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Abstract: Raman spectroscopy is a very powerful tool for material analysis, allowing for exploring
the properties of a wide range of different materials. Since its discovery, Raman spectroscopy has
been used to investigate several features of materials such carbonaceous and inorganic properties,
providing useful information on their phases, functions, and defects. Furthermore, techniques such
as surface and tip enhanced Raman spectroscopy have extended the field of application of Raman
analysis to biological and analytical fields. Additionally, the robustness and versatility of Raman
instrumentations represent a promising solution for performing on-field analysis for a wide range
of materials. Recognizing the many hot applications of Raman spectroscopy, we herein overview
the main and more recent applications for the investigation of a wide range of materials, such as
carbonaceous and biological materials. We also provide a brief but exhaustive theoretical background
of Raman spectroscopy, also providing deep insight into the analytical achievements.

Keywords: Raman spectroscopy; SERS; qualitative analysis; material characterization

1. Introduction

Non-destructive spectroscopic techniques represent the top-choice for any kind of
process monitoring [1,2].

Among all of the available techniques, Raman spectroscopy is one of the most solid and
versatile tools to analyze several materials, both in lab and on-field conditions [3]. Raman
spectroscopy was first independently developed in the first half of the 20th century by the
Nobel laureate Chandrasekhara Venkata Raman [4] and Grigorij Samuilovič Landsberg [5],
but it was established after the implementation of laser light equipped spectrometers in
the second half of the century [6,7].

The establishment of Raman spectroscopy opened the path to a more detailed knowl-
edge about materials, with a particular emphasis on carbonaceous materials such as
graphite [8].

Throughout the years, Raman analysis has grown, reaching several industrial sectors
such the food [9] and textiles sectors [10].

Raman spectroscopy displays several advantageous features over other techniques
like infrared spectroscopy. For example, the quality of the signal collected is barely af-
fected by the presence of water, allowing for use in plenty of applications where infrared
analyses are not reliable [11]. A representative case study is the in-situ monitoring of
a fermentative process where Raman techniques outperformed any other spectroscopic
approach [12]. Nonetheless, Raman analysis suffers from some difficulties such as the
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challenge of developing quantitative robust and trustworthy methods of data analysis [13].
Furthermore, the presence of highly active Raman species such as carbon particles could
mask the presence of other species [14]. Several studies have been devoted to overcoming
these drawbacks [15,16].

In this review, we overview the applications of Raman spectroscopy for the charac-
terization of a wide range of materials. We also discuss in detail the phenomena behind
the Raman scattering, thus providing a theoretical background for readers. Due to the
immensity of the possible applications of Raman spectroscopy, we believe that a compre-
hensive overview of the state of the art of this technique is an essential asset to spread
its knowledge.

2. Raman Spectroscopy: Principles and Instrumentation
2.1. Theoretical Principles: A Quantum Mechanical Approach

Electromagnetic radiation interacts with matter through absorption, transmittance,
and/or scattering phenomena. An absorption process requires the matching of the incident
photon’s energy with the energy gap between the two electronic energy levels [17]. Con-
versely, the process of scattering does not require the presence of adequate energy levels,
as this mechanism occurs when a photon interacts with a crystal lattice or a molecule,
inducing a distortion of its electron cloud and changing the species polarization involving
virtual states [18]. Nevertheless, the virtual state is a short lived one and it decays leaving
the electron in the real electronic level of the system while the photon departs from the
system. If the energy of the scattered photon matches the incoming one and the electron
involved returns in a state with the same energy as the initial one, the scattering is elastic
(termed Rayleigh—see Figure 1), otherwise it is inelastic. During inelastic scattering, the
loss or gain of the photon energy is equal to the energy difference between the initial and
final electronic levels. If the outgoing photon has a lower energy than the incoming one,
the scattering is a Stokes one (Figure 1); in the opposite case, the scattering is an anti-Stokes
one (Figure 1). The energy difference between the incoming photon and the outgoing one
is called “Raman shift”.

From a quantum mechanical approach, the energy corresponding to each vibrational
level for a diatomic molecule is described by the following:

Eυ = hυ

(
n +

1
2

)
(1)

where υ is the frequency of the vibration, h is Plank’s constant, and n is the vibrational
quantum number with integer values. For the sake of simplicity, the harmonic approxima-
tion expression is presented, but it has its limits. Chiefly, it only allows for fundamental
transitions (∆υ = ±1) and the separation between adjacent levels is supposedly constant,
which is not the case for a real diatomic molecule [19]. From Equation (1), it can be seen
that for n = 0, the energy is E = hυ

2 , a direct consequence of the Heisenberg principle.
The matrix element that defines the transition probability for a single Raman event

between two electronic states is the same for the Stokes and anti-Stokes processes. The
difference in the number of scattered photons is due to the different electron populations at
the thermal equilibrium of the two electronic levels involved in the Raman process.

At room temperature, the majority of molecules populate the ground state, and
the anti-Stokes components are much less intense than the Stokes ones. The different
populations of the energy levels are described by the Boltzmann equation

Nex

Ng
=

gex

gg
e
−(Eex−Eg)

kT (2)

where Nex and Ng are the number of molecules in the excited state and in the ground state
of energies Eex and Eg, respectively, and g is the degeneracy of the energy level.
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Figure 1. Jablonski energy diagram showing the transitions involved during infrared absorption, Rayleigh, Raman Stokes,
anti-Stokes, and resonance Raman scattering as reported by Geraldes [20]. Reprinted under CC BY 4.0.

If the energy of the incoming photon is such that the electron can reach a real electronic
state of the molecule, the Raman is called resonant (see Figure 1), and enhancements of up
to 106 in signal intensity have been observed [21].

It should be emphasized that Raman scattering is a particularly weak phenomenon
compared with Rayleigh, and only one in 108 scattered photons will undergo Raman
scattering. On that account, all Raman spectrometers are equipped with some kind of
device (usually a notch filter) to remove the Rayleigh component.

The intensity of the Raman scattered radiation is described by the following [22]:

IR ∝ I0υ4 N
(

∂α

∂Q

)2
(3)

where I0 and υ are the intensity and the frequency of the incident light, respectively; N is
the number of scattering molecules in a given state; α is the polarizability; and Q is the
amplitude of the vibrational coordinate. The last term on the right side shows that Raman
scattering can occur only if a change in polarizability occurs due to the interaction with the
incoming photon.

A misinterpretation of Equation (3) could lead to the fallacious conclusion that the best
signal-to-noise ratio in Raman spectroscopy could be obtained by simply maximizing the
frequency of the incident light. Unfortunately, as the beam of light on the sample becomes
more energetic, the photon absorption and/or the material photodegradation increases
substantially. For this reason, visible light lasers are commonly used. However, fluorescent
phenomena could be very intense, significantly rising the background noise.

It is possible to enhance the Raman signal by exploiting the plasmonic effects induced
by the presence of metal nanoparticles. This technique, known as surface-enhanced Raman
spectroscopy (SERS), represents a powerful, highly specific, and sensitive technique for
the investigation of the molecular structure at the single-molecular level based on Raman
scattering. In the next section, the SERS theoretical background will be discussed.
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2.2. Theoretical Background of Surface Enhanced Raman Spectroscopy Techniques

SERS is mainly exploited through the interaction between the surface of plasmonic
nanostructures and the molecules adsorbed on it. Often, noble metals or copper nanoparti-
cles [23] are used due to their resonant interaction with the electromagnetic waves, inducing
localized surface plasmons covering almost all of the visible and near infrared wavelength
range [24], as summarized in Figure 2.
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The optical properties of the noble metal nanoparticles are dominated by strong
features in the extinction spectra. The localized surface plasmons can be so intense that
they significantly modify the local electromagnetic field [26]. This phenomenon could be
explained using two different theories—the electromagnetic and chemical theories. The
electromagnetic theory has strong experimental support [27] and will be the only one
discussed in this section.

