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Abstract: In the automotive field, the requirements in terms of carbon emissions and improved
efficiency are shifting the focus of designers towards reduced engine size. As a result, the dynamic
balancing of an engine with strict limitations on the number of cylinders, the weight and the available
space becomes a challenging task. The present contribution aims at providing the designer with a
tool capable of selecting fundamental parameters needed to correctly balance an internal combustion
engine, including the masses and geometry of the elements to be added directly onto the crankshaft
and onto the balancing shafts. The relevant elements that distinguish the tool from others already
proposed are two. The first is the comprehensive matrix formulation which makes the tool fit for a
wide variety of engine configurations. The second is an optimisation procedure that selects not only
the position of the mass and centre of gravity of the counterweight but also its complete geometric
configuration, thus instantaneously identifying the overall dimensions and weight of the crankshaft.

Keywords: crankshaft; balancing; tool; counterweight design

1. Introduction

The modern automotive market requires a continuous reduction of carbon emissions
and fuel consumption and an ever increasing engine efficiency [1,2]. These goals can
be achieved by the use of a support electric motor for functions such as the Start/Stop
or real hybrid engines. The engine compartment must then accommodate these new
components; therefore, engine dimensions must be as small as possible, especially in the
case of small/medium size cars. Furthermore, engine downsizing is recognised, in itself,
as an effective method to reduce consumption and increase efficiency [3,4] and many
manufacturers are reducing engine displacement and the number of cylinders.

From a design point of view, the combination of a reduced number of cylinders with
weight and space limitations makes the task of balancing the crankshaft more difficult.
Crankshaft unbalance translates into high vibrations that are transmitted to the entire car,
thus compromising the user comfort level [5]. Crankshaft balancing is typically performed
in two subsequent phases. The first is during the early design, where the configuration of
the masses to be added to the crankshaft and to the additional balance shafts are defined [6].
The second involves the measurement of the residual unbalance [7] in machined crankshafts
and the subsequent correction on a sample-to-sample basis [8,9]. The contribution of the
present work fits precisely into the first step of the balancing process and was developed to
aid the designer in choosing, since the early stages, the weight and the configuration of
masses to be added to the crankshaft and, when present, to the balance shafts.

It must be noted that the goal of the present tool is to perform a “global” balancing of
the system, in order to find the optimal counterweight configuration. The introduction of
the counterweights produces a change in the reaction forces and in the loading diagram of
each journal bearing. Therefore, once the counterweight configuration has been defined, it
is of paramount importance to evaluate how this change may influence the design of the
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journal bearings themselves [10–13], an aspect which is, however, beyond the scope of the
present work.

The proposed tool, equipped with a Graphical User Interface, is based on a com-
prehensive formulation which allows the user to analyse a wide range of scenarios, i.e.,
crankshafts with any number of cylinders and counterweights, in-line and V configurations
alike. The proposed framework needs as input only the main geometrical dimensions
and key operating conditions (e.g., piston firing order), and offers, as outputs, the ro-
tating vectors diagrams and the counterweights mass and configuration necessary to
balance the centrifugal forces and the first and second order reciprocating forces and the
respective moments.

The basic concepts and formulation adopted by the tool are presented in Section 2.
The matrix formulation adopted to express the balancing equations is presented and

discussed to highlight its versatility in Section 3. Section 4 is devoted to the parametrization of
the counterweight shape and its subsequent optimisation, a problem which is either tackled
through an iterative procedure requiring a lengthy direct involvement from the designer [14]
or through the use of computationally intensive CAD-based genetic algorithms [15].

The numerical tool, whose user interface is described in Section 5, is then used in
Section 6 to investigate different scenarios, demonstrating its effectiveness in exploring the
counterweights’ minimum weight-minimum dimension trade-off.

2. Methodology
Balancing Concepts

The creation of the tool starts from the definition of a suitable model of the crankshaft
with the relative forces that need balancing. A generic crankshaft can be divided into
multiple elementary elements, called cranks, identified and oriented based on the firing
order of the engine. Each crank is made of three parts:

• two main journals, which are supported by the engine block;
• one crank-pin, on which the big-eye of the connecting rod is placed;
• two crank webs, which connect the main journals and the crank-pin.

These components are modelled as rigid beams, made of the same material. Such
model can be seen in Figure 1. In this figure the dimensions relevant to the balancing
process can be identified, alongside the reference system adopted throughout the analysis.

Figure 1. Model of the crankshaft for a 3 cylinder in-line engine, with the relative polar plot on
the right.

It is possible to identify three forces in need of balancing in the engine:

• Centrifugal force, Fω = mrotω
2r;

• Primary reciprocating force, F
′
a = −maltω

2r(cos θ);
• Secondary reciprocating force, F

′′
a = −maltω

2r(Λ cos 2θ)
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where mrot is the rotational mass of the crank mechanism (including crank webs, crankpin
and conrod’s big-eye), malt is the crank mechanism reciprocating mass (including piston,
wristpin, piston rings and conrod’s small-eye), ω is the crankshaft rotational speed, θ is
the crank-angle with respect to the z-axis and Λ is the elongation ratio, equal to the ratio
between the crank radius r and the conrod length. The minus sign for the reciprocating
forces is representative of the fact that the inertia forces have opposite direction with
respect to the direction of motion of the pistons. The centrifugal force Fω has constant
magnitude but its direction continuously changes coherently with the crankshaft rotation
angle, meanwhile the reciprocating forces F

′
a, F

′′
a are always aligned with their respective

cylinder axis and the magnitude changes continuously, with the secondary one having
double the frequency of the primary reciprocating force. In any case, the behaviour is
clearly oscillating; therefore, these forces, and the possible moments they may form, can
generate deformations of the crankshaft which must be minimised.

