day and complete dataset statistics.

Top-3 TCP ports

Dates Sources Packets Ports Port Traffic [%] Sources

30 days [2021-03-02,
2021-03-31] 543 900 63 562 427 65 537

5555 7.43 20 844
445 7.09 73 665
23 4.07 209 396

Last day 2021-03-31 43 118 3 461 220 19 583
445 8.33 4 274
5555 8.15 1 522
23 3.54 16 102

source, whereas IP2VEC is a more generic flow-level traffic analysis
methodology.

DANTE aims at exploiting the sequence of ports that each
sender targets. For this, the authors treat the sequence of the ports
reached by senders as sequence of words in a NLP problem, and
they represent each sender by the sequence of ports it targets
within an observation window. The authors then train a separate
Word2Vec embedding for each port. Finally, each sender IP address
is associated to a vector by averaging the embeddings of the
ports that the IP has contacted. The outcome is later analyzed
with standard clustering algorithms. In a similar yet more generic
fashion, IP2VEC embeds IP addresses (and also ports and protocols)
by building Word2Vec models that consider as words the sequence
of several flow-level variables, such as destination IP addresses,
port numbers and the used transmission protocols. We report more
details about DANTE and IP2VEC in Appendix A.2.

We also rely on Word2Vec to characterize and cluster senders.
Differently from DANTE, we define services based on target ports
(instead of IP addresses) and use senders’ IP addresses as words
(instead of ports). In our corpus we have sequences of senders
ordered by their arrival time, and projected into separate services.
Then, we build a single embedding. This approach prevents the
averaging of different embeddings adopted by DANTE and makes
the corpus much more compact, so that DarkVec complete the
Word2Vec training in minutes, instead of days taken by DANTE.
Differently from IP2VEC, our service definition is key to limit the
negative sampling which poses significant scalability problems to
IP2VEC. As we show in Section 6.1, DarkVec outperforms both
DANTE and IP2VEC in the darknet analysis use case. All in all,
our improvements make it practical to apply Word2Vec to darknet
setups. Moreover, our thorough exploration of word embedding
design space (choice of service definition, parameters, etc.) should
provide enough guidelines for their application to other networking
use cases where the goal is to learn from sequences of categorical
variables (e.g., log events, DNS queries, HTTP requests etc.).

3 DATASET
We setup a /24 darknet in the range of a university campus network
and use it for running experiments. For our analysis, we focus on
30 days of traffic covering the period from 2021-03-02 to 2021-03-31.
In Table 1 we provide some statistics about the dataset, from which
we separate the last day of our collection as a testing set.

3.1 Darknet traffic overview
Figure 1 gives an overview of the traffic the darknet observes
along the (i) service, (ii) space, and (iii) time dimensions. In details,
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Figure 1: Darknet traffic overview.

Figure 1a reports the Empirical Cumulative Distribution Function
(ECDF) of the number of packets received by each port in one
month.2 All ports get some unsolicited packets, albeit most traffic
is directed to specific ports. The inset shows the top-14 ports -
each easily linked to well-known services or widely exploited
vulnerabilities.3

Figure 1b showcases the activity of each sender over time. On the
𝑦-axis, each line (𝑦 value) represents a different sender IP address,
sorted by the timestamp of first appearance in the trace. The 𝑥-axis
represents time. A dot is a packet received from a sender at given
time. In total, we observe more than 220 000 senders, sending about
1million packets. As expected [24], we observe a continuous growth
of the number of senders over time. Some senders are persistently
present (darker bottom part); some senders appear sporadically
(horizontal segments); some senders are seldom visible (sparse
dots).

To complete the overview, Figure 2a reports the ECDF of the total
number of packets received from each sender. The large majority of
senders hits the darknet with few packets – 36% are seen just once
in a month. These senders are likely victims of attacks with spoofed
addresses – i.e., we see the so-called backscatter phenomenon [26,
36]. Yet, there exist many senders that are quite active, which are
the focus of our analysis. Here we discard the occasional senders,

2UDP and TCP ports are summed together for simplicity.
3Port 5555 is often scanned in the search for Android Debug Bridge (ADB) service.

101 103 105

Monthly packets

0.00

0.25

0.50

0.75

1.00

E
C

D
F

Unfiltered

Filtering threshold

(a) Amount of packets per sender in 1 month.

1 5 10 15 20 25
∆T [day]

104

105

106

D
is

ti
n

ct
IP

ad
d

re
ss

es

Unfiltered

Filtered

(b) Cumulative number of senders over time.

Figure 2: Senders characterization and filtering criteria
definition.

filtering those addresses sending less than 10 packets to the darknet
in the considered period. The rationale is to go after senders for
which we have enough evidence to perform a reliable analysis. The
remaining 20% of active senders (i.e., sending 10 or more packets)
are responsible for the majority of the darknet traffic.

At last, Figure 2b shows the count of distinct IP addresses seen
over an increasing period of time. Focusing on the first day, we
observe about 40 000 distinct senders. This figure quickly grows
over time so that after 30 days we observe more than 500 000 unique
senders. About 20% of them are active, i.e., after 30 days we collect
enough data to characterize 100 000 active senders.

3.2 Getting a labeled dataset
One of the main difficulties for automating the analysis of darknet
traffic is the lack of ground truth for evaluating the results. DarkVec
aims to group senders that perform similar activity over time. It is
thus fundamental to gather samples of such groups to gauge the
performance of DarkVec. For labeling, we exploit two sources of
data: (i) the presence of the widely known Mirai-like malware(s)
fingerprint [19, 25] in packets; (ii) our knowledge about popular
security search engines and research projects such as Shodan [13]
and Sonar [10] that make publicly available the IP addresses they
use.
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Table 2: Ground truth classes present in the last day of the collection and active in the 30 day dataset.