In order to explain the SERS dynamics, the optical response of a metal nanoparticles
has to be analyzed according to Mie’s theory [28,29]. A crucial parameter in Mie’s theory is
the complex dielectric function of the nanoparticle, which is calculated by the phenomeno-
logical Drude theory [30]. The dielectric function has its contributions from interband
(εinter(ω)) and intraband (εintra(ω)) electron transitions, and can be written as follows:

εEXP(ω) = εinter(ω) + εintra(ω) (4)

Interband contributions are due to electron transitions from occupied to empty states
sitting in bands separated by an energy gap. Intraband contributions come from electron
transitions at the Fermi level in incompletely filled bands. This contribution to the ε(ω)
is described by the Drude model, including an extra damping term τ. In the case of
nanoparticles, the damping term is mainly related to the effect of the nanoparticle surface.
The electron motion is altered by the NP surface, because the electron’s mean free path
λ, related to the lifetime τ, is comparable or larger than the particle size. The effect of the
surface not only depends on the particle size, but also on its shape [31]. In order to include
surface dispersion in the Drude model, the intraband contribution is modified by changing
the damping term. Finally, the dielectric function, which depends on the nanoparticles
structure and includes the contribution of the free electrons, interband transition, and
surface damping, is obtained as follows [32]:

ε(ω, a) = εinter(ω) + εNP
intra(ω, α) =

(
εexp(ω)− εintra(ω)

)
+

 ω2
p

ω
(

ω + i
τ + i

τ(a)

)
 (5)
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where ωp is the plasma frequency and 1/τ is the damping constant due to the dispersion
of the electrons. The surface dispersion of a sphere of radius, a, is given by 1/τ (σ) = vf/a,
where vf is the Fermi velocity of the electron cloud. Accordingly, the smaller the particle,
the more important the surface dispersion effect.

Electromagnetic enhancement occurs when the incident light is in resonance with the
surface plasmon modes of a metallic thin film or nanoparticle. In this case, it is crucial to
fine-tune the spectral positions of the surface plasmons to achieve the resonance condition.
When the electromagnetic field is induced on the metal surface, the Raman modes of the
particle under analysis adsorbed on the metal surface are strongly enhanced. The average
field of the Raman scattered light due to the described mechanism, given by the following
Equation [33]:

ER ∝ αR A(vL)E0 (6)

where E0 is the magnitude of the incident field, A(vL) is the field enhancement averaged
over the surface of the metal particle, and αR is the component that takes into account the
Raman scattering. Thus, the amplitude of the SERS-scattered field (ESERS) is given by the
following equation

ESERS ∝ αSERS A(vL)A(vS)E0 (7)

where A(vS) is the enhancement factor of the second enhancement process and αSERS
describes a cross-section of the new Raman process of the adsorbed molecule, and the
average SERS intensity will be proportional to the square modulus of ESERS. So, the SERS
Stokes power (PSERS) is given by

PSERS(vs) = NαSERS

∣∣∣A(vL)
∣∣∣2∣∣∣A(vS)

∣∣∣2 I(vL) (8)

where N is the number of molecules involved in the SERS process and I(vL) the excitation
laser intensity.

As reported by Álvarez-Puebla [34], the Raman signal enhancement for a given
excitation wavelength (ER(λ)) is

ER(λ) =

∣∣∣Eout(λ)

∣∣∣2 − ∣∣∣Eout(λ−λs)

∣∣∣2
E04 (9)

where Eout(λ) and Eout(λ−λs) are the electromagnetic fields generated by the incident excita-
tion and the Stokes’s shifted Raman, respectively. Using Equation (9) for the estimation of
the enhancement of the Raman signal is quite difficult, so it generally evaluated experi-
mentally using the following equation

ER(λ) =
ISERS
IRaman

f (10)

where ISERS is the intensity of SERS signal, IRaman is the intensity of Raman signal, and f is
ratio between the number of molecules in the Raman and SERS experiment.

According to Equations (9) and (10), the average SERS electromagnetic enhancements
are of the order of ∼104–106, and are sometimes as high as ∼108 (depending on the defi-
nition and measurement procedure). Maximum values for electromagnetic enhancement
for isolated single colloidal silver and gold spheroids are of the order of 106–107 [35–37]. As
discussed, the theory predicts a stronger enhancement of electromagnetic fields for sharp
features and large curvature regions of the metal nanoparticles. For example, it was shown
that the electromagnetic SERS enhancement factor could be increased up to nearly 1011 when
the sphere degenerates and becomes sharper [38]. In assition, closely spaced interacting
particles can provide extra field enhancement [39]. For example, electromagnetic enhance-
ment factors up to 1011 have been estimated for the mid-point between two silver or gold
spherical particles separated by a gap of 1 nm [38]. Furthermore, the metal nanoparticles
exhibit fractal properties [40], such as colloidal clusters formed by aggregation of colloidal
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particles or metal island films [41]. In such colloidal cluster structures, the individual dipole
oscillators of the isolated nanoparticles are coupled and cover wide frequency region from
the visible to the near infrared. In this case, the excitation is not distributed uniformly over
the entire cluster, but tends to be spatially localized in some hot spots, and the surface of a
fractal colloidal cluster structure shows a very inhomogeneous field distribution [42]. The
size of the “hot spots” can be as small as a few nm. Their locations depend strongly on
the geometry of the fractal object and on the excitation wavelength and polarization of the
optical fields [43]. SERS enhancement is estimated to be up to 106 for spatially isolated small
colloids and 107–108 for colloidal clusters [44].

The applications of SERS include sensing and imaging applications such as spectro-
electrochemistry, single molecule SERS, and analytical and biological applications [45–48].
The power of SERS is its great ability to identify chemical species and to obtain accu-
rate structural information regarding polymer and materials science, biochemistry and
biosensing, catalysis, and electrochemistry [49,50]. Interestingly, SERS can also be used to
investigate the orientation of single molecules, as reported by Moskovits et al. [51]. The
authors observed the rise of normally forbidden vibrations in SERS spectra as a result of the
fast spatial rate of the radiative electric field. Accordingly, they assumed that the change in
Raman spectra was due to the different spatial arrangement of the adsorbed molecules on
the SERS substrate. As exhaustively discussed by Aroca [52], this approach could be used
for evaluating several parameters, ranging from structural to electrical.

Another interesting technique based on the enhancement of the Raman signal is tip
enhanced Raman spectroscopy (TERS) [53].

TERS is a near-field method to spectroscopically analyze a wide range of chemical and
biological samples with a high spatial resolution of a few nanometers, only limited by the tip
apex size and shape (generally of diameter ~10 nm). The tip acts as an individual plasmonic
nanostructure and is scanned over the sample using a scanning probe microscopy technique,
as comprehensively explained by Fiederling et al. [54]. It provides a localized region of SERS
enhancement when brought within a few nanometers from the sample [53]. In this way, it is
possible to overcome the limitations of SERS enhancement due to its critical dependence on
the substrate preparation. TERS offers the unique ability to attain enhanced Raman signals
and topographical information simultaneously. Due to the highly localized nature of the
probe, TERS provides signal-to-noise ratios of 104–105 and achieves an enhancement factor
up to 106 [55]. It has been used to obtain high-quality Raman spectra of DNA pyrimidine
bases [56], and for the nucleobases in a single RNA strand, it provided a high sensitivity at a
lateral resolution, down to a few tens of nucleobases [57]. Investigations of cytochrome C re-
vealed that the TERS spectra from different areas of biomacromolecules could be significantly
different from those obtained with bulk Raman measurements of the sample [58].

The metallic tip can be replaced by a monolayer of metal nanoparticles, each coated with
an ultrathin shell of silica or alumina. Each nanoparticle acts as a tip in the TERS system,
and the use of a chemically inert shell coating around the nanoparticle protects the SERS-
active nanostructure from contact with the sample, and can overcome the SERS limitation
of the roughened metal substrates. SHINERS (shell-isolated nanoparticle-enhanced Raman
spectroscopy) can obtain an enhancement that is two to three orders of magnitude higher than
that for a single TERS tip, and its main advantage is a much higher detection sensitivity and
several practical applications to a great amount of materials with diverse morphologies [59].