The balancing of the forces can be performed by adding to the engine properly sized
masses, called counterweights. These masses will rotate during the operation of the engine,
generating centrifugal forces that counter those of the crankshaft. It is possible to place
the counterweights through two main methods: either directly on the crankshaft or on
additional components called balancing shafts. For what concerns the centrifugal force
balancing, it depends on the rotational masses of the crankshaft mrot, composed of the
masses of the crank-pin, the two crank-webs and the big-eye of the connecting rod, and,
due to its constant magnitude, it is sufficient to place the counterweights on the crankshaft,
as shown in Figure 2, where the following quantities can be identified: Fc are the centrifugal
forces generated by the counterweights mc, Mω,1 and Mω,3 are the moments by the cranks
(1 and 3 respectively), Mω,res is the resultant of the previously defined moments and Mc,res
is the moment generated by the counterweight centrifugal forces. The numerical subscripts
refer to the cylinder number and in the following discussion are removed for simplicity,
since the elements share the same magnitude (e.g., mc,1 and mc,3 will be defined as mc).

Figure 2. Isometry and relative polar plot of the crankshaft for a 3 cylinder in-line engine, including
the centrifugal forces equilibrium.

The reciprocating forces, instead, due to their direction always aligned with the
cylinders axis, cannot be treated as the centrifugal force. The most commonly adopted
model converts the force into two “equivalent” contributions: considering the radius
of these contributions equal to the crank radius, the ones for the primary reciprocating
forces are equal to malt

2 , while the ones for the secondary reciprocating forces are equal to
maltΛ

8 . One of these fictitious masses rotates, while the other one counter-rotates, along
with the trajectory of the centre of mass of the crank-pin. These masses have the same
speed as the crankshaft when considering the primary reciprocating force; meanwhile,
the masses for the secondary reciprocating force has double the speed of the crankshaft.
The sum of the z-components of the centrifugal forces that these masses generate is then
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equal to the corresponding actual reciprocating force. With such conversion, it is possible
to balance each individual force through the addition of the counterweights. For the
primary reciprocating force, the main method makes use of two balancing shafts, one for
the rotating and one for the counter-rotating masses, as shown in Figure 3, where the
following quantities can be identified: malt,r and malt,cr, which are respectively the rotating
and counter-rotating fictitious masses, both equal to malt/2, mc,1, the counterweights mass
for the primary reciprocating force, F

′
a,r and F

′
a,cr, which are the centrifugal forces for

respectively the rotating and counter-rotating fictitious masses, F
′
a,1 and F

′
a,2, which are the

primary reciprocating force for each cylinder (1 and 2, respectively) and each one equal
to F

′
a, M

′
a,1 and M

′
a,2, the moments generated by the previously defined forces, F

′
a,c, which

is the centrifugal force generated by the counterweights, M
′
c,1,r and M

′
a,1,cr, the moments

generated by the rotating and counter-rotating shafts, and M
′
a,res and M

′
c,1,res, the resultants

of, respectively, the crankshaft and the balancing shafts moments.

Figure 3. Polar plot and relative isometry of the crankshaft for a 2 cylinder in-line engine with a 180°
angle between cranks, including the primary reciprocating forces equilibrium and the additional
primary balancing shafts.

A similar balancing method can be used for the secondary reciprocating forces. In this
case the balancing shaft will rotate at double the speed of the crankshaft, as it is reported
in Figure 4, where the following quantities can be identified: malt,cr,r, which represents
both the rotating and counter-rotating fictitious masses, which, in this view, in this specific
configuration, are overlapping, and are both equal to malt/2, mc,2, the counterweights mass
for the secondary reciprocating force, F

′′
a,r and F

′′
a,cr, which are the centrifugal forces for

respectively the rotating and counter-rotating fictitious masses, F
′′
a,c, which is the centrifugal

force generated by the counterweights.
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Figure 4. Polar plot and relative isometry of the crankshaft for a 2 cylinder in-line engine with a 180°
angle between cranks, including the secondary reciprocating forces equilibrium and the additional
secondary balancing shafts.

3. Tool Design

Once the balancing requirements in terms of dynamic equilibrium of the crankshaft
are defined, it is possible to proceed with the creation of the code in charge of computing the
masses and orientation of the balancing components required by the engine configuration
defined by the inputs provided by the user. Unlike other existing codes, the one proposed
here can be easily adapted to a wide range of crankshaft configurations. This flexibility
is achieved thanks to a modular matrix-based formulation, which will be extensively
presented in the following paragraphs. It must be noted that the balancing performed by
the code is a "global" one, so it does not consider the specific local forces on each individual
bearing and the forces that the addition of counterweights could generate on the crankshaft,
for which much more extensive analysis should be performed.

The first section of the code is designed to create the matrices useful to define the
geometry of the crankshaft with its counterweights. The inputs used in the definition of
such matrices are the following:

• Number of cranks, Ncr;
• Vector of the firing order, FO1,Ncr ;
• Crank angle of the first crank, θ;
• Distance between the mid-points of two consecutive cranks, a;
• Phase between two cranks (based on firing order), φ;
• Angle between counterweight and crankpin symmetrical opposite, α;
• Vector for definition of counterweight configuration, Ycw.

The creation of the crankshaft matrix CS starts by defining the reference system of the
crankshaft: it is positioned at the mid-length of the component, with the y-axis aligned with
the rotational axis of the crankshaft itself. Such reference system and the inputs previously
defined are reported in Figure 1.
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The crankshaft is thus defined by obtaining the position and orientation of each crank
with respect to the reference system. The reference point taken for each crank corresponds
to the mid-length of the crank journal, which also coincides with the centre point of the big
eye of the con-rod. If we define N f o = FO(i) with 1 ≤ i ≤ Ncr ∈ N, the formulation of CS,
is as follows:

CS(1, N f o) = [sin(θ + (i− 1)φ)] (1)

CS(2, N f o) =

[
(N f o − 1)a− (Ncr − 1)

2
a
]

(2)

CS(3, N f o) = [cos(θ + (i− 1)φ)] (3)

From these equations we can see that the geometry matrix for the crankshaft will be
a 3− by− Ncr matrix, with the first, second and third row, i.e., Equations (1)–(3), the x, y
and z components of the crankpin centre position respectively. Meanwhile, each column
represents the set of components for each crank of the crankshaft. The following equation
is an example of matrix for the crankshaft geometry, shown in Figure 1:

CS =


0 sin

(
4
3 π
)

sin
( 2

3 π
)

−a 0 a
1 cos

(
4
3 π
)

cos
( 2

3 π
)
 (4)

The matrix of the crankshaft counterweights CW is then created. The reference system
and method is the same as those followed for CS: for each counterweight, a column
representing the three components of the counterweight position will be defined. Since not
all crankswebs will be equipped with a counterweight, a vector of ones and zeros, termed
Ycw, is used to signal the presence of a counterweight in a given position.