Label Source Senders Packets Ports Top-5 Ports (% Traffic) Top-5 Ports Traffic [%]

GT1 Mirai-like [25] 7 351 88 192 75 23/TCP (89.6%), 2323/TCP(3.9%) , 5555/TCP(1.7%), 26/TCP(1.3%), 9530/TCP(0.84%) 97.34

GT2 Censys [4] 336 233 004 11 118 5060/TCP(3.4%), 2000/TCP(2.9%), 443/TCP(0.4%), 445/TCP(0.4%), 5432/TCP(0.4%) 7.5

GT3 Stretchoid [15] 104 57 144 91 22/TCP(3.5%), 443/TCP(3.5%), 21/TCP(2.7%), 9200/TCP(2.7%), 139/TCP(1.8%) 14.2

GT4 Internet Census [8] 103 9 396 231 5060/TCP(10.4%), 161/UDP(9.8%), 2000/TCP(7.7%), 443/TCP(6.5%), 53/UDP(2.9%) 37.3

GT5 BinaryEdge [3] 101 7 646 21 15/TCP(10%), 3000/TCP(9.6%), 4222/TCP(6.7%), 587/TCP(6.6%), 9100/TCP(5.8%) 38.7

GT6 Sharashka [12] 50 5 436 485 5986/TCP(0.48%), 2103/TCP(0.48%), 2052/TCP(0.44%), 3005/TCP(0.44%), 2087/TCP(0.44%) 2.28

GT7 Ipip [2] 49 17 342 41 5060/TCP(41.5%), ICMP(10.9%), 8000/TCP(2.3%), 8888/TCP(2.1%), , 22/TCP(2.1%) 58.9

GT8 Shodan [13] 23 13 566 349 443/TCP(0.9%), 80/TCP(0.9%), 2222/TCP(0.9%), 2000/TCP(0.7%), 2087/TCP(0.7%) 4.1

GT9 Engin-Umich [9] 10 506 1 53/UDP(100%) 100

Unknown – 14 272 2 971 687 10 520 445/TCP(9.4%), 5555/TCP(9.4%), 1433/TCP(1.8%), 123/UDP(1.6%), 6379/TCP(1.5%) 23.7

Total 22 399 3 403 959 19 882 445/TCP(8.3%), 5555/TCP(8%), 23/TCP(3.5%), 1433/TCP(1.6%), 123/UDP(1.4%) 22.8

As said, in our 30-day long dataset, we observe about 100 000
unique IP addresses corresponding to active senders. The manual
evaluation and search for publicly known coordination of all such
sources is unfeasible. We thus focus on the most active senders
seen in the last day of our collection, which we use as labeled
dataset for testing. Here, we observe 22 399 active senders in total.
Among these senders, we identify nine ground truth (GT) classes,
summarized in Table 2. We identify senders part of the Mirai-like
botnet(s) with more than 7 300 hosts targeting a limited number
of ports and services, i.e., Telnet (23/TCP and 2323/TCP) or ADB
(5555/TCP). Next, we identify senders that are part of well-known
projects performing Internet scans. The largest group includes 336
active senders of the Censys project [4] that target more than 11 000
unique destination ports. The smallest groups include 10 senders of
the Engin-Umich project [9] that performs scans focusing on DNS
(port 53/UDP) only. As expected, about 2/3 of the active senders
remain Unknown. These senders may belong to other classes or
even be part of some of the known classes, which however we could
not identify.

4 BASELINE
To motivate DarkVec, we test simpler approaches that leverage
traffic-related information to cluster groups of senders. We consider
simple features, like top-destination ports, numbers of packets and
others. Intuitively, one could argue that grouping senders by such
features could already lead to the identification of coordinated
groups.

To check whether this intuition is correct, Figure 3 shows the
fraction of daily packets sent by senders of each ground truth class
to generic services. Here we identify a service with the group of
ports typically used by the service, i.e., port 25, 110, 143, 587, ...,
belong to the ‘Mail’ service. The heatmap clearly shows that a
naive port-based approach could work only for the cases where a
single class dominates the traffic observed for a service, like for the
Engin-umich group, which dominates the DNS traffic. For the other
classes, the traffic is scattered among different services, calling for
algorithms able to identify hidden patterns on the data.

To check whether this would be possible with basic service
features, we build a supervised classifier that uses as features the
fraction of traffic each sender generates to top destination ports.
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Figure 3: Fraction of daily packets sent to generic services,
normalized by columns.

We take the last day of traffic and we label senders according to the
10 GT classes in Table 2, i.e., the 9 GT classes and the ‘Unknown’
class. For each class, we extract its top-5 ports in terms of packets.
We then merge all top-5 port sets to compose our final feature set,
with the percentage of traffic of the senders to each of the selected
top ports.4

We use a𝑘-Nearest-Neighbor (𝑘-NN) classifier to assign a label to
each sender according to the labels of the majority of its𝑘 neighbors.
We compute the cosine similarity to identify the𝑘 nearest neighbors.
Using a Leave-One-Out approach, for each sender we compare the
𝑘-NN classifier prediction with the original label and evaluate the
accuracy of the classifier. We test values of 𝑘 ∈ {1, 3, 5, 7, 9, 11}, with
best performance with 𝑘 = 7. Results are quite poor and details are
reported in Table 6 in the Appendix.

These results strengthen the intuition that we need a more
advanced approach that exploits also the temporal information
present in the data.

4We select the top-5 ports for each class to intentionally create a biased feature set
that would favour the 9 classes in our ground truth.
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5 DARKVEC
We now present DarkVec. We assume the reader is familiar with
Word2Vec and provide context about it in Appendix A.1.

5.1 DarkVec in a nutshell
To process the aggregate traffic received by a darknet, DarkVec
leverages word embeddings. Ubiquitously used in modern NLP
tasks, word embeddings leverage the frequency and – most
important – the co-occurrence of words in sentences to project them
in a high-dimensional space, associating a rich feature vector to
eachword. Although theywere built exploiting the co-occurrence of
words, these vectors end up encodingwell semantics and syntactical
properties of words. They are used as input to other ML algorithms
to perform various NLP tasks. We build on the same idea to embed
senders’ IP addresses into a latent space, thus mapping each each
sender IP address to a vector in the embedding space.

Figure 4 provides the high-level overview of DarkVec. From the
left, we collect all packets received from the darknet. Given packets
observed during a time period, we extract separate sequences of
senders considering the services they target. We identify senders by
the source IP address, and we define services based on destination
ports they target. Next, we use such sequences to train a single
Word2Vec model. We map the categorical IP addresses into a
multidimensional space using a traditional one-hot encoding to
create independent input vectors. Sequences of senders thus become
sequences of vectors that define the corpus of the Word2Vec input
to create the embedding, which maps the original sender IP address
into a compact low-dimensional space. The resulting embedding
can be analysed using semi-supervised and unsupervised machine
learning algorithms to exploit the correlation the Word2Vec
mapping creates in the process.

In the semi-supervised case, we assume to have external
knowledge about the classes of some IP addresses, e.g., specific
botnets and known scan projects. This ground truth allows us to
extend the classification for other IP addresses using the concept
of distance in the embedded space. It also allows us to evaluate the
goodness of the embedding, i.e., setting up validation experiments
with IP addresses belonging to the ground truth.

In the unsupervised case, we rely on clustering or community
detection techniques to identify groups of IP addresses that
are nearby in the embedded space. The extraction of groups
dramatically simplifies the characterization of the activity
performed by senders, reducing the amount of manual work during
the investigation.

