POLITECNICO DI TORINO

Repository ISTITUZIONALE

On a basic mean value theorem with explicit exponents

Original
On a basic mean value theorem with explicit exponents / Ferrari, M.. - In: INTERNATIONAL JOURNAL OF NUMBER THEORY. - ISSN 1793-0421. - (2021), pp. 1-18. [10.1142/S1793042122500361]

Availability:

This version is available at: 11583/2949152 since: 2022-01-12T10:07:08Z
Publisher:
World Scientific

Published
DOI:10.1142/S1793042122500361

Terms of use.
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
World Scientific preprint/submitted version
(Article begins on next page)

ON A BASIC MEAN VALUE THEOREM WITH EXPLICIT EXPONENTS

Matteo Ferrari

Abstract

In this paper we follow a paper from A. Sedunova 5] regarding R. C. Vaughan's basic mean value Theorem [6] to improve and complete a more general demonstration for a suitable class of arithmetic functions as started by A. C. Cojocaru and M. R. Murty [2]. As an application we derive a basic mean value Theorem for the von Mangoldt generalized functions.

1. Introduction

In 1980 R. C. Vaughan [6] proved the basic mean value Theorem

Theorem 1.1.

$$
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y} \Lambda(n) \chi(n)\right| \ll\left(x+x^{\frac{5}{6}} Q+x^{\frac{1}{2}} Q^{2}\right) \log ^{4} x
$$

where Λ is the von Mangoldt function and the sum is restricted to primitive characters.

This result was a major tool for R. C. Vaughan to prove with elementary methods the Bombieri-Vinogradov Theorem. Recently A. Sedunova [5] improved the exponent of the logarithm using a weighted version of Vaughan's identity and an estimate due to M. B. Barban and P. P. Vehov [1] related to Selberg's sieve. A. C. Cojocaru and M. R. Murty in [2] proved a more general Theorem than the basic mean value Theorem. We will follow their proof improving the results adapting Sedunova's method. Using the main Theorem [2.1] we will be able to prove a basic mean value Theorem for the generalized von Mangoldt function $\Lambda_{k}=\mu \star \log ^{k}$, precisely

Theorem 1.2. For each $k \in \mathbb{N}, \epsilon>0$ it holds

$$
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y} \Lambda_{k}(n) \chi(n)\right|<_{k}\left(x+x^{\frac{13}{14}+\epsilon} Q+x^{\frac{1}{2}} Q^{2}\right) \log ^{k+1} x .
$$

Notation. Given $A \subset \mathbb{R}$, with $\mathbb{1}_{A}$ we denote the characteristic function of A, when we write $\mathbb{1}$ we suppose $A=\{1\}$. Given an arithmetic function $f: \mathbb{N} \rightarrow \mathbb{C}$ and two real numbers $U<V$, we write $f_{\leq U}$ for $f \cdot \mathbb{1}_{[1, U]}, f_{>V}$ for $f \cdot\left(1-\mathbb{1}_{[1, V]}\right)$ and with $f_{(U, V]}$ for $f \cdot \mathbb{1}_{(U, V]}$. We use the standard Vinogradov notation \ll and when the implicit constant does depend on something we specify it. The quantities $Q, M_{1}, M_{2}, N_{1}, N_{2}$ are always some functions that depend on x, when we use the \ll notation we assume $x \rightarrow+\infty$.

2. Main Result

Let us indicate the class of arithmetic functions

$$
\begin{equation*}
\mathscr{D}=\left\{D: \mathbb{N} \rightarrow \mathbb{C}: \sum_{n \leq x}|D(n)|^{2} \ll x \log ^{\alpha} x \text { for some } \alpha \geq 0\right\} \tag{2.1}
\end{equation*}
$$

Date: May 20, 2020

2010 Mathematics Subject Classification. Primary, 11N35; Secondary, 11N36, 11N37, 11N13.
Key words. Basic mean value Theorem, Vaughan's identity, large sieve.
and for $D \in \mathscr{D}$ let

$$
\begin{equation*}
\alpha_{D}=\inf \left\{\alpha \geq 0: \sum_{n \leq x}|D(n)|^{2} \ll x \log ^{\alpha} x\right\} \tag{2.2}
\end{equation*}
$$

We will need also information about the average of $|D(n)| / n^{k}$ for $k \in[0,1]$. Let us indicate

$$
\begin{equation*}
\beta_{D}(k)=\inf \left\{\beta \geq 0: \sum_{n \leq x} \frac{|D(n)|}{n^{k}}<_{k} x^{1-k} \log ^{\beta} x\right\} \tag{2.3}
\end{equation*}
$$

It is straightforward that if $D \in \mathscr{D}$ then $\beta_{D}(k)<+\infty$ for all $k \in[0,1]$, we will give a precise bound in Lemma 3.1 .
From now on we consider two arithmetic functions $f, g: \mathbb{N} \rightarrow \mathbb{C}$ with $f(1) \neq 0$. We define $\mu_{f}, \Lambda_{f g}$ as

$$
\begin{align*}
\mathbb{1} & =\mu_{f} \star f, \tag{2.4}\\
\Lambda_{f g} & =\mu_{f} \star g . \tag{2.5}
\end{align*}
$$

In particular μ_{f} is the convolution inverse of f : it exists and is unique since $f(1) \neq 0$. We can understand better these definitions with the help of the associated formal Dirichlet series: if

$$
G(s)=\sum_{n \geq 1} \frac{g(n)}{n^{s}}, \quad F(s)=\sum_{n \geq 1} \frac{f(n)}{n^{s}}
$$

then

$$
\frac{G(s)}{F(s)}=\sum_{n \geq 1} \frac{\Lambda_{f g}(n)}{n^{s}}, \quad \frac{1}{F(s)}=\sum_{n \geq 1} \frac{\mu_{f}(n)}{n^{s}} .
$$