Ycw = [110011] (5)

The example in Equation (5) is the vector for the 3 cylinder in-line engine with four
counterweight presented in Figure 1. It should be noted that, since we have two crankwebs
for each crank, the dimension of Ycw is twice the number of cranks, with ones that indicate
the presence and zeros the absence of a counterweight. So, if we define N f o = FO(i) with
1 ≤ i ≤ Ncr ∈ N and, ∀i Ncw = Ycw(j) with j = 2i− 1 ∧ j = 2i, we can create the matrix as
follows:

CW(1, j) = [sin(θ + (i− 1)φ + α)](−Ncw) (6)CW(2, j) =
[[
(N f o − 1)a− (Ncr−1)

2 a
]
− a/4

]
(Ncw) f or j = 2i− 1

CW(2, j) =
[[
(N f o − 1)a− (Ncr−1)

2 a
]
+ a/4

]
(Ncw) f or j = 2i

(7)

CW(3, j) = [cos(θ + (i− 1)φ + α)](−Ncw) (8)

where α is negative when N f o ≤ Ncr/2 and is positive when N f o ≥ Ncr/2. The matrix
for the counterweight configuration of the 3 cylinder engine previously defined becomes
as follows:

CW =

− sin(−α) − sin(−α) 0 0 − sin
( 2

3 π + α
)
− sin

( 2
3 π + α

)
−a− a/4 −a + a/4 0 0 a− a/4 a + a/4
− cos(−α) − cos(−α) 0 0 − cos

( 2
3 π + α

)
− cos

( 2
3 π + α

)
 (9)

The matrix CW has dimensions 3-by-6, with the three x-y-z components as rows and
as many columns as the number of crank webs, with the two central columns equal to zero
because the counterweights are not applied in those positions.
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3.1. Centrifugal Forces Balancing

Once the matrices for the crankshaft and relative counterweights have been created,
the next step that the code undertakes is the computation of the mass of each counterweight,
which is assumed the same for each counterweight. This assumption seems reasonable
since, given the similarity among cylinders belonging to the same engine and the sym-
metry of the crankshaft, a uniform distribution of the counterweight masses is the best
option to avoid additional unbalance. The method used for the calculation starts from
the equations of equilibrium, both of forces and moments, and expresses them using the
matrices previously defined.

The equations of equilibrium that we can define are four, two for the forces and two
for the moments:

∑Ncr
i=1 mrotω

2rCS(1, i) = ∑2Ncr
j=1 mcω2rcCW(1, j)

∑Ncr
i=1 mrotω

2rCS(3, i) = ∑2Ncr
j=1 mcω2rcCW(3, j)

∑Ncr
i=1 mrotω

2rCS(1, i)CS(2, i) = ∑2Ncr
j=1 mcω2rcCW(1, j)CW(2, j)

∑Ncr
i=1 mrotω

2rCS(3, i)CS(2, i) = ∑2Ncr
j=1 mcω2rcCW(3, j)CW(2, j)

(10)

where rc is the radius of the centre of gravity of the crankshaft counterweights. The first
two equations are the equilibrium of the forces, the first being for the x-component and the
second for the z-component; the last two equations, instead, are for the moments, in this
case around the x and z axis. We can also see that the first term of each equation represents
the resultant of forces and moments generated by the cranks, while the second term is for
the counterweights resultants. From these equations it is possible to derive an equation to
obtain the needed unknown quantities. For instance, fixing rc to a given value, one can
derive mc: 

mc =
∑Ncr

i=1 mrotrCS(1,i)

∑2Ncr
j=1 rcCW(1,j)

mc =
∑Ncr

i=1 mrotrCS(3,i)

∑2Ncr
j=1 rcCW(3,j)

mc =
∑Ncr

i=1 mrotrCS(1,i)CS(2,i)

∑2Ncr
j=1 rcCW(1,j)CW(2,j)

mc =
∑Ncr

i=1 mrotrCS(3,i)CS(2,i)

∑2Ncr
j=1 rcCW(3,j)CW(2,j)

(11)

It must be noted that not all of these equations are needed to find the counterweight
mass, but just one is necessary. However, it is important to consider them all, initially,
because some crankshaft configurations have a null resultant of the forces and others a
null resultant of the moments. Therefore, the equation that must be used from the set in
Equation (11) is the one that has a numerator different from zero.

A particular situation that can be encountered is when all of the resultants previously
defined are null. This means that both in terms of forces and in terms of moments around
the mid-point of the crankshaft, the engine is balanced. However, this usually happens
in relatively long crankshafts, like 4 and 6 cylinder in-line engines, in which each half-
crankshaft can create unbalancing moments. In this case, the code will automatically
recognise the situation and compute the masses of the counterweights based on the same
equations but considering only half of the crankshaft: this is managed by having the
sums in Equation (10) starting from one and reaching Ncr/2 and Ncr for the crank and
counterweights term, respectively.

3.2. Primary Reciprocating Forces Balancing

The balancing of the primary reciprocating force needs, along with some of the data
already used for the centrifugal balancing, the following additional inputs:

• The total length of the primary balancing shafts (which corresponds to the distance
between the outer counterweights of the shafts), lsh,1;
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• The radius of the centre of gravity of the primary counterweights, rc,1.