We detail the key steps of the methodology in the following,
starting from the definition of the services for the aggregation and
embedding creation. We detail the results of the semi-supervised
and unsupervised analyses in Section 6 and Section 7.

5.2 Service definition
We aim at finding similarities among senders’ activity considering
packets they send to a darknet. We consider each source IP address
associated to an incoming packet to be a word 𝑤 . We then create
ordered sequence of words to build embeddings withWord2Vec [29,
31].

We leverage the definition of services to coarsely separate senders
into different semantic groups. Note that the definition of the
services is helpful to guide the training of the embedding and to let
it scale to large datasets.

As previously done in the baseline classifier model, we exploit
domain knowledge to define different services. Given a destination
port 𝑝 , with 𝑝 ∈ {0, . . . , 65 535}, we characterize a service 𝑠 ∈
𝑆 by the set of ports used by common-purpose services 𝑃𝑠 =

{𝑝1,, . . . , 𝑝𝑛}. For example, port 23/TCP defines the Telnet service,
whereas ports 80/TCP, 8080/TCP and 443/TCP define the HTTP
service.

We split incoming packets into multiple sequences, one for each
service. DarkVec employs a fixed time window of duration Δ𝑇
to split the stream of packets into separate sequences. In details,
taking the sequence of sender IP addresses appearing in a given time
interval of duration Δ𝑇 , the final sequence𝑊 𝑠 (𝑡) of the service 𝑠 is
the sequence of IP addresses sending packets to 𝑃𝑠 in [𝑡, 𝑡+Δ𝑇 ). The
choice of Δ𝑇 indirectly limits the length of the sequences, whose
size depends on the traffic rate during Δ𝑇 . Sequences thus have
variable size.

Next, for each service 𝑠 , we build a corpus C𝑠 of sequences by
considering all non-overlapping time windows in [𝑡0, 𝑡𝑓 ]:

C𝑠 = ∪𝑖∈{0,1,...,𝑁−1}𝑊
𝑠 (𝑡0 + 𝑖Δ𝑇 )

where 𝑡0 and 𝑡𝑓 are the initial and final observation times, and
𝑁 = ⌈(𝑡𝑓 − 𝑡0)/Δ𝑇 ⌉ is the number of observation windows. The
final corpus 𝐶 is the union of the |𝑆 | per-service corpora.

𝐶 = ∪𝑠∈𝑆𝐶𝑠

The final corpus 𝐶 is made of all sequences of sender IP addresses.
We use it to train a single Word2Vec embedding.

As we will see later, the definition of services is key to guide
the construction of a good embedding. Here we consider three
alternatives:

• Single service: all ports belong to a single service.
• Auto-defined services: we take the top-𝑛 popular ports, and
create a specific service for each of them. All remaining ports
form the (𝑛 + 1)th service.

• Domain knowledge: we manually assign ports to services
based on domain knowledge. Each service groups ports that
are commonly used for popular applications. In total we
build 15 services as detailed in Table 7.

Figure 5 gives an example of the corpus definition. On the left,
we have the sequence of packets observed in a time window. There
are only two services, 22/TCP and 445/TCP. IP addresses of senders
targeting those ports form sequences. Notice that the same sender
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Figure 5: DarkVec training: On the left, the sequence definition by services. On the right, the skip-gram construction used to
build the embedding. In output, each IP address is mapped to a point in a 𝑉 -dimension space.

IP address may appear in different services, as “10.0.0.1” in the
example.

In the following we set 𝑛 = 10 for the auto-defined service
scenario, Δ𝑇 = 1 hour.5

5.3 Embedding definition
Given the final corpus 𝐶 , we train our embedding. We employ
the skip-gram model (see Appendix A.1), which provides excellent
results when looking for embeddings that efficiently predict the
next word in a sentence.

Given a sequence 𝑊 = [𝑤1,𝑤2,𝑤3, . . . ,𝑤𝑛] and a context
window of size 𝑐 , for each 𝑤𝑖 , we build a skip-gram 𝑆 (𝑤𝑖 ) as the
sub-sequence of the 𝑐 previous and 𝑐 following words of𝑤𝑖 :

𝑆 (𝑤𝑖 ) = [𝑤𝑖−𝑐 , . . . ,𝑤𝑖−1,𝑤𝑖+1, . . . ,𝑤𝑖+𝑐 ]

We pad the beginning and the end of each sequences with a
special NULL word. The central part of Figure 5 represents the
construction of skip-grams starting from one sequence. For instance,
the skip-gram of 𝑤𝑖=“10.185.61.74” is 𝑆 (𝑤𝑖 )=[“192.168.230.240”,
“192.168.8.66”, “10.31.68.131”, “NULL”] if 𝑐 = 2.

Given all the skip-grams, we extract the embeddings using
off-the-shelf Word2Vec. Word2Vec embeds the input words into
a 𝑉 dimensional space, i.e., 𝑤𝑖 → 𝑢𝑖 ∈ R𝑉 . The dimension
𝑉 of the projection is a parameter which impacts the quality
of the embedding. We will evaluate this parameter later in our
experiments.

In our case, Word2Vec leverages the co-occurrence of the sender
IP addresses targeting the same port/service in a given time
window. The resulting embedding shall map those IP addresses
that frequently appear in the same context window into the same
region in the𝑉 -dimensional space, i.e., senders that perform similar
patterns nearby on time are mapped into a compact region.

For our experiments, we use the skip-gram-based Word2Vec
Python implementation of Gensim [6]. We make all our source
code and anonymized datasets available to the community to allow
others to reproduce results.6

5Δ𝑇 has marginal impact on performance. It is mostly instrumental to create an
equivalent concept of sentence from time continuous traffic traces.
6The repository for the code is available at https://github.com/SmartData-Polito/
darkvec

6 TESTING DARKVEC
We now validate the embedding DarkVec creates. First, we compare
DarkVec with DANTE and IP2VEC. Then we present an analysis of
parameter sensitivity.

We run all experiments on a high-end server equipped with
2 Intel Xeon Gold 6130 CPUs (each with 16 physical cores at
2.10 GHz) and 256 GB of memory. We implement DarkVec and
DANTE in Python using the Gensim library, and IP2VEC in Keras,
with parameters suggested in the original papers. In contrast to
the Gensim-based cases, IP2VEC can profit from a Tesla V100 GPU
(16 GB of memory) to speedup training.7

6.1 Comparison with DANTE and IP2VEC
In this experiment, we compare DarkVec, DANTE and IP2VEC
on the same two scenarios. We consider the traffic observed in
our darknet for a period of 5 days (1st scenario) and 30 days (2nd
scenario). For each scenario, we select the subset of active senders
and create the embedding for each case. We then run the same
semi-supervised test we did with the baseline classifier to check
how senders in the ground truth are projected into the embedded
space. Intuitively, a good embedding shall project IP addresses of
the same ground truth class to compact regions in the latent space
so that a 𝑘-NN classifier can recover the correct label.