The benchmark case is clearly when

$$
f=1, \quad g=\log , \quad \mu_{f}=\mu, \quad \Lambda_{f g}=\Lambda .
$$

We are interested in estimates for

$$
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y} \Lambda_{f g}(n) \chi(n)\right|
$$

We have two trivial bounds. Using the triangle inequality we obtain, for each $\epsilon>0$,

$$
\begin{align*}
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y} \Lambda_{f g}(n) \chi(n)\right| & \leq \sum_{q \leq Q} q \sum_{n \leq x}\left|\Lambda_{f g}(n)\right| \\
& \ll x Q^{2} \log ^{\beta_{\Lambda_{f g}}(0)+\epsilon} x \tag{2.6}
\end{align*}
$$

Using the Cauchy-Schwarz inequality we obtain, for each $\epsilon>0$,

$$
\begin{align*}
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y} \Lambda_{f g}(n) \chi(n)\right| & \leq \sum_{q \leq Q} q\left(\sum_{n \leq x}\left|\Lambda_{f g}(n)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{n \leq x} 1\right)^{\frac{1}{2}} \\
& \ll x Q^{2} \log ^{\frac{\alpha_{\Lambda_{f g}}^{2}}{2}+\epsilon} x . \tag{2.7}
\end{align*}
$$

We can improve these inequalities assuming further hypotheses for f, g, μ_{f} and $\Lambda_{f g}$.
Theorem 2.1. We suppose that g, f, μ_{f} and $\Lambda_{f g}$, as defined before, satisfy the following hypotheses:
(H1) $g: \mathbb{N} \rightarrow \mathbb{R}^{+}$is an increasing function;
(H2) $f, \mu_{f}, \Lambda_{f g} \in \mathscr{D}$;
(H3) there exist $\theta_{f}, \gamma_{f} \in[0,1]$ such that, for any non-principal primitive Dirichlet character $\chi \bmod q$

$$
\sum_{n \leq x} f(n) \chi(n) \ll x^{\theta_{f}} q^{\frac{1}{2}} \log q+x^{\gamma_{f}}
$$

(H4) for each $1 \leq V_{1}<V_{2}$ there exists a bounded function $\eta(b)=\eta\left(b ; V_{1}, V_{2}\right)$ such that $\eta(b)=1$ for $b \leq V_{1}, \eta(b)=0$ for $b>V_{2}$ and

$$
\sum_{n=1}^{V}\left|\left(\left(\mu_{f} \cdot \eta\right) \star f\right)(n)\right|^{2} \ll \frac{V}{\log \left(\frac{V_{2}}{V_{1}}\right)}
$$

Then for each $\epsilon>0, U_{0} \leq U_{1}, V_{1}<V_{2}$ it holds

$$
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y} \Lambda_{f g}(n) \chi(n)\right| \ll H\left(x, Q, U_{0}, U_{1}, V_{1}, V_{2}\right)
$$

and we have

$$
\begin{aligned}
& H\left(x, Q, U_{0}, U_{1}, V_{1}, V_{2}\right) \ll U_{1} Q^{2} \log ^{\beta_{\Lambda_{f g}}}(0)+\epsilon \\
& U_{1} \\
&+x^{\theta_{f}}\left(U_{0} V_{2}\right)^{1-\theta_{f}} Q^{\frac{5}{2}} \log ^{\beta_{\mu_{f}}\left(\theta_{f}\right)+\beta_{\Lambda_{f g}}\left(\theta_{f}\right)+1+\epsilon}\left(U_{0} V_{2} Q\right) \\
&+x^{\gamma_{f}}\left(U_{0} V_{2}\right)^{1-\gamma_{f}} Q^{2} \log ^{\beta_{\mu_{f}}\left(\gamma_{f}\right)+\beta_{\Lambda_{f g}}\left(\gamma_{f}\right)+\epsilon}\left(U_{0} V_{2}\right) \\
&+x \log ^{\beta_{f}(0)+\beta_{\mu_{f}}(1)+\beta_{\Lambda_{f g}}(1)+\epsilon}\left(x U_{0} V_{2}\right) \\
&+\left(\left(x^{\frac{1}{2}} Q^{2}+x\right) \log U_{1}+x^{\frac{1}{2}} Q\left(U_{1}^{\frac{1}{2}}+\frac{x^{\frac{1}{2}}}{U_{0}^{\frac{1}{2}}}\right)\right) \frac{\log ^{\frac{\alpha_{\Lambda_{f g}}}{2}+1+\epsilon} x}{\log ^{\frac{1}{2}}\left(\frac{V_{2}}{V_{1}}\right)} \\
&+g(x) V_{2} Q^{\frac{5}{2}} \log ^{\beta_{\mu_{f}}(0)+1+\epsilon}\left(V_{2} Q\right)+g(x) x \log ^{\beta_{\mu_{f}}(1)+\epsilon} V_{2} \\
&+\left(\left(x^{\frac{1}{2}} Q^{2}+x\right) \log x+x Q\left(\frac{1}{V_{1}^{\frac{1}{2}}}+\frac{1}{U_{1}^{\frac{1}{2}}}\right)\right) \frac{\log ^{\frac{\alpha_{\Lambda_{f g}}}{2}}+1+\epsilon}{\log ^{\frac{1}{2}}\left(\frac{V_{2}}{V_{1}}\right)} .
\end{aligned}
$$

In particular if all the α and β reach the minima in definitions 2.2 and 2.3, then the claim holds with $\epsilon=0$.