2.3. Instrumentation: Raman and microRaman

The first Raman spectroscopy approach employed a non-coherent light sources [4],
but today all Raman spectrometers employ a laser source, either a continuous wave or a
pulsed laser. Since few years ago, CW lasers were Kr, Ar, or Kr−Ar lasers, which supplied
the sample with a continuous source of photons in the visible or IR range, but these have
been largely replace by diode-pumped solid-state laser [60]. Pulsed lasers are usually
Nd:YAG (1064 nm) or excimer lasers, and are characterized by a much higher power output
(10–100 mW) [19]. It should be noted that given the limited duration of the pulse, the
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detector needs to be locked-in. Moreover, the use of ultrafast lasers combined with gated
detectors allows for exploiting the difference in emission time between Raman scattering
and fluorescence, substantially removing the latter from the recorded spectrum [61,62].
Different systems can be employed in Raman spectrometers in order to collect the spectral
intensity of the signal. The dispersive method requires the use of a diffraction grating,
composed of a series of grooves on a reflective support. By changing the angle of incidence
of the scattered polychromatic radiation, a frequency selection is possible, thus measuring
the intensity versus the frequency or wavenumber. Conversely, the use of an interferometric
spectral analyzers allows for acquiring the whole spectrum. Then, by means of a computer
algorithm, Fourier transformation is performed, switching from the time domain to the
frequency domain. This technique is referred to as FT−Raman spectroscopy.

Conventional Raman spectroscopy has a relatively low spatial resolution (∼1 mm2),
hence, for the characterization of nanostructured inorganic and organic materials alike, micro-
Raman spectroscopy is preferred. Micro-Raman spectroscopy combines a Raman spectrometer
with an optical microscope. By using a high magnification objective, the laser beam can be
focused on an area of approximately 1 µm, being limited only by the diffraction limit of light,
reaching a scanning sample depth ranging from few hundreds of nm up to 1 µm [63,64].

Micro-Raman spectroscopy has found relevant applications in the evaluation of inter-
nal stresses in various nanocomposite materials [65–67], mapping phase and composition
of polymer blends [68,69], probing structure and electronic properties of graphene [70],
and in carbon nanotubes [71]. Another important use for µRS is in the determination of the
crystal orientation of nanometric structures, such as CdS or GaN nanowires [72,73], which
is particularly critical in the fields of electronic and optoelectronic materials.

3. Applications of Raman Spectroscopy
3.1. Carbon Based Materials
3.1.1. Carbon Nanotubes

Raman spectroscopy can be a powerful tool for the characterization of carbonaceous
materials [74]. Accordingly, carbon nanotubes (CNT) have been deeply studied with Raman
spectroscopy, helping to unravel the unique features of single-(SWCNTs), double (DWCNTs),
and multiwalled (MWCNTs) carbon nanotubes. The one-dimensional (1D) confinement
of electronic and phonon states is responsible for the optical and spectroscopic properties
observed in SWNTs [75]. Every CNT has a unique Raman active mode, called a radial
breathing mode (RMB), at around 100–200 cm−1 [76], as reported in Figure 3.
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RBM is crucial for the identification of the different types of CNTs geometry and
represents proof the presence of SWNTs, while it is hardly detectable for other CNTs
without using SERS [78]. RBM is inversely proportional on the CNT diameter through the
equation Equation (11) [75], as follows:

ωRBM =
A

d + B
(11)

where A and B are determined experimentally and d is the diameter of the CNT. If d > 2 µm,
it is difficult to observe RBM because its intensity is very low. With d values obtained from
ωRBM and if the electronic transition energy (Eii)~the laser energy (EL), it is possible to
perform chiral indice (n,m) assignments for the isolated SWNCTs [79], the diameter d, the
density of electronic states, the electronic energy, and the chiral angle θ [79]. Another impor-
tant feature in the Raman spectra of SWNTs is the so-called G band spectra, which is split
into two features around 1580 cm−1 (one peak at 1570 cm−1 and the other at 1590 cm−1).
The peak at 1570 cm−1 is also called G−, and is associated with vibrations of the carbon
atoms around the circumferential direction. The peak at 1590 cm−1 is called G+. G + corre-
sponds to the longitudinal wave mode in the CNT axial direction, and G− corresponds to the
transverse wave mode perpendicular to the axis. The G− Raman shift is proportional to the
inverse square of the CNT diameter (α 1/d2). The frequency of G+ appears near 1590 cm−1,
regardless of the diameter of the carbon nanotube. The G band is derived from the optical
vibration of two adjacent carbon atoms on the wall of the CNT [80], and its frequency
does not depend on the excitation wavelength. It can be useful for distinguishing between
semiconducting from metallic SWNTs and from the determination of d. Furthermore, the
analysis of the G band could be a solid choice for evaluating the ì transfer of charge after
SWCNT doping [75]. Concerning the characterization between metallic and semiconducting
SWNTs, the following is know: for metallic nanotubes, the lower frequency component of
the G peak (ω−G ) has a wide and asymmetric profile, while for semiconducting CNTs, ω−G
and ω+

G have a narrow profile that fits to a Lorentzian line shape [74]. Considering that G
band is a first order process, the frequency ω+

G is independent of the diameter and chiral
angle (θ) [75]. However, ω−G depends on d, but not on θ. There are other two features, called
second order features [80], named the G’ band (between 2775 and 2950 cm−1) and the D
band (1340 cm−1), originating from a highly dispersive double resonance process [78]. The
D peak is generally around 1350 cm−1 and derived from defective structures. The intensity
ratio of the G band to D band (ID/IG ratio) is used as an indicator of the defect amounts in
CNTs, increasing with their growth of defectiveness.

Their band frequencies strongly depend on d [79]. The presence of the G’ band
indicates the presence of a long-range order in the sample and is shown for MWCNTs with
more than four layers [81]. G’ and D are useful for studying the structural modification
of the CNTs sidewalls. Kang al. [82] studied the D band dependence through heating
and irradiation. They observed three components of the D band, called D1 (1313 cm−1),
D2 (1340 cm−1), and D3 (1355 cm−1). If the laser irradiation increased, the D1 and D2 also
intensity increased, while the D3 intensity increased with heating in the air. These were
due to the different defects introduced in the structure of the SWCNTs. The purity of the
sample can also be investigated using the band intensity ratio ID/IG.

Concerning MWCNTs, the interpretation of their Raman spectra is generally more
difficult than for SWCNTs [83]. Accordingly, its interpretation is often based on the results ob-
tained for SWCNTs. In many cases, it is impossible to see the presence of RBM or the splitting
of the G band, because the inner shell in MWCNTs has a diameter that is too much big. This
proves that the MWCNT spectrum is similar to that of graphite, and shows little or no effects
of cylindrical geometry. The G band of MWCNTs is made up of a broad range asymmetric
features. With the use of polarized Raman scattering on an SERS substrate, Zhao et al. [84]
observed the presence of RBM peaks at low frequency regions (100–600 cm−1). The inner
diameter distribution calculated from the RBM frequencies coincided with the observation
of high resolution transmission electron microscopy. The intensity of the modes decreases
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if the dimension of the diameter increased, and when d > 2 µm, the modes disappeared.
By using SERS, a splitting of the tangential stretching G band modes was found, proving
that MWCNTs have different Raman spectra characteristics compared with other sp2 carbon
allotropes [83]. These results were reached by assigning a G band mode from the inner tube
and a graphite-like mode from the outer cylinders. The wall−wall charge transfer is respon-
sible for the relative frequencies of the modes. A splitting of the D band in two different
features has also been found when the temperature is low [85]. Due to the carbon impurities
effect, the ratio between ID and IG cannot be used to calculate the purity of MWCNT. The G’
peak can be used in order to overcome this difficult, because the G’ band intensity depends
on the purity of the sample: a disorder structure would not allow for the coupling effect
that is fundamental for the two-phonon process. This is due to the fact that the G’ band
results from a two phonons process and its intensity is highly sensitive to the sample purity.
A ratio containing the G’ peak at about 2700 cm−1 can represent a good measurement of the
MWNT quality [86]. In the Raman spectra of MWCNTs bundles, two graphitic bands are
visible—the G band at 1580 cm−1 [87] (associated to the in-plane vibration of the C-C bond)
and the D band at around 1342 cm−1. Rao et al. [88] showed that the D band of MWCNTs
does not imply that the structure of the sample is disordered. Kumar et al. [89] analyzed
the effect of the laser and energetic ion irradiation on the Raman spectroscopy. The ratio
ID/IG decreases if the laser power density increases. The authors reported the same results
with ion irradiation: the ratio between D and G peak (ID/IG) decreases at a low ion influence
and increases at a high ion flux. Raman spectroscopy can be useful in order to evaluate the
number of carbon nanotube walls. Indeed, Chaunchaiyakul et al. [90] demonstrated that
the G’ and G band intensity ratios are correlated with the number of walls of the carbon
nanotubes. The G’ band intensity can increase thanks to the inner-tube interaction between
the carbon nanotubes. This phenomenon is due to the quantum interference between Raman
scattering paths resulting from the interaction between the walls of the carbon nanotubes.