Such inputs can be visualised in Figure 7. For the perfect balancing of the primary
reciprocating forces, as described in Section 2, two balancing shafts are needed. Each
of the shafts must balance the forces and moments that the reciprocating components
generate. Therefore, the first step is to create the geometry matrix for the shafts. Two main
cases can originate in terms of reciprocating forces: one with the force resultant different
from zero and one with the moment resultant different from zero. Based on the case, the
counterweights can be one per shaft, in their mid-position, or two at the extremities. The
matrices for the rotating and counter-rotating shafts can be defined as follows:

CW1,r(1, k) = CW(1, i) CW1,cr(1, k) = −CW(1, i) (12)

CW1,r(2) = [−lsh,1 lsh,1] CW1,cr(2) = [−lsh,1 lsh,1] (13)

CW1,r(3, k) = CW(3, i) CW1,cr(3, k) = −CW(3, i) (14)

where for k = 1, i = 1 and for k = 2, i = 2Ncr. The matrices found with these equations are
the ones relative to the case when the moment resultant is different from zero. When the
other case is encountered the matrix becomes a vertical array per shaft with the same x
and z components for k = 1 and the y-component equal to zero. The single mass on each
shaft can be also divided into multiple masses, if the symmetry around the mid-point of
the shafts is maintained.

With the matrices defined, it is then possible to formulate the equations for the
computation of the masses that must be applied to the balancing shafts, mc1:

∑Ncr
i=1 maltω

2rCS(3, i) = ∑
Ncw,1
j=1 mc,1ω2rc,1CW1,r(3, j)+

+∑
Ncw,1
j=1 mc,1ω2rc,1CW1,cr(3, j)

∑Ncr
i=1 maltω

2rCS(3, i)CS(2, i) = ∑
Ncw,1
j=1 mc,1ω2rc,1CW1,r(3, j)CW1,r(2, j)+

+∑
Ncw,1
j=1 mc,1ω2rc,1CW1,cr(3, j)CW1,cr(2, j)

(15)

where Ncw,1 is the number of counterweights per shaft and malt is the reciprocating mass
of one cylinder. We can notice that the equations for the equilibrium are two: one for
the equilibrium of the forces and one for the moments. Unlike the centrifugal forces, the
primary reciprocating forces do not need the definition of the two components, since they
are always coincident with the cylinder axis. The first term in the equations represents the
sum of the forces/moments generated by the crankshaft, meanwhile the second term is
given by the sum of the total forces/moments generated by the masses mc,1 on the rotating
and counter-rotating shafts. From Equation (15), we can then derive the following ones:

mc,1 =
∑Ncr

i=1 maltrCS(3,i)

∑
Ncw,1
j=1 rc,1CW1,r(3,j)+∑

Ncw,1
j=1 rc,1CW1,cr(3,j)

mc,1 =
∑Ncr

i=1 maltrCS(3,i)CS(2,i)

∑
Ncw,1
j=1 rc,1CW1,r(3,j)CW1,r(2,j)+∑

Ncw,1
j=1 rc,1CW1,cr(3,j)CW1,cr(2,j)

(16)

Similarly to the equations for the centrifugal counterweights, it is not necessary to
use both equations of Equation (16) to compute the mass. Instead, the equation with a
non-zero numerator must be used, since, as described earlier, the cases that are most likely
encountered are those with the force resultant different from zero and one with the moment
resultant different from zero. This means that the code would use, respectively, the first
and second equation.

In order to reduce the complexity of the engine, it is possible to choose to eliminate
the rotating shaft and substituting it with an additional mass that is included to each
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crankshaft counterweight. Since the forces and moment resultants must be the same, it is
just needed to perform a conversion based on the radii of the counterweights and their
number, as such:

mc,1,cs =
mc,1rNcw,1

rc,1Ncw
(17)

where Ncw is the number of crankshaft counterweights. It must be noted that such configu-
ration may generate an additional moment around the y-axis in case of unbalanced primary
reciprocating forces. This is due to the distance between the crankshaft and the counterro-
tating shaft and the absence of the rotating shaft, which would provide the balance around
said axis.

3.3. Secondary Reciprocating Forces Balancing

The balancing of the secondary reciprocating forces needs the following additional inputs:

• The total length of the secondary balancing shafts (which corresponds to the distance
between the outer counterweights of the shafts), lsh,2;

• The radius of the centre of gravity of the secondary counterweights, rc,2.

Such inputs can be visualised in Figure 7. Unlike the centrifugal and primary recip-
rocating forces, where the geometry matrix of the counterweights can be directly derived
from the crankshaft matrix, the geometry matrices for the counterweights of the secondary
reciprocating forces are more complex to derive, since they rotate at double the speed of
the crankshaft and the relative position to the other components can change drastically
between different crankshaft configurations.

The method exploits the fact that the reciprocating forces are always aligned with the
cylinder axis and, therefore, the counterweights are parallel to the cylinder axis when the
resultant force/moment of the cranks is maximum: in fact, only when the counterweights
are parallel to the z-axis they generate the maximum vertical force and maximum moment
around the x-axis. So, the code will proceed to compute the maximum values of resultant
force and moments generated by the crankshaft, through the following equations:{

Fa,2,res = ∑Ncr
i=1 maltΛω2r cos(2 arccos(CS(3, i)))

Ma,2,res = ∑Ncr
i=1 maltΛω2r cos(2 arccos(CS(3, i)))CS(2, i)

(18)

When the maximum value of the force and moment is obtained, the corresponding
crank angle of the first crank is saved and defined as ε. With this premise, it is then possible
to create the geometry matrices for the counterweights of both shafts:

CW2,r(1, k) = sin(2θ − 2ε + π(k− 1)) CW2,cr(1, k) = −CW2,r(1, k) (19)

CW2,r(2, k) =
−lsh,2

2
+ lsh,2(k− 1) CW2,cr(2, k) =

−lsh,2

2
+ lsh,2(k− 1) (20)

CW2,r(3, k) = sin(2θ − 2ε + π(j− 1)) CW2,cr(3, k) = CW2,r(3, k) (21)

where k = 1 ∧ k = 2, and j = k. Similarly to the primary reciprocating forces, the matrices
found with these equations are those relative to the case where the moment resultant is
different from zero. When the other case is encountered the matrix becomes a vertical array
per shaft with the same x and z components for k = 1, with j = 2, and the y-component
equal to zero. The single mass on each shaft can be also divided into multiple masses, if
the symmetry around the mid-point of the shafts is maintained.