Following a Leave-One-Out approach, we take each IP address
𝐼𝑃𝑖 for which (i) we have a label as in Table 2 and (ii) that results
active in the considered dataset. We use the cosine similarity to
measure the distance to other IP addresses to the target 𝐼𝑃𝑖 , i.e.,
given 𝐼𝑃 𝑗 , we use 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑢𝑖 , 𝑢 𝑗 ) of their projection vectors 𝑢𝑖 , 𝑢 𝑗 to
measure the similarity between 𝐼𝑃𝑖 and 𝐼𝑃 𝑗 . Then we extract 𝐼𝑃𝑖
𝑘-NN in the embedded space. We use majority voting over the k
neighbors to assign the predicted class to 𝐼𝑃𝑖 and compare it against
the ground truth class. If the predicted and actual class match, we
have a correct prediction. By repeating the procedure for all labeled
IP addresses, we compute the average accuracy, i.e., the probability
that an IP address gets associated to the correct class. We consider
only senders that belong to some ground truth class, i.e., GT1-GT9,
skipping all IP addresses of the Unknown class since we do not
know if they eventually belong to any of the GT classes.

7We migrate the original IP2VEC PyTorch-based implementation to Keras to optimize
performance. Gensim does not support GPU offloading.

https://github.com/SmartData-Polito/darkvec
https://github.com/SmartData-Polito/darkvec
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Table 3: Comparison between DarkVec, IP2VEC and DANTE

5 Day dataset (coverage: 82%) 30 Day dataset (coverage: 100%)
Corpus Epochs Skip-grams ETA Accuracy Skip-grams ETA Accuracy

DarkVec
Domain knowledge

based 20 17 M ∼14 min 0.93 486 M ∼1.2 hours 0.96

IP2VEC Flow-based 10 38 M ∼60 min 0.67 – >10 hours –
DANTE Ports per IP 10 >7 B >10 days – – – –

Given the large amounts of data to process, scalability is vital
for practical implementations. Thus, we compare the number of
skip-grams and the training time required to build the embedding.
We consider DarkVec with the domain knowledge service definition,
context window 𝑐 = 25 and embedding of 𝑉 = 50 dimensions.

We summarize results in Table 3. Consider first the 5-day
dataset. DarkVec predicts the correct class with accuracy 0.93,
while IP2VEC reaches 0.67 accuracy only. Considering scalability,
DarkVec takes 14 minutes to complete 20 epochs for training over
17 million skip-grams. IP2VEC requires about four times more
time to complete 10 epochs. The additional complexity is also due
to negative sampling adopted by IP2VEC [31], which consists on
training the model with an additional set of words belonging to
different contexts. This technique may improve performance but
increases the size of the training data. DANTE does not scale, and
after more than ten days, it could not complete the training. This
happens because DANTE generates around 7 billion skip-grams
during sequence creation. Recall that DANTE associates each
port to a word and generates a different sentence for each IP
address. This approach turns unfeasible with several thousands of
IP addresses each generating independent sequences. The original
paper presenting DANTE confirms the scalability problem.

Consider now the 30-day dataset. In this case, the number of
active IP addresses grows by a factor of 5, reaching about 100 000
IP addresses (cfr. Figure 2b). More data allows us to build an
embedding that covers more IP addresses. In fact, the number of
active senders found in the last day and covered by the embedding
grows from 17 463 to 22 399 when moving from 5- to 30-day long
dataset. Restricting to those senders for which we have a label,
the embedding built on 5 days of traffic cover 82% of senders (by
construction, the coverage is 100% when using the 30-day dataset).
This fact underlines the importance of having a scalable model to
extend the dataset and the coverage of the embedding (more details
in Section 6.2.1).

The increase in the data produces a sizeable increase in the
number of skip-grams in the corpus. Still, the training of DarkVec
completes in 1.2 hours, and the accuracy grows to 0.96. IP2VEC
cannot complete the word sequence creation process after more
than 10 hours, producing more than 200 million skip-grams. In
sum, the limited number of services and the simple word sequence
creation of DarkVec increase scalability. The resulting embedding
outperforms IP2VEC, while DANTE again does not scale.

6.2 DarkVec parameter tuning
We perform a sensitivity analysis on the model hyper-parameters.
We focus on the classification accuracy following the same
Leave-One-Out approach on the IP addresses that are active in the
last day of the trace. We vary the number of days used to train the
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Figure 6: Impact of training window length.
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Figure 7: Impact of 𝑘 on the 𝑘-NN classifier.

Word2Vecmodel, the number of neighbors𝑘 , the embeddings size𝑉 ,
and the context window size 𝑐 . Given the number of parameters to
test, we cannot perform a complete grid search. Instead, we follow
a greedy optimization by varying and choosing one parameter at a
time. When not otherwise specified, we set 𝑉 = 50 and 𝑐 = 25, and
train DarkVec on 30 days of traffic for 10 epochs.

6.2.1 Training data size. First, we check the impact of the training
data size. Considering accuracy, we already know that a model
trained on the 5-day dataset suffers a limited impact on the accuracy,
with a drop of just 3% compared to using a 30-day long dataset.
More important, the training data size has a significant impact on
the coverage, as depicted in Figure 6. Indeed, given that we restrict
the embedding constructions to those IP addresses seen at least 10
times in the training period, the longer the training, the higher the
chance to collect enough observations to build a model for a given
IP address.
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Figure 8: Grid search on 𝑐 and𝑉 and impact on accuracy (top)
and training time (bottom).

Given these results, we fix the training windows size to 30 days
from now on to maximize coverage and accuracy.

6.2.2 Impact of 𝑘 and service definition. Figure 7 shows the
impact of 𝑘 in the 𝑘-NN classifier. First, the single service model
performs significantly worse than both domain knowledge based
and auto-defined service models. Second, increasing 𝑘 improves the
average accuracy up to when the neighborhood starts to include
too many samples. Here, classification becomes uncertain because
the Unknown senders dominate the neighborhood for large 𝑘 . In
our validation, we consider such cases to be misclassifications, even
if some Unknown samples may indeed behave similarly to those in
the ground truth (possibly extending it).