3.1.2. Graphene and Graphene-Like Materials

Over the years, graphene has found plenty interest thanks to its properties, like is
mechanical, thermal, optical, and electrical properties. It is a two-dimensional material of
sp2 hybridized carbon atoms [91] and has a hexagonal lattice with conjugate covalent bonds
formed between the two adjacent carbon atoms [92]. We can distinguish several types
of graphene and graphene-like materials, named monolayer graphene, bilayer graphene
(2-LG), tri-layer graphene, and multilayer graphene, with a structure resembling that of
graphite [93]. The Raman spectra of pure single graphene displays two important peaks
named G (at around 1582 cm−1) and 2D (at around 2700 cm−1) [92] (Figure 4).
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The G band can be used for the analysis of the structure of the graphene lattice that can
be of two types: zigzag or armchair. Defective graphene displays a D peak arising from the
presence of boards and defects. However, only armchair edges show the D peak because they
are able to experience elastic scattering. We can see the D peak in the zigzag edges, but its
intensity is very low, and its presence is due to the roughness and non-uniformity of the edge
structure. The bands are also influenced by the temperature [95,96] with a split up of the G
band and the G’ band at a low temperature, and a downshift of the G band’s frequency at a
high temperature. These changes are reversible in thermal cycles with cooling and heating.
Another parameter that can be used to calculate the number of graphene layers is the ratio
between G’ and G; this ratio IG’/IG is low if the number of layers is high. In their work,
Ferrari et al. [70] observed that the intensities of the D and G’ peaks changed in position
shape and intensity with the number of graphene layers. This is due to the evolution of the
electronic structure and electron−phonon interactions. Regarding the G band, its intensity
increases in a linear fashion if the number of layers is increased. Al-Hazmi et al. [97] used
Raman spectroscopy in order to calculate the number of atomic planes of the graphene film
grown on the Si substrate. This was possible thanks to the ratio between the intensity of the
graphene G band and the optical phonon band of the Si substrate (IG/ISi). Koo et al. [98] used
Raman spectroscopy in order to evaluate the role of poly(methyl methacrylate) (PMMA) on
graphene fabricated by chemical vapor deposition. They compared bare PMMA-covered
supported and PMMA-covered suspended graphene: their G and G’ band positions were
progressively downshifted. They also demonstrated, thanks to the mapping of G and G’
shifts into strain and doping contributions, that PMMA residue exerts a tensile strain of
about 0.15% on the graphene/substrate compared with that of bare graphene. Woo et al. [99]
reported a method to measure the carrier mobility of chemical vapor deposited graphene
from their Raman spectra. They found that the width of the G’ peak decreased in proportion
to the carrier mobility, while the ratio of ID/IG did not show changes. Furthermore, the
mobility generated from the long-range scattering showed a linear relationship with the
carrier mobility logarithm. For the monolayer graphene, one of the most important features
in the Raman spectra is the G band at 1582 cm−1. This is a normal first order Raman scattering
process. There are also G’ and D bands; the G’ band frequency is twice the D band frequency
and for this reason it is also called 2D—as they are second order process. Both the D and
G’ band frequencies change as a function of the laser intensity; the frequency of the D band
changes in a linear way, while the upshift of the G’ band is double that of the D band. The G’
band has a single Lorentzian feature with a width of about 24 cm−1; this spectrum is much
larger than the G band spectrum, which can reach four times the G band intensity [100].
Bilayer graphene shows four-peak G’ components due to its electronic structure, and consists
of two conduction bands and two valence bands. If we compare the peaks of mono-, bi-, and
tri-layer graphene with highly oriented pyrolytic graphite, it is possible to observe that highly
ordered graphite shows a higher intensity peak at higher frequencies. Regarding graphene
growth on an SiC substrate, there is the problem for the Raman spectra: the SiC spectra
(between 1450 and 1750 cm−1) is superimposed on the G-band of the graphene. Moreover,
Gokturk et al. [101] showed that during sequential exposure to hydrochloric acid vapors and
ammonia of a poly(vinylchloride) supported graphene film, a shift can be appreciated in the
Raman 2D band towards a lower and then higher wavenumber. This suggests n-type doping
and restoration of graphene to its original state.

3.1.3. Amorphous and Disordered Carbon

Amorphous carbon has attracted much interest in previous years thanks to its wide-
ranging properties, allowing for it to be used in many fields like plastic, textile, and health-
care industries [102]. Depending on the chemical bonds formed, carbon atoms’ orbitals can
hybridize in three different ways—sp3, sp2, and sp. The properties of the amorphous carbon
film are defined by the atoms and their arrangements. The sp3 atoms are accounted for
their mechanical properties, while the sp2 atoms can determine the optical properties [103].
The atoms can coexist despite having different hybridizations. We can distinguish two
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forms of amorphous carbon: the hydrogenated amorphous carbon, fabricated by plasma
deposition of hydrocarbons, and the black semiconducting film, prepared via sputtering or
evaporation [104]. Raman spectroscopy can excite the π and σ states, so it is able to detect sp2

and sp3 sites [105]. It is also used in order to evaluate the disorder of the carbon structures.
The Raman spectrum depends on the sp2/sp3 ratio, bond disorder, presence of sp2 rings
or chains, and clustering of the sp2 phase. The ordering of the sp2 phase can be explained
through the use of a three-stage model proposed by Ferrari et al. [105], with (i) a transition
from graphite to nanocrystalline graphite, (ii) a transition from nanocrystalline graphite to
amorphous carbon (a-C), and (iii) a final transition from a-C to tetrahedral amorphous carbon
(ta–C). During these transitions, the G peak’s position upshifts to higher values and the sp3

content is enhanced. Amorphous carbon often displays a Raman spectrum with a large G
band (1510 cm−1) and D band (1350 cm−1), which are sometimes overlapped. Furthermore,
there is the so called T peak (at 1060 cm−1), which is visible only with ultraviolet (UV)
excitation [105]. The T peak is generated by the C-C sp3 vibrations. Regarding the G peak, it
originates from the bond stretching of sp2 atoms in the rings and chains, while the D peak is
due to the breathing modes of sp2 atoms that are present in the ring [105]. If there are no
rings, there is no D peak. G’ is very low in intensity and is very broad, so it cannot be used
in order to characterize amorphous carbon. The Raman spectrum of amorphous carbon is
dominated by G and D bands, because the π states are of a lower energy than the σ sites,
so they are much more polarizable and there is much scattering by the sp2 sites [106]. The
width of the G peak is useful in order to analyze the degree of disorder of the sample: the
higher is the disorder, the higher the width. Ferrari et al. [105] defined G peak dispersion
as the change of the G peak position for different excitation wavelengths. There is a linear
variation for the G peak with different excitation wavelengths: this demonstrates that the
higher is the disorder, the higher the dispersion. However, we can also observe a decrement
of the Raman shift and shape changes at different wavelengths. The G peak dispersion is due
to a selection of sp2 configurations or clusters with a broad π band gap and, correspondingly,
more elevated vibration frequencies. Furthermore, the dispersion can be used in order to
discriminate two types of material: in the material with only sp2 rings, there is a saturation of
G peak dispersion at a maximum of 1600 cm−1. However, if the materials contain sp2 chains,
the G peak can reach 1690 cm−1 and this is the case for ta-C or ta-C:H [105]. Concerning
the clusters of sp2, they enhanced the G peak position in the Raman spectrum. On the other
hand, if a UV light is used as a source of excitation, a decrease of the G peak position can
be discerned if the number of clusters is high [105]. Thanks to this property, if two different
samples have the same (or similar) Raman spectra, with UV excitation we can discriminate
them as follows: the sample with the lower G peak position has more sp2 clustering. The use
of UV Raman is particularly useful for the investigation of hydrogenated amorphous carbon
(a-C:H) [107], because for highly hydrogenated samples, the Raman spectra is overlapped by
photoluminescence. UV Raman is able to overcome this problem and allows for measuring
G and D peaks. The D band position is related to the type of amorphous carbon [107] and its
intensity is due to the presence of six-fold aromatic rings. With the passage from amorphous
carbon to tetrahedral amorphous carbon, the D peak disappears if a Breit Wigner Fano fit
is used due to the increment of sp3 sites, and so the ratio ID/IG is close to 0. During the
transition from a–C to ta–C, there is also an increment of the amount of sp3 sites (from 10–20%
to 85%), while the sp2 sites change from rings to chains [105]. There is also an increase in
the G peak position (from 1510 cm−1 to 1570 cm−1) with sp3 content, and this is due to
the change of sp2 configuration from rings to olefinic groups. Tuinstra and Koening [8]
exposed an equation useful to evaluate the ratio of ID/IG in graphite structures, as reported
in Equation (12):