Corollary 2.2. Assuming the same hypotheses as in Theorem 2.1

$$
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y} \Lambda_{f g}(n) \chi(n)\right| \ll M L
$$

where M is the main term and L is the logarithmic term, precisely

$$
\begin{aligned}
M=\max \{ & U_{1} Q^{2}, x^{\theta_{f}}\left(U_{0} V_{2}\right)^{1-\theta_{f}} Q^{\frac{5}{2}}, x^{\gamma_{f}}\left(U_{0} V_{2}\right)^{1-\gamma_{f}} Q^{2}, x, x^{\frac{1}{2}} Q^{2} \\
& \left.\frac{x Q}{U_{0}^{\frac{1}{2}}}, x^{\frac{1}{2}} U_{1}^{\frac{1}{2}} Q, V_{2} Q^{\frac{5}{2}}, \frac{x Q}{V_{1}^{\frac{1}{2}}}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
L=\max \{ & \log ^{\beta_{\Lambda_{f g}}(0)+\epsilon} U_{1}, \log ^{\beta_{\mu_{f}}\left(\theta_{f}\right)+\beta_{\Lambda_{f g}}\left(\theta_{f}\right)+1+\epsilon}\left(U_{0} V_{2} Q\right), \\
& \log ^{\beta_{\mu_{f}}\left(\gamma_{f}\right)+\beta_{\Lambda_{f g}}\left(\gamma_{f}\right)+\epsilon}\left(U_{0} V_{2}\right), \log ^{\beta_{f}(0)+\beta_{\mu_{f}}(1)+\beta_{\Lambda_{f g}}(1)+\epsilon}\left(x U_{0} V_{2}\right), \\
& \frac{\log ^{\frac{\alpha_{f g}}{2}+2+\epsilon}\left(x U_{1}\right)}{\log ^{\frac{1}{2}}\left(\frac{V_{2}}{V_{1}}\right)}, g(x) \log ^{\beta_{\mu_{f}}(0)+1+\epsilon}\left(V_{2} Q\right), g(x) \log ^{\beta_{\mu_{f}}(1)+\epsilon} V_{2}, \\
& \left.\frac{\log ^{\frac{\alpha_{\Lambda_{f g}}}{2}+2+\epsilon} x}{\log ^{\frac{1}{2}}\left(\frac{V_{2}}{V_{1}}\right)}\right\} .
\end{aligned}
$$

3. Preparation for the proof

First we prove a Lemma that guarantees us that if $D \in \mathscr{D}$ then $\beta_{D}(k)$ is bounded for all $k \in[0,1]$.
Lemma 3.1. If $D \in \mathscr{D}$ then

$$
\beta_{D}(k) \leq \frac{\alpha_{D}}{2}+\mathbb{1}(k) .
$$

Proof. This follows easily using partial summation and the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\sum_{n \leq x} \frac{|D(n)|}{n^{k}} & =\frac{1}{x^{k}} \sum_{n \leq x}|D(n)|+k \int_{1}^{x}\left(\sum_{n \leq t}|D(n)|\right) \frac{d t}{t^{k+1}} \\
& \ll k \frac{1}{x^{k}}\left(\sum_{n \leq x} 1\right)^{\frac{1}{2}}\left(\sum_{n \leq x}|D(n)|^{2}\right)^{\frac{1}{2}}+\int_{1}^{x}\left(\sum_{n \leq t} 1\right)^{\frac{1}{2}}\left(\sum_{n \leq t}|D(n)|^{2}\right)^{\frac{1}{2}} \frac{d t}{t^{k+1}} \\
& \ll k x^{1-k} \log ^{\frac{\alpha_{D}}{2}+\epsilon} x+\log ^{\frac{\alpha_{D}}{2}+\epsilon} x \int_{1}^{x} \frac{d t}{t^{k}}
\end{aligned}
$$

for each $\epsilon>0$. So we have the claim distinguishing $k=1$ from the other cases.
This is typically far from the best exponent, for example $\Lambda \in \mathscr{D}$ with $\alpha_{\Lambda}=1$, Lemma 3.1 provides us the bound $\beta_{\Lambda}(0) \leq 1 / 2$ but the prime number Theorem claims that $\beta_{\Lambda}(0)=0$. Another example rises from Mertens' formula

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n}=\log x+O(1)
$$

and so $\beta_{\Lambda}(1)=1$ but with the Lemma 3.1 we can only obtain $\beta_{\Lambda}(1) \leq 3 / 2$. However with our kind of generalization it can't be done better than Lemma 3.1 for example the function identically 1 is in \mathscr{D} with $\alpha_{1}=0, \beta_{1}(0)=0$ and $\beta_{1}(1)=1$.
As in the classic proof of the basic mean value Theorem we need a modified multiplicative large sieve inequality.
Theorem 3.2. Let f_{1}, f_{2} be two arithmetic function, then

$$
\begin{aligned}
& \sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq M_{1} M_{2}}\left|\sum_{n \leq y}\left(f_{1 \leq M_{1}} \star f_{2 \leq M_{2}}\right)(n) \chi(n)\right| \\
& \ll\left(Q^{2}+M_{1}\right)^{\frac{1}{2}}\left(Q^{2}+M_{2}\right)^{\frac{1}{2}}\left(\sum_{n \leq M_{1}}\left|f_{1}(n)\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{n \leq M_{2}}\left|f_{2}(n)\right|^{2}\right)^{\frac{1}{2}} \log \left(M_{1} M_{2}\right) .
\end{aligned}
$$