In the following, we drop the single service definition, and we
fix 𝑘 = 7, which the figure shows to guarantee accuracy above 0.96
for both auto-defined and domain knowledge based services.

6.2.3 Impact of 𝑐 and 𝑉 . Focus now on the context window size
𝑐 and the number of dimensions of the embedding 𝑉 . Here we
consider both the model training time – the shorter the training
time, the better the performance – and the accuracy of the 𝑘-NN
classifier.

Figure 8 details results by showing on the top the accuracy and
on the bottom the running time. From left to right, we compare the
auto and domain knowledge-based service definitions. Each matrix
shows the impact of 𝑐 ∈ [5, 75] and𝑉 ∈ [50, 200]. Accuracy tops to
0.96. Neither 𝑐 nor 𝑉 significantly impacts average accuracy, even
if smaller values of 𝑉 are preferable because compact embeddings
are instrumental to avoid the curse of dimensionality.

Conversely, small values of 𝑐 and𝑉 require less time to complete
the training. Based on these results we set the context windows
𝑐 = 25 and the embedding dimensions 𝑉 = 50. Here, the usage of
domain knowledge based services brings a slight advantage over
the auto-defined ones when considering training time.

(a) Stretchoid activity pattern.

(b) Engin-Umich activity pattern.

Figure 9: Activity patterns of some GT classes.

6.3 Per class result
The overall accuracy metric is biased toward the majority classes.
In our case, we have a considerably unbalanced dataset with few
classes with thousands of senders (e.g., Mirai-like) and others with
just a handful of senders (e.g., Engin-umich). To check results in
details, Table 4 shows the precision, recall, and F-score for all GT
classes.8 For the sake of completeness, we report results for all
three service definitions, highlighting in red those results that are
particularly unsatisfying (<0.5).

The single service embedding is particularly critical. It works
well for the Mirai-like botnet(s), but fails in most other classes.
Being the largest class, Mirai dominates the accuracy. Both the
auto-defined and the domain knowledge-based service definition
help the Word2Vec to obtain a descriptive embedding even for
minority classes. IP addresses of the same class are projected into
the same portion of the space, so that themajority of the𝑘 neighbors
results of the same class. Only the Stretchoid class obtains low recall.
Looking into its temporal pattern in Figure 9a, we indeed observe
a very irregular pattern; with few packets from each sender at
irregular time intervals so that they fall in random sequences and
skip-grams. The embedding likely projects these points at random.

8The precision for a class is the fraction of correct instances among those classified
as belonging to the given class. Recall measures the fraction of instances that are
recovered over the total instances of a class. The F-score is the harmonic mean of
precision and recall. The weighted average of recall over the classes is equivalent to
the overall accuracy.
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Table 4: 7-NN classifier report. Values below 0.50 are highlighted in red.

Single service (c=75, V=50) Auto-defined services (c=50, V=50) Domain knowledge based (c=25, V=50)
Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score Support

Mirai-like 0.98 0.86 0.92 1.00 0.98 0.99 1.00 0.97 0.98 7351
Censys 0.63 0.91 0.75 0.96 1.00 0.98 0.91 0.94 0.93 336
Stretchoid 0.03 0.01 0.01 0.94 0.30 0.45 1.00 0.35 0.51 104
Internet-census 0.41 0.50 0.45 0.79 0.86 0.83 0.94 1.00 0.97 103
Binaryedge 0.44 0.74 0.56 0.98 0.87 0.92 0.94 1.00 0.97 101
Sharashka 0.12 0.02 0.03 0.92 0.72 0.81 0.96 1.00 0.98 50
Ipip 0.42 0.92 0.58 0.51 0.86 0.64 0.34 0.84 0.49 49
Shodan 0.00 0.00 0.00 0.94 0.70 0.80 0.93 0.61 0.74 23
Engin-umich 0.67 1.00 0.80 0.62 1.00 0.77 1.00 1.00 1.00 10
Unknown – 0.11 – – 0.62 – – 0.67 – 14272

Interestingly, the 10 Engin-umich senders which target port 53 only
are projected into the same portion of the embedding space so that
the 𝑘-NN correctly classifies them. Notice that there are a lot of
other senders that target port 53. Yet, the skip-gram model can
perfectly capture the coordinated and very impulsive action of the
10 Engin-umich senders which we depict in Figure 9b.

In a nutshell, DarkVec with proper service definition proves a
very effective way to automatically map senders hitting a darknet
into a compact and well-organized space where senders performing
similar activities over time and services are close to each other.

6.4 Extending the ground-truth
Adopting a semi-supervised approach, DarkVec allows us to assign
labels to previously unlabeled senders. Given the set of Unknown
IP addresses classified as one GT class, we sort them by increasing
average distance to their 𝑘-NN and manually check if the assigned
label could be correct. We stop when the average distance becomes
higher than the maximum average distance among senders of the
given GT class.

With this simple process, we have identified new senders
performing scan patterns very similar to Shodan servers, other
senders being very likely part of the Censys network, etc. This
analysis let us extend our knowledge about already known GT
classes. In the next Section we apply this rationale using an
unsupervised approach to identify new classes sharing similar
activities.

7 UNSUPERVISED EMBEDDING ANALYSIS
We have seen how senders involved in similar activities get
projected into the same region of the latent space. This projection
paves the road for adopting unsupervised approaches to identify
clusters of senders and new patterns of coordinated actions.

7.1 Clustering methodology
We have compared several clustering alternatives, including classic
algorithms that work directly in the embedded space such as
k-Means, DBSCAN, Hierarchical Agglomerative Clustering [16].
Not reported here for the sake of brevity, these algorithms produce
poor results due to the well-known curse of dimensionality as well
as their difficult parameter tuning.

Given the good properties exhibited by 𝑘-NN for classification,
we instead design a graph-based clustering for the unsupervised
exploration of the embeddings. In detail, we build a directed graph
𝐺 (V, E) where each IP address of the embedding is a vertex 𝑣 ∈ V .

We then connect each vertex to its 𝑘 ′ nearest neighbors so that we
have

E = {𝑒 (𝑣, 𝑣𝑖 ), 𝑣𝑖 ∈ k’-NN(𝑣),∀𝑣 ∈ V}.

We assign to each edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 ) a weight equal to the cosine
similarity 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑢𝑖 , 𝑢 𝑗 ) in the embedding. Note that each edge
𝑒 (𝑣𝑖 , 𝑣 𝑗 ) is directed since 𝑣 𝑗 can be among the 𝑘 ′ nearest neighbors
of 𝑣𝑖 , but 𝑣 𝑗 can have 𝑘 ′ different neighbors.