C(λ)
La

=
ID
IG

(12)

where La is the graphite crystallite size and C is the Raman coefficient. This relation is
not valid for amorphous carbon structures, because there are more defects and there is an
increase of ordered rings. So, in this case the ratio become proportional to M, the number
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of ordered rings. A new relationship was proposed by Ferrari et al. [105], as reported in
Equation (13):

ID
IG

= C′(λ)L2
a (13)

Mariotto et al. [108] found that the ratio of ID/IG is enhanced if the annealing tem-
perature is increased, and so there is a progressive increase in the graphitic domains. The
ID/IG ratio in amorphous carbon is a measure useful to evaluate the dimension of the sp2

phase that is organized in rings. The G peak dispersion is notable in more disordered
carbon because in that case there are different configurations with different local band gaps
and different phonon modes. In contrast, the D peak dispersion and the ratio of ID/IG
decrease if there is a higher disorder. Wang et al. [109] found a correlation between the G
peak and sp3 atoms. They analyzed hydrogenated and H-free diamond-like carbon (DLC)
samples. For the hydrogenated samples, the dispersion rate of the G peaks showed a linear
correlation with sp3, while the FWHM of the G peak was non-linearly correlated with the
sp3 of the H-free DLC samples. Zhang et al. [110] proposed a method useful for calculating
the intensity of the G band as a sum of three different Raman scattering intensities that
derive from three different sp2 clusters, as reported in Equation (14):

IG(ω, λ) = Ig(ω, λ) + Ir(ω, λ) + Ic(ω, λ) (14)

where ω is the Raman frequency; λ is the wavelength of the excitation laser; and Ig Ir, and
Ic are the intensities of the scattering of the nanocrystalline graphite, fused aromatic ring,
and olefinic chain cluster, respectively. The ratio between the area of the T peak and the G
peak IT/IG is useful in order to calculate the sp3 content for ta-C [111]. Ta-C has a spectrum
with two bands at around 1100 cm−1 and 1600 cm−1, which are derived from sp2 and sp3,
respecitvley. A T peak of about 1060 cm−1 and a ratio of IT/IG of ~0.40–0.42 in H-free
samples implies a sp3 content of about 80% [105]. If the ratio of IT/IG is about 0.30–0.40,
the sp3 content is about 60–80% [105]. Furthermore, a ratio of IT/IG < 0.2 indicates a poor
sp3 content (lower than 20–30%). Gilkes et al. [112] demonstrated that the 1100 cm−1 mode
is derived from a mode of 1400 cm−1 that shifts to 1100 cm−1 when the sp3 content is
increased. If the structure contains atoms such H (a-C:H), a parameter called m/IG can
be used in order to calculate the amount of hydrogen bonded. In the ratio, m indicates
the slope of the photoluminescence background in the range 800–1800 cm−1. However,
Pardanaud et al. [113] demonstrated that the ratio of m/IG is not very accurate because it
can be influenced by various photoluminescence quenching processes and also because
it is not sensitive to H bonded to C sp2. They used Raman spectroscopy to identify the
H content in a-C. They found a band at 860 cm−1 attributed to H bonded to C (sp2). The
height ratio between D and G can be used in order to estimate the H content, because it
is almost linear in the full range of H content. Casiraghi et al. [107] analyzed different
a-C:H. They found two different behaviors. In the first case, the G peak width and G peak
dispersion increased simultaneously, and the Raman parameters varied in the same way
as in the hydrogen-free carbon film. In the second case (and this is the case of polymeric
a-C:H), they found the opposite results, with the G peak dispersion varied in relation to
the optical gap and hydrogen content, while the G peak width varied with the density.
Liu et al. [114] studied the spectra of ta-C films as a function of substrate bias voltage. The
higher the substrate bias, the higher the sp3 atoms of the diamond-like carbon film (they
tested films of about 70 nm), while for a ta-C of 2nm, they observed a linear decrease in sp3

content when the bias was incremented. In another study by Liu et al. [115], they used the
Raman spectral of ta–C as a function of the oblique angles of substrates. From the spectra,
they observed that the higher the substrate tilting angle, the higher the sp2 content, while
less sp3 content was observed. The substrate tilting depends on the sp3 content and on
the order of the sp2 cluster, so from the Raman data, they observed a decrease of internal
stress while there were no changes in hardness that depended on only the sp3 content.
Schwan et al. [116] found two additional peaks at 1180 cm−1 and 1490 cm−1 in the spectra



Chemosensors 2021, 9, 262 13 of 28

of the carbon film prepared by magnetron sputtering. They demonstrated that the peak at
1180 cm−1 was due to the presence of sp3 stretching in the carbon film.

Another interesting material is the disordered carbon produced from the pyrolytic
conversion of both natural and synthetic polymeric materials [117]. As shown in Figure 5,
the Raman spectra of pyrolytic carbon displays a G and D peak with more components
compared with graphite, but a profile that is not close enough to be similar to diamond-like
materials. Accordingly, pyrolytic carbon could be described as a very highly defective
graphitic material.
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The evolution of G and D peaks could be used to investigate the temperature used
for the pyrolytic conversion of polymeric feedstock [119–124], but also to evaluate the
different feedstock used for the production of carbon [125]. The main issue related to the
interpretation of pyrolytic disordered carbon is represented by the fitting procedure that
is affected by the uncertainty in the number and the lineshape of the components used.
Tagliaferro et al. [118] introduced a symmetric lineshape named GauLor, composed of a
central domain with a Lorentzian lineshape linked with to Gaussian tails. GauLor lineshape
perfectly matches the stretched exponential decay and represents the first physical approach
to overcome the arbitrary use of any kind of lineshape.

3.2. Inorganic Materials
3.2.1. Biological Applications

Metals, ceramics, and polymer nanoparticles may present interesting properties for
biological applications such as biocompatibility [126], magnetism [127], and photolumi-
nescence [128]. Their characterization with Raman spectroscopy can reveal important
features of the materials under study, for example by probing the interaction between the
nanoparticles and the biological environment.

Bhaumik et al. [129] successfully investigated the nano−bio boundaries between
ZnO nanoparticles and adenosine triphosphate (ATP; the major player in the energetic
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transport in cells), showing a pH-dependence on the interaction. Zinc oxide nanoparticles
are nontoxic, biocompatible, and usable in drug delivery, medical materials, and cosmetics.
Furthermore, the Raman activity of ZnO is very high, making this technique a good probe
for studying their interaction with biomolecules. Considerable Raman shifts related to the
interaction between ZnO and NH2 bonds in the adenine ring, N7 atom in the adenine ring,
and the phosphate bonds have been detected in acidic environments.

Agressott et al. [130] studied protein-coated silver nanoparticles synthetized by com-
mon fungi (Rhodotorula mucilaginosa and Rhodotorula glutinis) following a green and
biocompatible approach. Using TERS, they successfully investigated the size and the
morphology of the protein capping layer, how it interacts with the Ag nanoparticles (the
sulphur bridge in amino acids was detected), and how the whole system interacts with the
visible light.

The detection of uric acid using silver nanoparticle-coated ZnO/Fe3O4 composites
was performed by Alula et al. [131] using surface enhanced Raman spectroscopy (SERS). A
linear response was obtained, for up to 10 µM concentrations, for an aqueous solution of
uric acid. Finally, an application to determine the uric acid concentration in a real sample
of non-treated urine was performed.