For the proof see Lemma 2 of 6]. If we have to estimate sums like

$$
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod }^{*} \max _{y \leq x}\left|\sum_{n \leq y}\left(f_{1\left(N_{1}, M_{1}\right]} \star f_{2}\right)(n) \chi(n)\right|
$$

with $f_{1}, f_{2} \in \mathscr{D}$ and $M_{1} / N_{1} \ll x$, using directly Theorem 3.2 is not in general convenient. Indeed writing

$$
\max _{y \leq x}\left|\sum_{n \leq y}\left(f_{1\left(N_{1}, M_{1}\right]} \star f_{2}\right)(n) \chi(n)\right|=\max _{y \leq x}\left|\sum_{n \leq y}\left(f_{1\left(N_{1}, M_{1}\right]} \star f_{2 \leq \frac{x}{N_{1}}}\right)(n) \chi(n)\right|
$$

we obtain a bound like

$$
\begin{align*}
& \ll\left(Q+M_{1}^{\frac{1}{2}}\right)\left(Q+\frac{x^{\frac{1}{2}}}{N_{1}^{\frac{1}{2}}}\right) M_{1}^{\frac{1}{2}} \frac{x^{\frac{1}{2}}}{N_{1}^{\frac{1}{2}}} \log \frac{\alpha_{f_{1}+\alpha_{f_{2}}}^{2}+1+\epsilon}{2} x \\
& =\left(x^{\frac{1}{2}} Q^{2}\left(\frac{M_{1}}{N_{1}}\right)^{\frac{1}{2}}+x \frac{M_{1}}{N_{1}}+x^{\frac{1}{2}} Q\left(\frac{M_{1}}{N_{1}}\right)^{\frac{1}{2}}\left(M_{1}^{\frac{1}{2}}+\frac{x^{\frac{1}{2}}}{N_{1}^{\frac{1}{2}}}\right)\right) \log ^{\frac{\alpha_{f_{1}+\alpha_{f_{2}}}^{2}}{2}+1+\epsilon} x \tag{3.1}
\end{align*}
$$

Combining a dicotomic method with Theorem 3.2 we can find a better bound when $\log M_{1} \ll M_{1} / N_{1}$.
Lemma 3.3. Given $f_{1}, f_{2} \in \mathscr{D}, M_{1}, N_{1}$ such that $M_{1} / N_{1} \ll x$ and $\epsilon>0$,

$$
\begin{align*}
& \sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod }^{*} \max _{y \leq x}\left|\sum_{n \leq y}\left(f_{1\left(N_{1}, M_{1}\right]} \star f_{2}\right)(n) \chi(n)\right| \\
& \ll\left(\left(x^{\frac{1}{2}} Q^{2}+x\right) \log M_{1}+x^{\frac{1}{2}} Q\left(M_{1}^{\frac{1}{2}}+\frac{x^{\frac{1}{2}}}{N_{1}^{\frac{1}{2}}}\right)\right) \log \frac{\alpha_{f_{1}+\alpha_{f_{2}}}^{2}+1+\epsilon}{} x . \tag{3.2}
\end{align*}
$$

Proof. The estimate (3.1) is good when $M_{1} \asymp N_{1}$ The idea is to split the interval (N_{1}, M_{1}] in subintervals of the type $[T, 2 T]$ and then apply Theorem 3.2 at each of this subintervals. For $T \leq x$

$$
\begin{align*}
& \sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y}\left(f_{1(T, 2 T]} \star f_{2}\right)(n) \chi(n)\right| \\
& =\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y}\left(f_{1(T, 2 T]} \star f_{2 \leq \frac{x}{T}}\right)(n) \chi(n)\right| \\
& \ll\left(Q+T^{\frac{1}{2}}\right)\left(Q+\frac{x^{\frac{1}{2}}}{T^{\frac{1}{2}}}\right) T^{\frac{1}{2}} \frac{x^{\frac{1}{2}}}{T^{\frac{1}{2}}} \log \frac{\alpha_{f_{1}+\alpha_{f_{2}}}^{2}+1+\epsilon}{} x \tag{3.3}\\
& =\left(x^{\frac{1}{2}} Q^{2}+x+x^{\frac{1}{2}} Q\left(T^{\frac{1}{2}}+\frac{x^{\frac{1}{2}}}{T^{\frac{1}{2}}}\right)\right) \log ^{\frac{\alpha_{f_{1}}+\alpha_{f_{2}}}{2}+1+\epsilon} x . \tag{3.4}
\end{align*}
$$

We choose $T=N_{1} 2^{k}$ by varying $k \in \mathscr{S} \subset \mathbb{N}$ such that

$$
\left(N_{1}, M_{1}\right] \subset \bigcup_{k \in \mathscr{S}}\left[N_{1} 2^{k}, N_{1} 2^{k+1}\right]
$$

and $|\mathscr{S}|$ is minimum. In general the inclusion will be proper, to avoid problems and to be able to use the triangle inequality we extend to zero f_{1} in the external points to $\left(N_{1}, M_{1}\right]$, i.e. we define $\tilde{f}_{1}=f_{1\left(N_{1}, M_{1}\right]}$. Now using the triangle inequality

$$
\begin{aligned}
\left|\sum_{n \leq y}\left(f_{1\left(N_{1}, M_{1}\right]} \star f_{2}\right)(n) \chi(n)\right| & =\left|\sum_{n \leq y}\left(\tilde{f}_{1} \star f_{2}\right)(n) \chi(n)\right| \\
& \leq \sum_{\substack{T=N_{1} 2^{k} \\
k \in \mathscr{S}}}\left|\sum_{n \leq y}\left(\tilde{f}_{1(T, 2 T]} \star f_{2}\right)(n) \chi(n)\right|
\end{aligned}
$$