Given a graph 𝐺 , we use the Louvain algorithm [18] to extract
non-overlapping communities or clusters. The algorithmmaximizes
the modularity score of clusters, where the modularity – in the
range [-0.5,1] – quantifies the quality of an assignment of vertices
to clusters. In a nutshell, the algorithm evaluates how much more
densely connected the vertices within a cluster are when compared
to how connected theywould be in a randomnetworkwith the same
degree distribution. The Louvain algorithm has been successfully
used for cluster detection in social networks [33] and even for
darknet traffic analysis [39]. Among its advantages, the algorithm
does not require a pre-defined number of clusters. Moreover, there
exist several open source and scalable implementations of the
algorithm.

7.2 Choice of 𝑘 ′

The only parameter for the graph based clustering is 𝑘 ′, the
number of neighbors each vertex is connected to. Since we follow
a completely unsupervised approach, the selection of 𝑘 ′ cannot be
guided by our GT. As such, the 𝑘 ′ leading to good clusters may be
different from the 𝑘 = 7 used for supervised analysis.

We study the impact of 𝑘 ′ considering the 30-day dataset and
the corpus obtained through domain knowledge-based services. We
run the graph construction and cluster detection for different 𝑘 ′ and
show the number of clusters (left 𝑦-axis, solid red curve) and the
modularity (right 𝑦-axis, blue dotted curve) in Figure 10. Intuitively,
connecting each IP address to only the nearest point creates many
disconnected components in the graph, resulting in thousands of
tiny clusters. With 𝑘 ′ > 1, disconnected components start to get
connected, resulting in less clusters. With 𝑘 ′ = 3 (suggested by the
elbow method [38]), we obtain 46 clusters with high modularity.
Larger values have little impact, only slightly decreasing the overall
modularity. As such, we use 𝑘 ′ = 3 in the results that follow.

Next, we illustrate the quality of the clusters using the silhouette.
The silhouette measures how similar a sample in a cluster is to
the other samples in the same cluster (cohesion), compared to
how dissimilar the sample is to samples in the other clusters
(separation). It takes values in the [-1:1] range. Positive values
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Figure 10: Impact of 𝑘 ′ in cluster detection.
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Figure 11: Average silhouette of points within the 46
clusters.

reflect good cohesion, while negative values suggest possible
wrong assignments. Figure 11 shows the silhouette trend of the
identified clusters, sorted by decreasing values. We compute
the overall average silhouette of all senders belonging in each
cluster. More than half of the clusters have silhouettes higher than
0.5, typically considered excellent results. Some clusters present
negative silhouette. These cases can represent several situations,
such as senders that do not exhibit any temporal patterns in
common with other senders, or senders for which the embedding
provides little information to characterize their activities (see
Figure 9a).

Markers in Figure 11 indicate some notable clusters we detect.
We describe and explore them in the following.

7.3 Cluster inspection
We manually analyse the clusters looking for interesting insights
and possibly previously unknown classes of scanners. Similarly
to the steps used to build the GT in the previous section, we rely
on manual inspection, searching for explanations for the senders’
activity in each group. To find evidence of the type of activity they
perform, we collect reverse DNS hostnames, consult the whois and
public security repositories, and fire HTTP requests to senders’ IP
addresses to check for “abuse” pages redacted by people running
the scanners. Here, the availability of the groups of IP addresses

Figure 12: Activity patterns of Censys sub-clusters.

dramatically simplifies the analysis. Recall that, by construction,
IP addresses in the same group target similar destination ports in
nearby periods of time.

Table 5 summarizes our findings. All in all, DarkVec identifies
(i) well-known Internet scan projects, including those listed in
our ground-truth, some not reported for brevity, (ii) Internet scan
actions from security services, which were previously unknown
to us, (iii) distributed scan events for which the observed patterns
suggest coordination from botnets.

7.3.1 Sub-clusters in known scanners. Using a completely
unsupervised approach, DarkVec identifies senders already present
in our ground truth. However, DarkVec allows us to identify
sub-groups inside the set of senders belonging to the same scanner.
We provide an example using the Censys service. Recall that
Censys targets more than 11 000 ports (Table 2) with 336 IP
addresses seen in our data. DarkVec divides 111 of those senders
into 7 groups.9

Figure 12 shows the temporal patterns of these 7 sub-clusters.
The 𝑥-axis represents the time, 𝑦-axis presents senders ordered by
the cluster IDs, and points mark the time in which the given sender
is active. Patterns show that each group is formed by a similar
number of IP addresses, but that are active in different periods. Not
shown, each group targets a different set of ports too. To illustrate
this, we compute the Jaccard Index considering the set of ports
targeted by IP addresses belonging to pairs of clusters.10 We obtain
an average inter-cluster Jaccard Index of 0.19, i.e., only 19% of the
target ports of one cluster is also a target port for another cluster.

In sum, DarkVec highlights a scan strategy employed by Censys,
which deploys sets of scanners, each composed by a similar number
of hosts, to search for particular services in the Internet.

7.3.2 Scanners from security services. DarkVec allows us to
identify addresses belonging to Internet security services like
Shadowserver [11]. This service was unknown to us, and indeed we
have not included it during the manual labeling of our ground-truth.
The service perform scans from its subnets and is listed in public
security databases [1, 5, 7].

9The remaining Censys IP addresses have more sporadic presence and remain in noisy
groups with low silhouette.
10The Jaccard Index is the ratio between the cardinality of the intersection over the
cardinality of the union of two sets.
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Figure 13: Activity patterns of Shadowserver sub-clusters.

Figure 14: Activity pattern of a unknown1 NetBIOS scan
from host in the same /24 subnet.

In details, we identify 113 Shadowserver senders belonging to the
same /16 subnet that DarkVec divides into 3 clusters. All senders
belong to the Shadowserver Foundation, which runs the scans for
security purposes. Clusters in this case have less evident temporal
patterns (Figure 13) than in the Censys case. Yet, DarkVec identifies
that they target the same group of ports, but with very different
intensity as follows:

• C25: 10% of packets to port 623/UDP, 10% to port 123/UDP;
• C29: 25% of packets to ports 5683/UDP or 3389/UDP;
• C37: 63% of packets to ports 111/UDP or 137/UDP.