Caprara et al. [132] studied the DNA molecule formation using SERS with single DNA
chain coated gold nanoparticles, comparing the Raman spectra of the final solution with
the starting one. This paved the way for a bottom-up approach for the design of tailored
nanostructures, taking advantage of the programmable assembly of DNA. The SERS
response showed the successful formation of ordered nanostructures with a controlled
interparticle distance.

An interesting improvement with respect to TERS is represented by the SHINERS
technique, as reported by Li et al. [59]. It is based on the covering of a targeted substrate
with silica encapsulated noble metal nanoparticles. This approach could be combined with
portable instrumentation to boost the on-field analysis sensitivity. Furthermore, it has been
used by El-Said et al. to detect two of the main neurotransmitters in the human brain
(γ-aminobutyric acid and glutamate) that are important in the diagnosis of neurological
diseases, using gold nanobipyramids coated with a thin layer of polypyrrole [133]. This
process can be used to probe concentrations of γ-aminobutyric acid and glutamate in
human serum within a wide range of concentrations.

Erythrosine B coated gold nanoparticles were used by Pinilla-Peñalver et al. [134] as a
probe to sense both compounds as a result of the high Raman activity of the dye. For the
Au NPs, a linear response was obtained in the 1–12 ng/L range, while for erythrosine B,
the linear region resulted in between 5 and 150 µg/L. The detection limits were at 0.3 ng/L
and 1.4 µg/L, respectively.

Raman spectroscopy can also be used for the direct sensing of biomolecules such as
DNA, proteins, lipids, and carbohydrates. Kuhar et al. [135] showed that this technique
can successfully probe inside a set of pure biomolecules: bovine serum albumin (BSA), calf
thymus DNA, cholesterol, and glucose. Several unique marker bands have been identified
and reproduced.

Butler et al. [136] proposed a detailed protocol to perform Raman spectroscopy on
biological samples (i.e., plant tissues, cells, biofluids, etc.), both in vivo and in vitro. The
results obtained included a mapping of a portion of endometrial tissue and a classification
of blood plasma and serum.

The diagnosis accuracy of tumors can be significantly improved using Raman spec-
troscopy [137]. Evidence was found for the diagnosis of enchondroma and chondrosarco-
mas [138], thyroid cancer [139], lung cancer [140], ovarian cancer [141], breast cancer [142],
colorectal cancer [143], prostate cancer [144], and many others [145].The advantage of this
technique is that the analyses are carried out directly on biological samples that are often
easy to obtain (serum, blood, saliva, urine, sperm, etc.), and the results are obtained in a
short time. Furthermore, several pathologies and infections can be detected through this
technique, and this is especially important in a pandemic event. An example is offered by
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the research of Ryzhikova et al. [146], who describe a way to anticipate the diagnosis of
Alzheimer’s disease using Raman spectroscopy. This is important because this pathology
can nowadays be diagnosed through specific neuropsychological tests, but only in the ad-
vanced stage. The development of the technique cited in this work could reduce diagnosis
times and anticipate treatments and prevention.

Nonalcoholic fatty liver disease is a chronic disease that occurs in two stages. The
first phase (NAFL) consists of an initial accumulation of fat in the liver, the second phase
(NASH) is steatohepatitis, a degenerative form that can lead to liver cirrhosis and cancer.
Gurian et al. [147] developed a SERS-based diagnostic system to discriminate between
NAFL and NASH by testing 5 µL of blood plasma on an Ag nanoparticles substrate. The
short response time and the ability to differentiate indicates to researchers that SERS could
be an excellent method for future diagnoses of NAFL and NASH.

Active tuberculosis and latent tuberculous infection can be detected with both Raman
spectroscopy and SERS. Kaewseekhao et al. [148] developed a protocol based on Raman
spectroscopy to diagnose and distinguish between active and latent tuberculosis with an
accuracy of 91.15%. Furthermore, SERS can distinguish between all TB-infection categories
with 100% sensitivity and specificity.

Raman spectroscopy of urine samples can diagnose chronic renal failure (CRF) disease
with an acceptable accuracy, as shown in the work of Chen et al. [149], in which genetic
algorithms aided in RS obtained accuracies of between approximately 65% and 85%.

Hepatitis C virus (HCV) was detected in blood serum samples from positive patients
and healthy individuals using Ag nanoparticles as a substrate for SERS. A similar study
showed that Raman spectroscopy is not able to identify single RNA groups of the virus,
while SERS is able to [150]. Furthermore, surface enhanced Raman spectroscopy can detect
different levels of viral flow in the analyzed biological cells with a good sensitivity.

The Hepatitis B virus has a distinctive Raman signature, and can be detected with
SERS by developing algorithms for data processing and recognition, achieving a 98.82%
accuracy [151].

Picomolar concentrations in the biofluids of biomarkers of traumatic brain injuries
were measured by Rickard et al. [152]. Sub-micrometric pillars covered with a gold
nanolayer made it possible to achieve a considerable sensitivity using a hand-held, optoflu-
idic SERS device.

Cardiac troponins are isoforms released by the heart into the blood, especially when it
has been damaged. Their concentration in the blood is proportional to the extent of the
damage suffered. A troponin LOD has been demonstrated between 7.6 × 10−4 ng/L and
800 ng/L for SERS devices, whereas the available LOD of laboratory and point-of-care
testing for cardiac troponin ranges from 100 to 800 ng/L. The device of Su et al. [153] used
a three-dimensional ordered macroporous coupling Au–Ag–Au plasmonic array substrate
in addition to Ag−Au nanostars as nanotags [154].

Biomarkers of amyotrophic lateral sclerosis (ALS) could be detected in the saliva
of patients using Raman spectroscopy [155]. Such an approach can drastically shorten
diagnosis times, which are lengthened by symptom checks, which are often very similar
between different pathologies (Alzheimer’s disease, Parkinson’s disease, ALS, etc.). Thus,
a fingerprint of the different biomarkers could lead to precise and quick diagnoses of the
most dangerous neurogenerative diseases.

Recently, Acri et al. [156] proposed a method to diagnose the pediatric onset of
inflammatory dowel diseases, such as ulcerative colitis and Crohn’s disease. Their approach
involved taking fecal samples to be analyzed with Raman spectroscopy and compared
with the fingerprints of the various pathologies. The secondary structure of some proteins
is modified by inflammation—there is a greater ratio between non-reducible and reducible
cross-linking in the case of infection, which can be detected by Raman spectroscopy.

The COVID-19 pandemic has changed the lives of billions of people around the world.
One of the challenges is to develop a quick, effective, and low-cost test to diagnose this virus
as well as those to come. Jadhav et al. [157] proposed a microfluidic device coupled with
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Raman spectroscopy to trap the virus collected by biological secretions (saliva, tears, and
nasopharyngeal fluid) and study its SERS signature. The signal enhancement is produced
by Ag/Au nanoparticles that cover the carbon nanotubes placed in the microfluidic device.

Gang Yin et al. [158] proposed a Raman approach to identify Coronavirus infection in
human serum. A machine learning support-vector machine (SVM) was used to create a
fingerprint database, in order to improve the quality and speed of diagnosis over time.

Another approach was recently proposed by Elsharif et al. [159], using a layered
surface to detect SARS-CoV-2 in a biological sample. The SERS structure is composed of a
polydimethylsiloxane nanoarray creating a nanocavity in which light reflects on the sample
several times. A gold nanorod substrate is then placed on the top, which could improve
the SERS influence by three orders of magnitude.

A very interesting field of study is represented by the Raman spectroscopy of a living
cell [160]. As reported by Li et al. [161], this approach could be used to evaluate the
functionalities of lipid droplets and bacteria by analyzing the finger print region showing
the relative abundance of chemical functions, as reported in Figure 6.

Chemosensors 2021, 9, x FOR PEER REVIEW 17 of 29 
 

 

Gang Yin et al. [158] proposed a Raman approach to identify Coronavirus infection 

in human serum. A machine learning support-vector machine (SVM) was used to create 

a fingerprint database, in order to improve the quality and speed of diagnosis over time. 