Since $T \in\left[N_{1}, 2 M_{1}\right]$, with (3.4) we can conclude

$$
\begin{aligned}
& \sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y}\left(f_{1\left(N_{1}, M_{1}\right]} \star f_{2}\right)(n) \chi(n)\right| \\
& \ll\left(\left(x^{\frac{1}{2}} Q^{2}+x\right)|\mathscr{S}|+x^{\frac{1}{2}} Q\left(M_{1}^{\frac{1}{2}}+\frac{x^{\frac{1}{2}}}{N_{1}^{\frac{1}{2}}}\right)\right) \log \frac{\alpha_{f_{1}+\alpha_{f_{2}}}^{2}+1+\epsilon}{} x
\end{aligned}
$$

and since $|\mathscr{S}| \ll \log M_{1}$, we obtain the claim.
Remark 3.4. We remark that the previous Lemma is useful also when we have to estimate

$$
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y}\left(f_{1>N_{1}} \star f_{2>N_{2}}\right)(n) \chi(n)\right|,
$$

indeed we can take $M_{1}=x / N_{2}$ and obtain the bound

$$
\begin{equation*}
\ll\left(\left(x^{\frac{1}{2}} Q^{2}+x\right) \log x+x Q\left(\frac{1}{N_{1}^{\frac{1}{2}}}+\frac{1}{N_{2}^{\frac{1}{2}}}\right)\right) \log \frac{\alpha_{f_{1}+\alpha_{f_{2}}}^{2}+1+\epsilon}{} x \tag{3.5}
\end{equation*}
$$

3.1 Weighted Vaughan's identity. We want to use a decomposition formula for $\Lambda_{f g}$ using a weight $\eta: \mathbb{N} \rightarrow \mathbb{C}$ such that $\eta(b)=1$ for $b \leq V_{1}$ as A. Sedunova did in [5]. We know the classic Vaughan's identity

$$
\begin{aligned}
\Lambda_{f g} & =\Lambda_{f g \leq U_{1}}-\Lambda_{f g \leq U_{1}} \star \mu_{f \leq V_{1}} \star f+\mu_{f \leq V_{1}} \star g+\Lambda_{f g_{>U_{1}}} \star \mu_{f>V_{1}} \star f \\
& =\Lambda_{1}+\Lambda_{2}+\Lambda_{3}+\Lambda_{4}
\end{aligned}
$$

that follows from (2.4) and (2.5), indeed

$$
\begin{aligned}
\Lambda_{f g} & =\Lambda_{f g_{\leq U_{1}}}+\Lambda_{f g}-\Lambda_{f g_{\leq U_{1}}}=\Lambda_{f g_{\leq U_{1}}}+\mu_{f} \star g-\Lambda_{f g_{\leq U_{1}}} \star \mu_{f} \star f \\
& =\Lambda_{f g_{\leq U_{1}}}+\mu_{f \leq V_{1}} \star g+\mu_{f>V_{1}} \star g-\Lambda_{f g_{\leq U_{1}}} \star \mu_{f \leq V_{1}} \star f-\Lambda_{f g_{\leq U_{1}}} \star \mu_{f>V_{1}} \star f \\
& =\Lambda_{f g_{\leq U_{1}}}-\Lambda_{f g_{\leq U_{1}}} \star \mu_{f \leq V_{1}} \star f+\mu_{f_{\leq V_{1}}} \star g+\mu_{f>V_{1}} \star\left(g-\Lambda_{f g_{\leq U_{1}}} \star f\right)
\end{aligned}
$$

and we use that from (2.4) and (2.5) follows also

$$
\begin{equation*}
g=\Lambda_{f g} \star f . \tag{3.6}
\end{equation*}
$$

We claim that, more in general
Lemma 3.5. For every $\eta: \mathbb{N} \rightarrow \mathbb{C}$ such that $\eta(b)=1$ for every $b \leq V_{1}$

$$
\begin{aligned}
\Lambda_{f g} & =\Lambda_{f g \leq U_{1}}-\Lambda_{f g \leq U_{1}} \star\left(\mu_{f} \cdot \eta\right) \star f+\left(\mu_{f} \cdot \eta\right) \star g+\Lambda_{f g>U_{1}} \star\left(\mu_{f} \cdot(1-\eta)\right) \star f \\
& =\Lambda_{1}^{\prime}+\Lambda_{2}^{\prime}+\Lambda_{3}^{\prime}+\Lambda_{4}^{\prime} .
\end{aligned}
$$

Proof. We observe, using essentially that $\eta(b)=1$ for every $b \leq V_{1}$,

$$
\begin{aligned}
& \Lambda_{1}^{\prime}=\Lambda_{1} \\
& \Lambda_{2}^{\prime}=\Lambda_{2}+\Lambda_{f g_{\leq U_{1}}} \star\left(\mu_{f} \cdot \eta\right)_{>V_{1}} \star f, \\
& \Lambda_{3}^{\prime}=\Lambda_{3}-\left(\mu_{f} \cdot \eta\right)_{>V_{1}} \star g \\
& \Lambda_{4}^{\prime}=\Lambda_{4}+\Lambda_{f g_{>U_{1}}} \star\left(\mu_{f} \cdot \eta\right)_{>V_{1}} \star f .
\end{aligned}
$$

It remains to show that the sum of the three remainders is equal to zero, but this is true since, from (3.6)

$$
\begin{aligned}
& \Lambda_{f g_{\leq U_{1}}} \star\left(\mu_{f} \cdot \eta\right)_{>V_{1}} \star f-\left(\mu_{f} \cdot \eta\right)_{>V_{1}} \star g+\Lambda_{f g_{>U_{1}}} \star\left(\mu_{f} \cdot \eta\right)_{>V_{1}} \star f \\
& =\left(\mu_{f} \cdot \eta\right)_{>V_{1}} \star\left(\Lambda_{f g_{\leq U_{1}}} \star f-g+\Lambda_{f g_{>U_{1}}} \star f\right)=0 .
\end{aligned}
$$