7.3.3 New scanners unknown to security databases. DarkVec groups
senders that are not present in open security databases or search
engines. We cannot thus confirm the purpose of their actions.
However, their activity patterns suggest the coordination of a large
number of IP addresses, in some cases showing fingerprints that
are compatible with botnets.

unknown1 NetBIOS scan: 85 IP addresses that belong to the
same /24 subnet in the Cogent Communications address range.
They sent more than 17 500 packet, 60% of which hit the NetBIOS
port 137/UDP, with the very regular pattern as shown in Figure 14.

unknown2 SMTP scan: 10 IP addresses of the same /24 subnet
in the Google cloud address space. These senders send 76% of their
traffic to the SMTP port 25/TCP.

Figure 15: Activity pattern of an ADB mass scan like the
spreading of an ADB worm.

unknown3 SMB scan: 61 IP addresses scattered into 23 /24
subnets. These addresses target the SMB port 445/TCP with a very
regular temporal pattern.

DarkVec finds large groups of senders belonging to multiple
subnets in multiple countries and targeting few ports. These signs
may indicate botnet activities performing a distributed scan.

unknown4: 525 senders sendingmore than 350 000 packets. The
75% of them are directed toward port 5555/TCP, used by the Android
Debug Bridge (ADB) service. The Internet Storm Center reports a
spreading of an ADB worm in late March 2021[14]. DarkVec was
able to spot some coordinated activity since the beginning of our
trace, as Figure 15 shows. The increasing activity of the cluster
is coherent with the reported malicious behavior, when DarkVec
is able to increase the cluster size and clearly highlight an attack
pattern.

unknown5 Mirai-like scanners has 1 412 IP addresses in 1 381
/24 subnets targeting 216 ports. Port 23/TCP accounts for 87.7%
of traffic, followed by 2323/TCP (2%), 2000/UDP (1%). 71% of the
senders send packets with the Mirai fingerprint, with the others
that have a very similar pattern over time, without showing the
Mirai fingerprint. This group illustrates the usefulness of DarkVec
in extending the knowledge about botnets using darknet traffic.

unknown6 SSH bots 623 senders show patterns similar to
brute-force attempts against SSH servers. Senders target mostly
port 22/TCP. Manual verification using honeypot data we run in
our premises confirms the brute-force activity performed by these
senders.

unknown7: 158 senders that scan 148 ports with an almost
equal share, with a very regular daily pattern, hinting to a botnet
performing horizontal scans.

unknown8: second group of 22 senders scanning 69 ports with
an almost equal share (target ports Jaccard index of 0.82), with a
very regular hourly pattern.

While not exhaustive, this analysis shows the benefit of
DarkVec in supporting the identification of new groups of senders
performing coordinated actions.

8 DISCUSSION AND CONCLUSIONS
In this paper, we showed how word embedding can be used to shed
light on noisy darknet traces. Properly parameterized to create
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Table 5: Summary of extracted coordinated senders.

Name/Type Cluster IP Ports Sh Description

Censys
known scanner
sub-clusters

C5 14 19 0.91

Senders of the Censys ground truth class
fall into different groups according to the
set of ports they target.

C28 16 21 0.94
C33 17 31 0.76
C34 16 25 0.87
C39 16 13 0.93
C42 16 27 0.88
C44 16 26 0.89

ShadowServer
known scanner
sub-clusters

C25 61 47 0.68 Senders belonging to the
ShadowServer /16 subnet and targeting
the same set of ports.

C29 36 42 0.46
C37 16 51 0.58

unknown1
NetBios scanner C40 85 18 0.62 Same /24 subnet in Congent

Communications AS.

unknown2
SMTP scanner C30 10 12 0.89 Same /24 subnet in the Google cloud.

>1 600 packets, 76% to SMTP port 25/TCP.

unknown3
SMB scanner C13 61 5 0.33 >10 900 packets (99.5% of group traffic)

is directed to port 445/TCP.

unknown4
ADB massive

scanner
C41 525 141 1.00

75% of traffic to 5555/TCP. The IPs
activity pattern is coherent with the
spreading of a known ADB worm. (Fig.15)

unknown5
Mirai-like

massive scanner
C18 1412 212 0.08

71% of senders has Mirai fingerprint.
The most of traffic is towards typical
botnet ports 23/TCP and 2323/TCP (85%)

unknown6
SSH brute-force C26 623 116 0.40 >400 000 packets. 88% of group traffic is

directed to SSH port 22/TCP.

unknown7
Massive scanner C31 158 148 0.03 Mostly ’Unknown’. Daily regular activity

pattern. Equal share on 148 ports

unknown8
Massive scanner C45 22 69 0.80 Mostly ’Unknown’. Regular pattern.

Almost equal share on 69 ports

services and sequences of senders, DarkVec can assist security
analysts to extend their knowledge about ongoing scans and attacks.
DarkVec automatically clusters IP addresses performing known
activity (semi-supervised learning), and let previously unknown
coordinated activity to emerge (unsupervised learning). Beyond the
darknet traffic use case, our results and methodological insights can
inspire the application of DarkVec to other sequences of categorical
variables often present in networking data such as in honeypot
traffic or brute-force attacks.

Compared to NLP algorithms [20, 29, 34] where the resulting
embedding is general, a Word2Vec model trained through DarkVec
is hardly generalizable. We expect that different datasets would
generate different embeddings. Indeed, a trained model learns the
time relationships among co-occurring senders within a certain
observation period. Given the rapid changes in traffic, senders’
behavior, and targeted services, we expect each dataset to be a
different use case. On the contrary, embeddings generated from
natural languages are generic thanks to the intrinsic static nature of
the language, where the semantic and usage of words change very
slowly. DarkVec is a powerful analysis tool to shed light on darknet
traffic, but we believe it is not able to derive a generic model of
senders behaviour, as such behaviour keeps changing.

This fact opens challenging questions, i.e., to what extent the
embedding learned in one darknet can be useful in other darknets
or at different time. There are at least two aspects to be addressed:
the transfer of the embedding, and the transfer of learned tasks. The
evolving nature of darknet traffic would hardly make the transfer
possible over time, but it could eventually help to compare darknet
traffic collected from different vantage points during the same time
period. Yet, the darknets could have little overlap in terms of sources.

The question thus is whether a model trained for one task (e.g.,
classify sources) on the embedding of one darknet can successfully
achieve the same task on the other darknet. We plan to extend our
results in these directions in the future.
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A APPENDIX
A.1 Word2Vec
Word2Vec [29, 31] is a NLP technique based on artificial neural
networks. It allows to map words (tokens) of text sentences (corpora)
into a latent space as a real-valued array (the embedding), such that
words belonging to similar contexts have similar embedding.