Another approach was recently proposed by Elsharif et al. [159], using a layered sur-

face to detect SARS-CoV-2 in a biological sample. The SERS structure is composed of a 

polydimethylsiloxane nanoarray creating a nanocavity in which light reflects on the sam-

ple several times. A gold nanorod substrate is then placed on the top, which could im-

prove the SERS influence by three orders of magnitude. 

A very interesting field of study is represented by the Raman spectroscopy of a living 

cell [160]. As reported by Li et al. [161], this approach could be used to evaluate the func-

tionalities of lipid droplets and bacteria by analyzing the finger print region showing the 

relative abundance of chemical functions, as reported in Figure 6. 

 

Figure 6. Raman spectrum of S. aureus cells in a panel acquired by suing an excitation power on the 

sample of up to 2 mW and an acquisition time of up to 30 s, as reported by Li et al. [161]. Picture 

reproduced with permission from the American Chemical Society (Copyright ©  2019, American 

Chemical Society). 

This approach was also used to monitor the organelle in vivo [162,163], the chromo-

somes [164], and for the evaluation of the hemoglobin in red blood cells and for the density 

of water inside the cells [165]. This last study is particularly interesting because it proved 

the presence of a strong and highly organized hydrogen bond network in the cytosol. 

Raman spectroscopy has also been used for analyzing the structural features of epi-

thelial tissue [166,167] in order to detect and diagnose precancerous changes [168]. 

3.2.2. Mineralogy 

Raman spectroscopy, being a non-destructive, precise, and fast technique, is a com-

mon tool in mineralogy for the analysis of a large variety of samples. Furthermore, the 

Raman analysis of a mineralogical sample can provide a punctual, linear, surface, and in 

some cases even three-dimensional mapping of the analyzed sample. Due to these char-

acteristics, Raman spectroscopy is used to analyze jewels, minerals, works of art, and his-

torical artifacts. 

Nasdala et al. [169] reported that this technique can investigate inside the inner struc-

ture of mineralogic samples in different temperature and pressure conditions. These in 

situ experiments can be interesting in the case of a sample with temperature and pressure 

related properties. Raman band shifts can be used for indirect measurement of the condi-

tion of the sample under analysis. This led Schmidt et al. [170] to present a Raman-based 

pressure sensor that can work even at high temperatures, at which the ruby luminescence 

technique does not. Their research discovered a linear dependence of the ν3 Raman band 

of fully crystalline synthetic zircon (Zr0.987Hf0.013[SiO4]) with pressure between 0.1 MPa and 

6.6 GPa. 

Figure 6. Raman spectrum of S. aureus cells in a panel acquired by suing an excitation power on the sample of up to 2 mW
and an acquisition time of up to 30 s, as reported by Li et al. [161]. Picture reproduced with permission from the American
Chemical Society (Copyright © 2019, American Chemical Society).

This approach was also used to monitor the organelle in vivo [162,163], the chromo-
somes [164], and for the evaluation of the hemoglobin in red blood cells and for the density
of water inside the cells [165]. This last study is particularly interesting because it proved
the presence of a strong and highly organized hydrogen bond network in the cytosol.

Raman spectroscopy has also been used for analyzing the structural features of epithe-
lial tissue [166,167] in order to detect and diagnose precancerous changes [168].

3.2.2. Mineralogy

Raman spectroscopy, being a non-destructive, precise, and fast technique, is a com-
mon tool in mineralogy for the analysis of a large variety of samples. Furthermore, the
Raman analysis of a mineralogical sample can provide a punctual, linear, surface, and
in some cases even three-dimensional mapping of the analyzed sample. Due to these
characteristics, Raman spectroscopy is used to analyze jewels, minerals, works of art, and
historical artifacts.

Nasdala et al. [169] reported that this technique can investigate inside the inner
structure of mineralogic samples in different temperature and pressure conditions. These
in situ experiments can be interesting in the case of a sample with temperature and pressure
related properties. Raman band shifts can be used for indirect measurement of the condition
of the sample under analysis. This led Schmidt et al. [170] to present a Raman-based
pressure sensor that can work even at high temperatures, at which the ruby luminescence
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technique does not. Their research discovered a linear dependence of the ν3 Raman band
of fully crystalline synthetic zircon (Zr0.987Hf0.013[SiO4]) with pressure between 0.1 MPa
and 6.6 GPa.

Raman spectroscopy also helps rovers on other planets to analyze extraterrestrial rocks.
The Perseverance rover is equipped with two Raman instruments: SHERLOC (Scanning
Habitable Environments with Raman and Luminescence for Organics and Chemicals) and
SuperCam. The first is located on the arm turret of the rover and is associated with an
X-ray fluorescence instrument. It works at an excitation wavelength of 248.6 nm (deep UV)
and is used to study the surface of the samples taken. The second includes laser-induced
breakdown spectroscopy (LIBS), time-resolved Raman and luminescence spectroscopy,
and visible–infrared (VISIR) spectroscopy [171].

Yiheng et al. [172] scanned the lunar meteorite NWA 10480, found in 2015, with
Raman, finding shifts related to olivine, plagioclase, pyroxene, and Fe-Ti oxide. The data
elaborated from the 650+ collected 2D spectra showed that NWA 10480 consists of 49 vol.%
pyroxene, 20 vol.% plagioclase, 15 vol.% olivine, and 3 vol.% Fe-Ti oxides.

A similar work was done by Haijun et al. [173], who performed a Raman analysis on
the NWA 4884 meteorite, reporting a large amount of Raman modes for the mineral phases
of the sample. The composition of the analyte appeared to be very different from that of the
study mentioned above. In fact, the results showed a composition of 42.4 vol.% pyroxene,
26.6 vol.% plagioclase, 20.7 vol.% olivine, and only traces of Fe-Ti oxides. These results are
an average taken along the whole sample, which consisted of domains in which a single
phase prevailed among the others. This proved the great lunar mineralogical variety and
that the lunar meteorites arriving on the Earth’s surface may come from different and
distant areas of our satellite.

Polavaram et al. [174] proposed an innovative protocol to create 2D maps of miner-
alogical samples. The method proposed in this work greatly reduce the analysis times as
it is able to analyze non-polished samples with an auto-focusing Z-mapping feature that
allows for identifying different polymorphs with great accuracy (<97%) and a high spatial
resolution (<0.3–2 µm).

Raman spectroscopy has been used as new certification method for precious minerals
(especially diamonds, rubies, and sapphires) [175]. The idea consists of marking the mineral
using a femtosecond laser, and creating a QR code in which all the information on the
material (carat weight, origin, processing, etc.) is saved. Raman mappings and scanning
electron microscope images revealed that the dots had a diameter of 14 microns and were
spaced 14–18 microns apart. The effectiveness of the marking can be seen from the Raman
spectra. For example, diamond exhibits graphitization in the areas exposed to the laser
and this is very noticeable from the Raman spectrum. In fact, here, the classic Raman peak
of the diamond (sp3 carbon) located at about 1340 cm−1 is accompanied by the D and G
bands, which underline the presence of the sp2 bond. This is further confirmed by the
presence of second order peaks at 2740 cm−1 (2D peak) and 2940 cm−1 (D and G peak).

Culka et. al. [176] proposed an easy, fast, and portable method for the in situ identifi-
cation of minerals using a portable sequentially shifted excitation Raman spectrometer and
the online RRUFF database. The Raman apparatus automatically removes the fluorescence
background and compares the obtained spectra with the RRUFF database for matching min-
erals. In the test proposed by the researchers, the system recognized 19 out of 20 mineral
species, confirming itself as a good method for the in situ identification of gemstones.

3.3. Advanced Applications
3.3.1. Cultural Heritage

Raman spectroscopy has gained great attention in the field of cultural heritage diag-
nostics [177]. The non-destructive Raman analysis has been used to evaluate the ageing
and degradation of plenty of precious artifacts, paints, and statues [178].