4. Main proof

In the proof we denote with $\epsilon>0$ any small positive constant that rises from the definitions of α_{D} and $\beta_{D}(k)$ as infima; at the end we will still indicate with ϵ the maximum of the constant previously considered. First we show, as R. C. Vaughan did in [6, that we can treat larger Q more easily than smaller Q.
4.1 The case $\mathbf{Q}^{2}>\mathbf{x}$. We only use the modified multiplicative large sieve (Theorem (3.2) with $M_{1}=1, f_{1}(1)=1, M_{2}=[x], f_{2}(n)=\Lambda_{f g}(n)$. We obtain

$$
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y} \Lambda_{f g}(n) \chi(n)\right| \ll\left(x^{\frac{1}{2}} Q+Q^{2}\right)\left(\sum_{n \leq x}\left|\Lambda_{f g}(n)\right|^{2}\right)^{\frac{1}{2}} \log x .
$$

Using (H2) and the definition of \mathscr{D}

$$
\begin{aligned}
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y} \Lambda_{f g}(n) \chi(n)\right| & \ll\left(x Q+x^{\frac{1}{2}} Q^{2}\right) \log ^{\frac{\alpha_{\Lambda_{f g}}}{2}+1+\epsilon} x \\
& \ll x^{\frac{1}{2}} Q^{2} \log ^{\frac{\alpha_{\Lambda_{f g}}}{2}+1+\epsilon} x
\end{aligned}
$$

since $Q^{2}>x$.

From now on we can assume $Q^{2} \leq x$. We set four parameters
$U_{0}=U_{0}(x, Q) \leq U_{1}=U_{1}(x, Q), V_{1}=V_{1}(x, Q)<V_{2}=V_{2}(x, Q)$. Recalling Lemma 3.5. for any Dirichlet character $\chi \bmod q$ we can write

$$
\sum_{n \leq y} \Lambda_{f g}(n) \chi(n)=\sum_{i=1}^{4} \sum_{n \leq y} \Lambda_{i}^{\prime}(n) \chi(n)=\sum_{i=1}^{4} S_{i}(y, \chi)
$$

We prove the Theorem 2.1 by estimating each of the sums

$$
S_{i}(x, Q)=\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|S_{i}(y, \chi)\right|, \quad 1 \leq i \leq 4
$$

4.2 The estimate for $\mathbf{S}_{\mathbf{1}}(\mathbf{x}, \mathbf{Q})$. Using hypothesis (H2) and definition (2.3) we obtain

$$
\left|S_{1}(y, \chi)\right|=\left|\sum_{n \leq \min \left\{U_{1}, y\right\}} \Lambda_{f g}(n) \chi(n)\right| \leq \sum_{n \leq U_{1}}\left|\Lambda_{f g}(n)\right| \ll U_{1} \log ^{\beta_{\Lambda_{f g}}(0)+\epsilon} U_{1}
$$

and so

$$
S_{1}(x, Q)=\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|S_{1}(y, \chi)\right| \ll U_{1} Q^{2} \log ^{\beta_{\Lambda_{f g}}(0)+\epsilon} U_{1}
$$

4.3 The estimate for $\mathbf{S}_{\mathbf{2}}(\mathbf{x}, \mathbf{Q})$. We recall the definition

$$
S_{2}(y, \chi)=-\sum_{n \leq y}\left(\Lambda_{f g_{\leq U_{1}}} \star\left(\mu_{f} \cdot \eta\right) \star f\right)(n) \chi(n)
$$

we split this sum into two parts

$$
S_{2}(y, \chi)=S_{2}^{\prime}(y, \chi)+S_{2}^{\prime \prime}(y, \chi)
$$

where

$$
S_{2}^{\prime}(y, \chi)=-\sum_{n \leq y}\left(\Lambda_{f g_{\leq U_{0}}} \star\left(\mu_{f} \cdot \eta\right) \star f\right)(n) \chi(n),
$$

and

$$
S_{2}^{\prime \prime}(y, \chi)=-\sum_{n \leq y}\left(\Lambda_{f g_{\left(U_{0}, U_{1}\right]}} \star\left(\mu_{f} \cdot \eta\right) \star f\right)(n) \chi(n) .
$$

For $S_{2}^{\prime}(y, \chi)$, using (H4) and writing $n=a b c$

$$
\begin{aligned}
\left|S_{2}^{\prime}(y, \chi)\right| & =\left|\sum_{a \leq U_{0}} \Lambda_{f g}(a) \chi(a) \sum_{b} \mu_{f}(b) \eta(b) \chi(b) \sum_{c \leq \frac{y}{a b}} f(c) \chi(c)\right| \\
& \ll \sum_{a \leq U_{0}}\left|\Lambda_{f g}(a)\right| \sum_{b \leq V_{2}}\left|\mu_{f}(b)\right|\left|\sum_{c \leq \frac{y}{a b}} f(c) \chi(c)\right|,
\end{aligned}
$$

so that we can use hypothesis (H3) to estimate the innermost sum for non-principal primitive characters χ mod q. We get

$$
\begin{aligned}
\left|S_{2}^{\prime}(y, \chi)\right| & \ll y^{\theta_{f}} q^{\frac{1}{2}} \log q \sum_{a \leq U_{0}} \frac{\left|\Lambda_{f g}(a)\right|}{a^{\theta_{f}}} \sum_{b \leq V_{2}} \frac{\left|\mu_{f}(b)\right|}{b^{\theta_{f}}} \\
& +y^{\gamma_{f}} \sum_{a \leq U_{0}} \frac{\left|\Lambda_{f g}(a)\right|}{a^{\gamma_{f}}} \sum_{b \leq V_{2}} \frac{\left|\mu_{f}(b)\right|}{b^{\gamma_{f}}}
\end{aligned}
$$