Once the matrices have been found, the equations of equilibrium are used to find the
masses to apply to the counterweights, mc,2. Effectively, the method follows the same exact
pattern as for the primary reciprocating forces:
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∑Ncr
i=1 maltΛω2r cos(2 arccos(3, i)) = ∑

Ncw,2
j=1 mc,24ω2rc,2CW2,r(3, j)+

+∑
Ncw,2
j=1 mc,24ω2rc,1CW2,cr(3, j)

∑Ncr
i=1 maltΛω2r cos(2 arccos(3, i))CS(2, i) = ∑

Ncw,2
j=1 mc,2ω2rc,2CW2,r(3, j)CW2,r(2, j)+

+∑
Ncw,2
j=1 mc,2ω2rc,2CW2,cr(3, j)CW2,cr(2, j)

(22)

From these equations, we can then derive:
mc,2 =

∑Ncr
i=1 maltΛr cos(2 arccos(3,i))

∑
Ncw,2
j=1 4rc,2CW2,r(3,j)+∑

Ncw,2
j=1 4rc,2CW2,cr(3,j)

mc,2 =
∑Ncr

i=1 maltΛr cos(2 arccos(3,i))CS(2,i)

∑
Ncw,2
j=1 4rc,2CW2,r(3,j)CW2,r(2,j)+∑

Ncw,2
j=1 4rc,2CW2,cr(3,j)CW2,cr(2,j)

(23)

Just like the primary reciprocating forces, only one equation from the set in Equation (23) is
necessary to find the mass of the counterweights. The choice is based on which numerator is
different from zero, because it corresponds to a resultant different from zero, and, therefore,
it needs to be balanced.

4. Counterweight Characterisation

Another crucial step in performing a complete crankshaft balancing procedure is
the definition of the counterweight final geometry. In fact, most codes are limited to
computing the total mass and mass centre position, leaving to the designer the actual
design of the counterweight, often through a cumbersome trial and error procedure. The
present tool aims at overcoming these limitations through a careful parametrization of the
most common counterweight configurations. For balancing purposes, the counterweights
can be considered as concentrated masses, as in the previous section. In fact, the actual
counterweights added to engines have complex shapes which must be designed in order
to cope with both the balancing needs of the system and the weight and geometrical
constraints of the system. Specifically, the balancing components that need more careful
design are the counterweights added directly onto the crankshaft, since the clearances for
the crankshaft are tighter and the biggest balancing masses are involved. Therefore, it is
very important to size and shape properly these components in order to maximise their
balancing potential and at the same time reduce the volume and masses used.

To this end, a model for the counterweights has been defined, with the necessary
dimensional parameters, and it is shown in Figure 5.

It can be noticed that the surfaces of the counterweight have been divided into different
zones, each made of a simple geometrical element:

• In red, the circle representing the base crank web (no counterweights), defined by rcw;
• A rectangle in orange, defined by hR and 2rcw;
• A trapezoid in blue, defined by 2rcw, δ and lc;
• A circular segment in green, defined by Rcw, rcw and lc.

With the variation of these parameters, multiple shapes and sizes for the counter-
weights can be obtained, closely representing the actual counterweights used in internal
combustion engines. A few examples of these elements can be visualised in Figure 6.



Appl. Sci. 2021, 11, 8997 11 of 21

Figure 5. Model and quotas of the crankshaft counterweight.

Figure 6. Examples of characterisation of a crankshaft counterweight.

It is noticeable that the variety of shapes that can be obtained through this modelling
involves the possible intersection of the red area (which is constant for a certain radius rcw)
with the other ones, with consequent subtraction of varying areas. These quantities are
defined, apart from the parameters introduced earlier, by the angles γ and λ. The angle λ
can be defined as follows:{

λ = 2cos−1
(

hR+lctanδ
rcw

)
if hR + lctanδ ≤ rcw

λ = 0 if hR + lctanδ > rcw
(24)

While the angle γ can be defined as:{
γ = 2cos−1

(
hR
rcw

)
if hR ≤ rcw

γ = 0 if hR > rcw
(25)

It is then possible to derive the equations for the computation of the total lateral
surface area of the counterweights:

Agreen = R2
cw
(

α
2 − sin α

2 cos α
2
)
− r2

cw

(
λ
2 − sin λ

2 cos λ
2

)
Ablue = (2rcw + lc)lctanδ− r2

cw
( γ

2 − sin γ
2 cos γ

2
)
+ r2

cw

(
λ
2 − sin λ

2 cos λ
2

)
Aorange = 2rcwhR − r2

cw
π
2 + r2

cw
( γ

2 − sin γ
2 cos γ

2
)

lc =
2Rcwsin α

2−2rcw
2

(26)
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where Agreen, Ablue and Aorange are, respectively, the green, blue and orange areas in
Figure 5. It can be noticed that the red area has not been included in the system, since it is
not part of the balancing components and, being symmetrical with respect to the crankshaft
rotational axis, it is naturally centrifugally balanced. From this system of equations, the
total lateral area is defined:

Acw = Agreen + Ablue + Aorange (27)

In order to find the mass of the counterweight, the volume must be found. This is
possible by simply considering the sides of the counterweight, as in Figure 5, parallel to
each other. This way, the thickness tcw can be identified and then:

Vcw = Acwtcw (28)

From this equation, defining as ρcw the density of the material used for the counter-
weights, which, generally, is the same as the one for the crankshaft, it becomes possible to
find the mass of each counterweight:

mcw = Vcwρcw (29)

To complete the characterisation of the counterweight, the centre of gravity of this
component, called rc, is to be found. This step can be carried out by deriving the centre of
gravity of each geometrical shape previously defined:

rgreen =

R2
cw( α

2−sin α
2 cos α

2 )

hR+lctanδ−Rcwcos α
2 +

(2Rcwsin α
2 )

3

12R2
cw( α

2−sin α
2 cos α

2 )

−[ 2
3 r3

cw(sin λ
2 )

3]
Agreen

rblue =
(2rcw+lc)lctanδ

[
hR+lctanδ− lc tanδ(3rcw+lc)

3(2rcw+lc)

]
−
[

2
3 r3

cw(sin γ
2 )

3−(sin λ
2 )

3]
Ablue

rorange =
(h2

Rrcw)−[r3
cw( 1

3−
2
3 (sin γ

2 )
3)]

Aorange

rc =
yorange Aorange+yblue Ablue+ygreen Agreen

Aorange+Ablue+Agreen

(30)

where rgreen, rblue and rorange are the distances from the rotation axis of the crankshaft of
the centres of gravity of, respectively, the green, blue and orange shapes in Figure 5.

5. User-Interface

In order to simplify the insertion of the inputs by the user, a user-interface is included
in the code. The interface is designed with four tabs, each related to a specific aspect of
the balancing process. The first three tabs group all the inputs needed for the balancing
process, while the last one gathers all the outputs and plots relevant to the user. The first
tab of the inputs group is reported in Figure 7. The inputs are divided into two panels: the
first one, called “Engine general parameters”, is referred to the configuration of the engine;
meanwhile, the second panel, called “Balancing components parameters”, includes the
geometrical data strictly relative to the balancing components.

Along with these inputs, two schemes of a generic crankshaft have been added, in
order to provide the user with a visual indication of the necessary inputs. When the data
of this tab has all been included, it is possible to switch to the next tab through the “Next”
button on the bottom-right corner. The next tab, called “Masses and other parameters”,
which is reported in Figure 8, is composed by two other panels: one dedicated to the
speed and other geometrical parameters of the engine and the other one is relative to the
masses of the crank mechanism, which will be used to compute the reciprocating and
rotating masses.
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Figure 7. Tab of the user-interface dedicated to the insertion of the general and balancing input data.

Figure 8. Tab of the user-interface devoted to the definition of the geometrical parameters and the
masses of the crank mechanism.

With all the inputs for this tab defined, it is possible to initiate the balancing computa-
tion, performed by the code described in Section 3. If changes to the inputs are needed, it is
possible to return to the first tab by clicking on the “Back” button or directly on the name
of the tab. Otherwise, through the “Compute results” button it is possible to make the code
start the balancing computations.

The results computed by the main code are grouped in the fourth tab of the interface,
named “Results”. As shown in Figure 9, three panels are included: the first one, called “Plot
results”, allows one to visualise the plots for the crankshaft geometry and the resultants for
all the forces and moments relative to the balancing process. Such plots enable the user to
quickly check the correctness of the process and how the elements are positioned relative
to each other. The second panel reports the masses for each balancing counterweight.
Finally, the last panel allows for the export of the plots previously presented as separate
MATLAB figures. When the results have been checked, the “Return” button allows one
to immediately return to the first tab, so that the user can perform again the balancing
computations with new inputs.
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Figure 9. Tab of the user-interface dedicated to the preliminary balancing results.

The last tab included in the interface is relative to the characterisation of the counter-
weights of the crankshaft, which can be used if a more detailed design of the counterweights
is desired. This tab, which is reported in Figure 10, uses parts of the main code that is used
by the other tabs, with the addition of a specific section, which implements the equations
described in Section 4.

Figure 10. Tab of the user-interface dedicated to the design and optimisation of the counterweights.

It can be noticed that the tab is divided into three panels: two dedicated to the inputs
and one to the results. The first one, called “Main constraining parameters”, allows the user
to specify the main requirements for the design of the counterweights. These parameters
are the most concerning from the design point of view, since they influence the overall
performance of the engine:

• The maximum mass of the component;
• The maximum available space for the path of the counterweight permitted by all the

other components of the engine;
• The minimum balance requested by the engine.

The second panel groups a set of inputs related to the fine-tuning of the geometry of
the counterweight. It is possible to specify a range of limiting values for each parameter



Appl. Sci. 2021, 11, 8997 15 of 21

which defines the shape of the counterweight. It can be noticed that on the left of each
input a selector button has been included: it is used to select which are the parameters that
the user wants to modify while the code will have total freedom in what values the others
can have. In fact, the code, through the equations defined earlier, will compute all the
parameters that characterise the counterweight based on the limiting factors defined by the
user. However, it is possible to find multiple solutions (defined as multiple combinations
of parameters) for a set of inputs. Therefore, the third panel, called “Results”, will group
all the solutions found by the code which respect the constraints imposed. Of course, the
more restrictive the inputs, the lower the number of possible solutions and vice versa.

6. Practical Examples

In order to demonstrate the balancing process of the tool, a 3 cylinders in-line and a 4
cylinders V90° engine will be shown.

6.1. 3 Cylinder in-Line Engine

Regarding the preliminary balancing, once the inputs for the configuration, which can
be seen in Table 1, are inserted in the relative tabs (1 and 2), the computation can be started.
The numerical results, i.e., the counterweights mass, are reported in Table 2.

Table 1. Input data for the optimisation of a 3 cylinder in-line engine.