The core element of the Word2Vec model is the context. It is
defined as the sequence of words surrounding the one for which the

embedding must be generated. The number of words to consider in
the context is specified by the context window size 𝑐 (see Section 5.3).
For example, by considering the sentence ’Chicago is a great city’,
if the word ’a’ is the target one and 𝑐 = 2, the context for ’a’ is the
list of the 2 previous and 2 following words of ’a’:

’a’ → (’Chicago’, ’is’, ’great’, ’city’)

To generate the embedding, Word2Vec relies on two possible
architectures: skip-grams and Continuous Bag Of Words (CBOW).
Since we work with the skip-gram architecture, for the sake of
simplicity we omit the description of CBOW. By considering a
corpus with 𝑁 distinct words, the model aim at predicting the
probability of finding each one of the 𝑁 words within the context
window of a given target word. In Figure 16 we report an overview
of the skip-gram architecture. Each word of the sentences is fed
as input to the model through a one-hot-encoded input layer. The
𝑉 -dimensional hidden layer links all the 2𝑐 context words to the
target one. After the model training, the embedding is obtained
from the weights matrix W ∈ R𝑁×𝑉 . Each of the 𝑖 ∈ {1, . . . , 𝑁 }
entries of W is the embedding in R1×𝑉 associated to the i-th word.

A.2 DANTE and IP2VEC
Here we provide additional details about DANTE and IP2VEC
methodologies.

A.2.1 DANTE. Authors of DANTE [20] provide a framework
for analysing darknet traffic through Word2Vec. Rather than
generating embeddings directly from senders IP address, they adopt
a port-based approach.

Starting from raw darknet traces, DANTE aggregates the
sequence of destination ports by (sender, receiver) pairs. Thus
DANTE treats each pair as an independent language and the
destination ports represents words in the sentences. After training
the model, each sender is associated to the sequence of ports it
targets. In this way, the final IP embedding is determined as the
average embedding among them.

DANTE needs a different language for each pairs (sender,
receiver) and the embedding for each language must be trained.
This approach does not scale well. Indeed, even by filtering out
senders generating a few packets within an observationwindow, the
amount of senders treated as independent word sequences is of the
order tens of thousands (Figure 1b) and it largely grows over time.
This implies long computational times to process large datasets.
Thus, authors suggest to train the model only on framework setup
and then use it in different time windows. However, we believe that
such a solution strongly decreases the model performance: Given
the highly dynamic nature of darknet traffic (see Section 3), the
embedding associated to each port should be frequently updated.
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Table 7: Domain-knowledge-based service definition used
for generating the Word2Vec corpus.

Service Internet Port/Protocol

Telnet 23/tcp, 992/tcp

SSH 22/tcp

Kerberos 88/tcp, 88/udp, 543/tcp, 544/tcp, 749/tcp, 7004/tcp, 750/udp,
750/tcp, 751/tcp, 752/udp, 754/tcp, 464/udp, 464/tcp

HTTP 80/tcp, 443/tcp, 8080/tcp

Proxy 1080/tcp, 6446/tcp, 2121/tcp, 8081/tcp, 57000/tcp

Mail 25/tcp, 143/tcp, 174/tcp, 209/tcp, 465/tcp, 587/tcp, 110/tcp,
995/tcp, 993/tcp

Database
210/tcp, 5432/tcp, 775/tcp, 1433/tcp, 1433/udp, 1434/tcp,
1434/udp, 3306/tcp, 27017/tcp, 27018/tcp, 27019/tcp, 3050/tcp,
3351/tcp, 1583/tcp

DNS 853/tcp, 853/udp , 5353/udp , 53/tcp, 53/udp

Netbios 137/tcp, 137/udp, 138/tcp, 138/udp, 139/tcp, 139/udp

Netbios-SMB 445/tcp

P2P

119/tcp, 375/tcp, 425/tcp, 1214/tcp, 412/tcp, 1412/tcp, 2412/tcp,
4662/tcp, 12155/udp, 6771/udp, 6881/udp, 6882/udp, 6883/udp,
6884/udp, 6885/udp, 6886/udp, 6887/udp, 6881/tcp, 6882/tcp,
6883/tcp, 6884/tcp, 6885/tcp, 6886/tcp, 6887/tcp, 6969/tcp,
7000/tcp, 9000/tcp, 9091/tcp, 6346/tcp, 6346/udp, 6347/tcp,
6347/udp

FTP 20/tcp, 21/tcp, 69/udp, 989/tcp, 990/tcp, 2431/udp, 2433/udp,
2811/tcp, 8021/tcp

Unknown System All ports in the [0, 1023] range not classified as before

Unknown User All ports in the [1024, 49151] range not classified as before

Unknown Ephemeral All ports in the [49152, 65535] range not classified as before

Table 6: Baseline 7-NN classifier report. Values below 0.50
are highlighted in red.

Precision Recall F-Score Support
Mirai-like 0.97 1.00 0.98 7351
Censys 0.83 0.42 0.56 336
Stretchoid 0.43 0.03 0.05 104
Internet-census 0.50 0.67 0.57 103
Binaryedge 0.97 0.67 0.80 101
Ipip 0.00 0.00 0.00 49
Sharashka 0.94 0.32 0.48 50
Shodan 0.50 0.13 0.21 23
Engin-umich 0.71 1.00 0.83 10
Unknown – 0.36 – 14272

A.2.2 IP2VEC. Authors of IP2VEC [37] propose an approach based
on Word2Vec to highlight similarities among IP addresses in
general-purpose network traces. Rather than adopting the canonical
Word2Vec approach with sequence of tokens, authors define a
custom context relying on information aggregated at flow level.
Namely, for each sender observed in a traffic trace, they focus on
(i) the receiver IP address, (ii) the destination port and (iii) the used
transmission protocol. In this way, the target words are not only
the senders IP addresses or the destination ports (like DANTE),
but all fields in the flow definition. Afterwards authors generate 5
distinct pairs of tokens in the form (target word, context word). In
Figure 17 we report IP2VEC definition of the custom context for a
flow starting from raw data.

For managing such data type, IP2VEC relies on negative
sampling [31]. Rather than predicting the probability of all the
words being in the same context of the target one, with negative
sampling, the skip-gram model predicts if a pair of words belongs
to the same context (or they are 2𝑐-neighbors in a sequence), where
𝑐 is the context window size.

From a practical point of view, this reduces IP2VEC scalability,
as the authors themselves confirm. Indeed, even though the amount
of data is reduced through the flow-level aggregation, because of
negative sampling, themodel must be trained onwords belonging to
the same context and an additional percentage of words belonging
to different ones. Thus, in large datasets, IP2VEC may be too
expensive in terms of computational times.

A.3 Domain knowledge based service
definition

For the sake of completeness, in Table 7 we report all the services
we define in the domain knowledge-based service experiment.