Then, by using hypothesis (H2) and using four times definition (2.3), we obtain

$$
\begin{aligned}
\left|S_{2}^{\prime}(y, \chi)\right| & \ll y^{\theta_{f}} V_{2}^{1-\theta_{f}} q^{\frac{1}{2}} \log ^{\beta_{\mu_{f}}\left(\theta_{f}\right)+1+\epsilon}\left(V_{2} q\right) \sum_{a \leq U_{0}} \frac{\left|\Lambda_{f g}(a)\right|}{a^{\theta_{f}}} \\
& +y^{\gamma_{f}} V_{2}^{1-\gamma_{f}} \log ^{\beta_{\mu_{f}}\left(\gamma_{f}\right)+\epsilon} V_{2} \sum_{a \leq U_{0}} \frac{\left|\Lambda_{f g}(a)\right|}{a^{\gamma_{f}}} \\
& \ll y^{\theta_{f}}\left(U_{0} V_{2}\right)^{1-\theta_{f}} q^{\frac{1}{2}} \log ^{\beta_{\mu_{f}}\left(\theta_{f}\right)+\beta_{\Lambda_{f g}}\left(\theta_{f}\right)+1+\epsilon}\left(U_{0} V_{2} q\right) \\
& +y^{\gamma_{f}}\left(U_{0} V_{2}\right)^{1-\gamma_{f}} \log ^{\beta_{\mu_{f}}\left(\gamma_{f}\right)+\beta_{\Lambda_{f g}}\left(\gamma_{f}\right)+\epsilon}\left(U_{0} V_{2}\right) .
\end{aligned}
$$

Instead, for $\chi=\chi_{0}$ we have, using two times definition 2.3,

$$
\begin{aligned}
\left|S_{2}^{\prime}\left(y, \chi_{0}\right)\right| & \leq \sum_{a \leq U_{0}}\left|\Lambda_{f g}(a)\right| \sum_{b \leq V_{2}}\left|\mu_{f}(b)\right| \sum_{c \leq \frac{y}{a b}}|f(c)| \\
& \ll y \log ^{\beta_{f}(0)+\epsilon} y \sum_{a \leq U_{0}} \frac{\left|\Lambda_{f g}(a)\right|}{a} \sum_{b \leq V_{2}} \frac{\left|\mu_{f}(b)\right|}{b} \\
& \ll y \log ^{\beta_{f}(0)+\beta_{\mu_{f}}(1)+\epsilon}\left(y V_{2}\right) \sum_{a \leq U_{0}} \frac{\left|\Lambda_{f g}(a)\right|}{a} \\
& \ll y \log ^{\beta_{f}(0)+\beta_{\mu_{f}}(1)+\beta_{\Lambda_{f g}}(1)+\epsilon}\left(y U_{0} V_{2}\right) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
S_{2}^{\prime}(x, Q) & =\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|S_{2}^{\prime}(y, \chi)\right| \\
& \ll x^{\theta_{f}}\left(U_{0} V_{2}\right)^{1-\theta_{f}} Q^{\frac{5}{2}} \log ^{\beta_{\mu_{f}}\left(\theta_{f}\right)+\beta_{\Lambda_{f g}}\left(\theta_{f}\right)+1+\epsilon}\left(U_{0} V_{2} Q\right) \\
& +x^{\gamma_{f}}\left(U_{0} V_{2}\right)^{1-\gamma_{f}} Q^{2} \log ^{\beta_{\mu_{f}}\left(\gamma_{f}\right)+\beta_{\Lambda_{f g}}\left(\gamma_{f}\right)+\epsilon}\left(U_{0} V_{2}\right) \\
& +x \log ^{\beta_{f}(0)+\beta_{\mu_{f}}(1)+\beta_{\Lambda_{f g}}(1)+\epsilon}\left(x U_{0} V_{2}\right) .
\end{aligned}
$$

For $S_{2}^{\prime \prime}(y, \chi)$ we recall the definition

$$
S_{2}^{\prime \prime}(x, Q)=\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y}\left(\Lambda_{f g_{\left(U_{0}, U_{1}\right]} \star}\left(\mu_{f} \cdot \eta\right) \star f\right)(n) \chi(n)\right|
$$

We want to use Lemma 3.3. We choose $f_{1}=\Lambda_{f g}, f_{2}=\left(\mu_{f} \cdot \eta\right) \star f, N_{1}=U_{0}$ e $M_{1}=U_{1}$. From hypothesis (H4) we have $\left(\mu_{f} \cdot \eta\right) \star f \in \mathscr{D}$ with $\alpha_{\left(\mu_{f} \cdot \eta\right) \star f}=0$. Moreover we have stronger bounds than for other functions in \mathscr{D}, indeed we can include the denominator $1 / \log \left(V_{2} / V_{1}\right)$ in (3.2) since this does not depend on the upper limit of each partial sums. Finally we obtain

$$
S_{2}^{\prime \prime}(x, Q) \ll\left(\left(x^{\frac{1}{2}} Q^{2}+x\right) \log U_{1}+x^{\frac{1}{2}} Q\left(U_{1}^{\frac{1}{2}}+\frac{x^{\frac{1}{2}}}{U_{0}^{\frac{1}{2}}}\right)\right) \frac{\log ^{\frac{\alpha_{\Lambda_{f g}}}{2}+1+\epsilon} x}{\log ^{\frac{1}{2}}\left(\frac{V_{2}}{V_{1}}\right)}
$$

4.4 The estimate for $\mathbf{S}_{\mathbf{3}}(\mathrm{x}, \mathbf{Q})$. We recall the definition

$$
S_{3}(x, Q)=\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y}\left(\left(\mu_{f} \cdot \eta\right) \star g\right)(n) \chi(n)\right|
$$