Prieto et al. [179] investigated, through Raman spectroscopy, a relatively recent paper-
based artifact, a 18 century Spanish playing card found in Perú. The authors were able
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to identify the composition of the inorganic pigments used and the degradation of the
cellulosic materials. Cellulose-based historical artifacts represent a very interesting family
for Raman investigation [180,181]. The analysis of pigments used in medieval manuscripts
enlightens modern researchers about the techniques developed in the monastery during the
middle ages [182,183]. Micro Raman analysis could be also used to explore the ageing of
far older cellulosic materials, such as a three-thousand-year-old mummy dating back to the
late period of ancient Egypt. Mummies are another relic of the past that have been deeply
analyzed using Raman spectroscopy. Several studies have investigated organic tissue
ageing in different and far regions of the global [184,185]. Ancient inorganic-based artifacts
represent another field of interest for Raman analysis. Barone et al. [186] investigated the
composition of a Roman jewels collection, identifying each gemstone used.

Colomban et al. [187] investigated the arsenic content in European porcelain. By using
Raman spectroscopy, the authors were able to build a timeline of the evolution of ceramic
pigments across centuries in the European region.

The Raman analysis of painting is very interesting considering the amount of informa-
tion recovered from a simple Raman spectrum.

Antunes and co-workers [188] were able to evaluate even the ground layers behind
15−16 century Portuguese paint though micro Raman analysis. The authors identified
gypsum and inorganic anhydrite with a good match. Furthermore, wall painting could be
analyzed as reported by Appolonia et al. [189]. The authors described with a great accuracy
the inorganic species used in the realization of wall paint preserved in the northwest of Italy,
finding a good agreement between Raman outputs and X-ray fluorescence investigation.

Raman spectroscopy has also been used for evaluating bronze patinas, reporting the
negative effect of several environmental conditions [190,191]. Based on this study, a more
efficient preservation policy could be enforced to limit the environment degradation of rare
and ancient artifacts.

3.3.2. Quality Control and Analytical Processes

Raman spectroscopy could also be used as a quality control tool for monitoring chem-
icals crystallization [192]. Roozeboom et al. [193] reported a study about the use of the
Raman technique as an analytical tool for monitoring the precipitation and crystallization
of different types of zeolite. The authors described the disappearance of complex aluminum
hydroxide with the advancement of zeolite formation, and they were able to discriminate
between zeolite A, B, and Y by observing the signals in the region from 300 cm−1 up to
680 cm−1. The production of pharmaceutics could be also monitored by the Raman tech-
nique, as reported by Strachan et al. [194]. In this field, the ability of Raman spectroscopy
to identify the different crystalline configurations of bio-active molecules represents a
solid point in favor of the use of this approach [195]. Wang et al. [196] estimated the shelf
life of aspirin tablets through simple Raman analysis, achieving results comparable with
those from high performance liquid chromatography. As a quality control tool, Raman
spectroscopy was used by Hali et al. [197] to evaluate the distribution of paracetamol and
caffeine in drug grains. The authors were able to provide a positive/negative control
regarding the presence of the correct ratio between the active bio-molecule identifying the
unacceptable materials.

Raman spectrometers are also used in the food industry as rapid on-line and in-situ
quality control for fish, meat, and drink production [198].

Kneipp et al. [199] firstly reported single molecule SERS that offers significant ad-
vantages when compared with single molecule fluorescence [44]. SERS is also developed
for use in spectroelectrochemistry, and in conjunction with electrochemistry, it allows for
detecting the behavior of molecules in different oxidation states. The structural changes
and redox properties of the molecule tetrathiafulvalene were monitored by SERS [200].
Dynamic SERS imaging inside a living cell can be examined by means of a gold nanoparti-
cle, which travels through the intracellular space to probe the local molecular information.
Simultaneous tracking of the particle motion and SERS spectroscopy provides molecular
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maps of organelle transport and lysosomal accumulation [201]. SERS imaging can provide
chemical information with a spatial resolution in the micrometer range, and label-free
imaging of biofilms has also been performed [202]. In addition, the SERS capability to de-
tect the chemical vapor for the sensing of highly toxic molecules, such as chemical warfare
agents and toxic industrial chemicals, has been demonstrated. Overcoming the lack of
interaction between of these molecules with the surface, detection was run using a device
such as a combined microfluidics-SERS sensor [203]. Explosives such as the half-mustard
agent [204] and dinitrobenzenethiol [205] have been successfully detected using SERS.
Of significant interest is the transition of SERS detection from the lab to the field [206].
The advent of portable Raman spectrometers allows for on-field SERS measurements of
real-time environmental chemical analysis and monitoring, ranging from the structural
characterization of soils, through ultrasensitive detection of pollutants and heavy metal
ions, to the analysis of plants, tissues, and microorganisms [207]. Stand-off detection by
SERS is made possible with optical fiber probes [208], relevant for in vivo measurement or
biomedical applications involving offset measurements through the skin, and the stand-off
molecular detection from samples at distances of 15 m [206]. The detection and identifica-
tion of dilute bacterial samples by SERS has been explored by mixing aqueous suspensions
of bacteria with a suspension of nanocolloidal silver particles. The detection limit of this
technique is∼103 cfu/mL, which is quite promising compared with conventional detection
methods [209].

SERS is also a promising method for the ultrasensitive detection of chemical species
that are relevant to homeland security [210].

4. Considerations about the Limitations and Advantages of Raman Spectroscopy

Raman spectroscopy has found many applications in advanced materials science
characterization. Nonetheless, its spread has led to a several misunderstandings in data
elaboration and interpretations. The best example of this misleading approach is repre-
sented by the elaboration of disordered carbon. In the scientific literature, many papers
faced the fitting of a Raman signal using an arbitrary number of components [211–213],
selecting lineshapes without a solid physical reason [214,215].

A more general and neglected issue is represented by the baseline correction of the
spectra. Baselining is the first and most crucial step for any Raman spectra elaboration, and
even though many approaches have been developed [216–219], not enough researchers
use them in an appropriate way.

Moreover, Raman quantitative analysis may be unreliable if not compared with and
validated by supported well established procedures [220].

Nonetheless, Raman spectroscopy could provide a very good insight for investigating
many materials, and with the creation of large databases, qualitative Raman analysis will
be more and more reliable [221–224].

A concise summary of the information and limitations encountered for several materi-
als and stressed in manuscript are reported in Table 1.

Table 1. Overview of the data achievable for each of the main classes of materials analyzed though Raman spectroscopy.

Materials Features Informations Provided Limitations

CNTs

� D and G peaks
� RBM
� 2D region

� Order (ID/IG)
� Chirality (ωRBM)
� Metallic or semicondutive

behavior (G peak)
� Number of layer

(G peak shape)

� MWCT signal fits could be
arbitrary in the choice of lineshape

� RBM detection in MWCNT is
possible only for straight isolated
CNTs on a SERS substrate
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Table 1. Cont.

Materials Features Informations Provided Limitations

Graphene and
graphene like

materials

� G peak
� D peak

(only for
defective structures)

� 2D region

� Defects (rise of D peak)
� Order (ID/IG)
� Number of graphene layers (D

and G’ peaks)

� Difficult discrimination between
few-layer defected graphene and
good quality graphite

Amorphous
carbon

� D and G peaks
� 2D region

� Order (ID/IG),
shape of region 2-D)

� Analysis of
reorganization based on
production temperature

� Fit of D and G peaks
� Physical explanation of

D and G components

Inorganic species

� Several peaks at
low Raman shifts
(generally lower
than 1000 cm−1)

� Chemical species identification
� Phase identification

� Difficult spectra processability
� Need of supporting informations

for trustworthy reference
databases (i.e., XRD)

Organic molecules

� Several peaks
based on the
specie analyzed

� Structural informations of
macromolecule (molecular
weight, ageing,
and crystallinity)

� Crystallization monitoring
� Quantification even on

molecular level (SERS)

� A peak-by-peak assignment is very
challenging for macromolecule

� Very sensible to interferences of
non- targeted organic species

� Quantification through SERS
techniques required and external
validation (i.e., chromatography
and quantitative spectroscopy)

5. Conclusions

Raman spectroscopy is a very powerful and polyhedral tool that could be used for the
investigation of many fields and many more materials.

As we discussed, Raman is useful for advanced materials science and real-life applica-
tions, always providing a deep and meaningful insight into the properties and arrangement
of the sample analyzed. Considering the decreasing cost of Raman instruments and their
portability, the spread of on-field Raman analysis will mark a new game changing event
establishing the advanced materials characterization as a routine analysis.

Considering the vast literature discussed above, we firmly hope that this review will
represent a reference point for newcomers and a useful tool for field experts as well.
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