Engine
Type Ncyl

Firing
Order φ [deg] a [mm] Ncw Ncw,1 Ncw,2 Nsh,1 Nsh,2 rc [mm] rc,1 [mm]

In-line 3 1,3,2 120 90 4 2 2 2 2 30 30

Lsh,1,r
[mm]

Lsh,2,r
[mm] Lsh,1,cr Lsh,2,cr ω [rpm] D [mm] r [mm] lcr [mm] zoc [mm] zowp

[mm] mp [g] mwp [g]

100 200 −100 −200 2000 80 40 135 0 500 240

mcr [g] rc,2 [mm] lsh,1 lsh,2 mcp [g] mcw [g] rcw [mm]
600 30 200 200 400 1800 15

Table 2. Balancing masses for a 3 cylinder in-line engine.

mc [kg] mc,1 [kg] mc,2 [kg]

1.2413 0.4884 0.0362

The highest value obtained is the one relative to the crankshaft counterweights: this
fact is expected, since, looking at the input data, the rotating masses are larger than the
reciprocating ones. Moreover, the mass for the secondary reciprocating forces is quite a
small value relative to the others. Therefore, avoiding the secondary balancing shafts may
be an option, which would reduce the overall complexity of the engine. The geometry of
the defined configuration is shown in Figure 11.

The geometry corresponds to the most used configuration of a 3 cylinder engine. It
is also noticeable that the crankshaft counterweights are not symmetrical to their relative
crank. It should be noted that, by convention, the geometry is shown with the first crank
exhibiting a crank angle equal to zero (θ = 0).
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Figure 11. Geometry of crankshaft and balancing shafts for a 3 cylinder in-line engine.

The plots for the equilibrium of the centrifugal forces and moments, with their x and
z components, are reported in Figure 12.

Figure 12. Centrifugal forces (left) and moments (right) for a 3 cylinder in-line engine.

It is possible to see that the application of the counterweights allows one to cancel the
resultants and, therefore, to balance the crankshaft. A similar argument can be made for the
reciprocating moments, both primary and secondary. Their plots are shown in Figure 13.

Figure 13. Primary (left) and secondary (right) reciprocating moments for a 3 cylinder in-line engine.
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It is noticeable that the curves in each plot are symmetrical around the x-axis, allowing
for the cancellation of the resultants. This phenomenon can be further confirmed by the ge-
ometry plot: in fact, all the balancing shafts have an opposite counterweights configuration,
which allows one to counter the moments.

Finally, an optimisation, through an evolutionary algorithm, of the counterweights to
be added on the crankshaft, in order to balance it centrifugally, can be performed through
the third tab, presented in Section 5. The input values used are those reported in Figure 10,
while the results obtained are shown in Table 3. For what concerns the input data relative
to the crankshaft, the set shown in Figure 8 is used.

Table 3. Results for two optimisations of the counterweights.

Optimisation CW Mass [g] Rmin [mm] Balance [%] Rcw [mm] hR [mm] rcw [mm] δ [rad] α [rad] tcw [mm] γ [rad] δ [rad] lc [mm]

Mc Minimi-
sation 117.46 161.67 99.90 50.04 29.97 10.01 1.46 0.79 5.00 0.00 0.00 9.28

Rmin Min-
imisation 196.80 70.00 99.99 50.00 20.00 20.00 0.00 3.13 6.05 0.00 0.00 30.00

The optimisation reported is obtained by imposing a perfect balance of the crankshaft
(100% Balance), so that the code will find all the solutions abiding by this constraint. From
these solutions, the most relevant ones are highlighted: the one with the minimum mass
(CW mass) and the one with the maximum possible radial size (Rmin), reported in Table 1
as “MIN Mass” and “MIN Clearance”, respectively. Alongside these two parameters, it is
possible to see all the other geometrical dimensions, computed by the code, which define
the geometry of the counterweight, and, therefore, complete its characterisation.

6.2. 4 Cylinder V-Engine

The second example presented will be a 4 cylinder V-engine with a 90° bank angle.
The setup procedure is the same as the 3 cylinder case; however, for sake of brevity, the
counterweight characterisation is not performed for this configuration. In Table 4 the input
data used can be visualised, while in Table 5 the corresponding output data is inserted.
Since the inputs used are very similar to the 3 cyilinder engine ones, a comparison can
be done: it is noticeable that the crankshaft counterweights, in charge of balancing the
centrifugal components, have higher mass due to the higher rotational mass derived from
the additional cylinder. Instead, the counterweights mass for the primary reciprocating
moment is smaller, even though the number of cylinders is higher, due to the lower distance
of each crank mid-point from the mid-plane of the crankshaft.

Table 4. Input data for the optimisation of a 4 cylinder V-engine.

Engine Type Ncyl Firing Order φ [deg] a [mm] Ncw Ncw,1 Ncw,2 Nsh,1 Nsh,2 rc [mm] rc,1 [mm]
V 4 1,4,3,2 180 90 4 2 1 2 2 30 30

Lsh,1,r [mm] Lsh,2,r [mm] Lsh,1,cr Lsh,2,cr ω [rpm] D [mm] r [mm] lcr [mm] zoc [mm] zowp [mm] mp [g] mwp [g]
100 200 −100 −200 2000 80 40 135 0 500 240

mcr [g] rc,2 [mm] lsh,1 lsh,2 mcp [g] mcw [g] rcw [mm] α [deg]
600 30 200 200 400 1800 15 90

Table 5. Balancing masses for a 4 cylinder V-engine.

mc [kg] mc,1 [kg] mc,2 [kg]

1.700 0.3948 0.1299

In Figure 14 the geometry plot can be visualised. It is noticeable that the configuration
is very similar to a 2 cylinder in-line engine, but the code correctly accounts for the presence
of 2 conrod and pistons for each crank. From Figure 15, the balancing of the centrifugal
forces and moments can be seen, and, similarly, to the 3 cylinder example, the resultant
curves (in magenta) are completely flat. The same discussion can be made for the other



Appl. Sci. 2021, 11, 8997 18 of 21

characteristics that need balancing, in particular the primary reciprocating moment and
the secondary reciprocating force, which are reported in Figure 16.

Figure 14. Geometry of crankshaft and balancing shafts for a 4 cylinder V-engine.

Figure 15. Centrifugal forces (left) and moments (right) for a 4 cylinder V-engine.

Figure 16. Primary reciprocating moment (left) and secondary reciprocating force (right) balancing
curves for a 4 cylinder V-engine.

7. Conclusions

The proposed design tool is successful in identifying the masses and the configuration
of the counterweights necessary for the dynamic balance of the crankshaft of an internal
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combustion engine. Unlike existing codes, which typically specialise on a given engine
configuration, the proposed matrix formulation is fit to address the majority of engine
configurations. The rationalisation and unification of the framework used to describe
the different engine configurations not only makes the tool very flexible but also ensures
meaningful results in a very short time. Such results can be easily double-checked by
the user, both from a geometry standpoint and in quantitative balance terms. Moreover,
the implementation of the counterweight characterisation allows the complete definition
of the counterweight shape according to the most significant optimisation criteria, e.g.,
minimum weight and minimum clearance. Finally, the creation of a user-interface for the
code enhances the usability of the tool, simplifying the input insertion process.
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Abbreviations
The following abbreviations are used in this manuscript:

CAD Computer-aided design
GUI Graphical user interface
θ Crank angle
ω Crankshaft rotational speed
Λ Elongation ratio
r Crank radius
Fω Crank centrifugal force
F
′
a Crank primary reciprocating force (numerical subscripts indicate the crank number)

F
′′
a

Crank secondary reciprocating force (numerical subscripts indicate the crank
number)

mrot Crank rotational mass
malt Crank alternative mass
mp Piston and piston rings mass
mcp Crankpin mass
mwp Wrist pin mass
mcr Connecting rod mass
mcr Connecting rod length
zoc Crankshaft offset
zowp Wrist pin offset
mcw Crank web mass
rcw Crank web centre of gravity radius
mc Crankshaft counterweight mass
rc Crankshaft counterweight radius
Fc Crankshaft counterweight centrifugal force
Mω Crank centrifugal moment (numerical subscripts indicate the crank number)
Mω,res Crank centrifugal resultant moment
Mc,res Crankshaft counterweight resultant centrifugal moment
malt,r Counter-rotating fictitious masses
malt,cr Rotating fictitious masses
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mc,1 Counterweights mass for the primary reciprocating force
rc,1 Balancing shaft counterweight radius (Primary reciprocating force)
lsh,1 Balancing shaft total length (Primary reciprocating force)
F
′
a,r Centrifugal force of rotating fictitious masses (Primary reciprocating force)

M
′
a

Moments generated by the primary reciprocating forces (numerical subscripts
indicate
the crank number)

F
′
a,cr Centrifugal force of counter-rotating fictitious masses (Primary reciprocating force)

F
′
a,c Centrifugal force generated by the primary reciprocating force counterweights

M
′
c,1,r Moment generated by the rotating shafts (Primary reciprocating force)

M
′
a,1,cr Moment generated by the counter-rotating shafts (Primary reciprocating force)

M
′
a,res Crankshaft counterweight resultant moment (Primary reciprocating force)

M
′
c,1,res Balancing shafts counterweight resultant moment (Primary reciprocating force)

malt,cr,r Rotating and counter-rotating fictitious masses
mc,2 Counterweights mass for the secondary reciprocating force
rc,2 Balancing shaft counterweight radius (Secondary reciprocating force)
lsh,1 Balancing shaft total length (Primary reciprocating force)
lsh,2 Balancing shaft total length (Secondary reciprocating force)
F
′′
a,r Centrifugal force of rotating fictitious masses (Secondary reciprocating force)

F
′′
a,cr

Centrifugal force of counter-rotating fictitious masses (Secondary reciprocating
force)

F
′′
a,c Centrifugal force generated by the secondary reciprocating force counterweights

Fa,2,res Crankshaft resultant force (Secondary reciprocating force)
Ma,2,res Crankshaft resultant moment (Secondary reciprocating force)
Ncr Number of cranks
Ncw Number of crankshaft counterweights
Nsh,1 Number of balancing shaft (Primary reciprocating force)
Nsh,2 Number of balancing shaft (Secondary reciprocating force)
Ncw,1 Number of balancing shaft counterweights (Primary reciprocating force)
Ncw,2 Number of balancing shaft counterweights (Secondary reciprocating force)

mc,1,cs
Counterweight mass to be added for the rotating primary reciprocating force
balance

Lsh,1,r Rotating balancing shaft distance from crankshaft (Primary reciprocating force)
Lsh,2,r Rotating balancing shaft distance from crankshaft (Secondary reciprocating force)

Lsh,1,cr
Counter-rotating balancing shaft distance from crankshaft (Primary reciprocating
force)

Lsh,2,cr
Counter-rotating balancing shaft distance from crankshaft (Secondary reciprocating
force)

FO1,Ncr Vector of the firing order
a Distance between the mid-points of two consecutive cranks
φ Phase between two cranks (based on firing order)
α Angle between counterweight and crankpin symmetrical opposite
Ycw Vector for definition of counterweight configuration
CS Crankshaft geometry matrix
CW Crankshaft counterweights geometry matrix

CW1,r
Rotating balancing shaft counterweights geometry matrix (Primary reciprocating
force)

CW1,cr
Counter-rotating balancing shaft counterweights geometry matrix (Primary
reciprocating force)

CW2,r
Rotating balancing shaft counterweights geometry matrix (Secondary
reciprocating force)

CW2,cr
Counter-rotating balancing shaft counterweights geometry matrix (Secondary
reciprocating force)

rcw, Rcw Characteristic radii of the counterweight
hR, lc, tcp Construction parameters for the counterweight
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δ, γ, λ Characteristic angles of the counterweight
tCW Thickness of the counterweight
Axx Areas of the counterweight (where xx is “green”, “blue”, “orange” or “cw”)
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