We define a step function $\mathscr{G}: \mathbb{R} \rightarrow \mathbb{R}$ by $\mathscr{G}(t)=g(1)$ if $t \leq 1$ and $\mathscr{G}(t)=g(n)-$ $g(n-1)$ if $n-1<t \leq n$ for $n \geq 2$. Then we observe that $g(n)=\int_{0}^{n} \mathscr{G}(t) d t$ and that \mathscr{G} is positive, since the function g is positive and increasing from (H1). We
write, by partial summation,

$$
\begin{aligned}
\left|S_{3}(y, \chi)\right| & =\left|\sum_{a b \leq y} \sum_{f} \mu_{f}(a) \eta(a) g(b) \chi(a b)\right| \\
& =\left|\sum_{a \leq V_{2}} \mu_{f}(a) \eta(a) \chi(a) \sum_{b \leq \frac{y}{a}} \chi(b) \int_{0}^{b} \mathscr{G}(t) d t\right| \\
& =\left|\sum_{a \leq V_{2}} \mu_{f}(a) \eta(a) \chi(a) \int_{0}^{\frac{y}{b}} \sum_{t<b \leq \frac{y}{a}} \chi(b) \mathscr{G}(t) d t\right| \\
& \leq \int_{0}^{y} \mathscr{G}(t) \sum_{a \leq V_{2}}\left|\mu_{f}(a) \eta(a)\right|\left|\sum_{t<b \leq \frac{y}{a}} \chi(b)\right| d t .
\end{aligned}
$$

We can use the Pólya-Vinogradov inequality to estimate the inner sum for nonprincipal characters

$$
\left|S_{3}(y, \chi)\right| \ll g(y) q^{\frac{1}{2}} \log q \sum_{a \leq V_{2}}\left|\mu_{f}(a) \eta(a)\right| .
$$

Moreover, using hypotheses (H2) and (H4) according with definition (2.3), we can write

$$
\left|S_{3}(y, \chi)\right| \ll g(y) V_{2} q^{\frac{1}{2}} \log ^{\beta_{\mu_{f}}(0)+1+\epsilon}\left(V_{2} q\right) .
$$

For $\chi=\chi_{0}$, again using hypotheses (H2) and (H4) according with definition (2.3) we can write

$$
\left|S_{3}\left(y, \chi_{0}\right)\right| \ll g(y) y \sum_{a \leq V_{2}} \frac{\left|\mu_{f}(a)\right|}{a} \ll g(y) y \log ^{\beta_{\mu_{f}}(1)+\epsilon} V_{2} .
$$

We further obtain

$$
\begin{aligned}
S_{3}(x, Q)=\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|S_{3}(y, \chi)\right| & \ll g(x) V_{2} Q^{\frac{5}{2}} \log ^{\beta_{\mu_{f}}(0)+1+\epsilon}\left(V_{2} Q\right) \\
& +g(x) x \log ^{\beta_{\mu_{f}}(1)+\epsilon} V_{2}
\end{aligned}
$$

4.5 The estimate for $\mathrm{S}_{\mathbf{4}}(\mathrm{x}, \mathrm{Q})$. We recall the definition

$$
S_{4}(x, Q)=\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y}\left(\Lambda_{f g>U_{1}} \star\left(\mu_{f} \cdot(1-\eta)\right) \star f\right)(n) \chi(n)\right|
$$

We notice that $(1-\eta)=(1-\eta)_{>V_{1}}$ from (H4) and clearly

$$
\Lambda_{f g>U_{1}} \star\left(\left(\mu_{f} \cdot(1-\eta)\right)_{>V_{1}} \star f\right)=\Lambda_{f g_{>U_{1}}} \star\left(\left(\mu_{f} \cdot(1-\eta)\right) \star f\right)_{>V_{1}}
$$

Moreover from (2.4) we have that

$$
\left(\left(\mu_{f} \cdot(1-\eta)\right) \star f\right)_{>V_{1}}=\left(\mathbb{1}-\left(\mu_{f} \cdot \eta\right) \star f\right)_{>V_{1}}=-\left(\left(\mu_{f} \cdot \eta\right) \star f\right)_{>V_{1}} .
$$

So we now can use Remark 3.4 with $f_{1}=\Lambda_{f g}, f_{2}=-\left(\mu_{f} \cdot \eta\right) \star f, N_{1}=U_{1}, N_{2}=V_{1}$. In a similar way as we did for $S_{2}^{\prime \prime}(x, Q)$, we obtain

$$
S_{4}(x, Q) \ll\left(\left(x^{\frac{1}{2}} Q^{2}+x\right) \log x+x Q\left(\frac{1}{V_{1}^{\frac{1}{2}}}+\frac{1}{U_{1}^{\frac{1}{2}}}\right)\right) \frac{\log \frac{\alpha_{\Lambda_{f g}}^{2}}{2}+1+\epsilon}{} \frac{\log ^{\frac{1}{2}}\left(\frac{V_{2}}{V_{1}}\right)}{.}
$$

4.6 Completion of the proof. Putting these estimates together it holds that

$$
\begin{aligned}
S_{1}(x, Q) & \ll U_{1} Q^{2} \log ^{\beta_{\Lambda_{f g}}(0)+\epsilon} U_{1}, \\
S_{2}^{\prime}(x, Q) & \ll x^{\theta_{f}}\left(U_{0} V_{2}\right)^{1-\theta_{f}} Q^{\frac{5}{2}} \log ^{\beta_{\mu_{f}}\left(\theta_{f}\right)+\beta_{\Lambda_{f g}}\left(\theta_{f}\right)+1+\epsilon}\left(U_{0} V_{2} Q\right) \\
& +x^{\gamma_{f}}\left(U_{0} V_{2}\right)^{1-\gamma_{f}} Q^{2} \log ^{\beta_{\mu_{f}}\left(\gamma_{f}\right)+\beta_{\Lambda_{f g}}\left(\gamma_{f}\right)+\epsilon}\left(U_{0} V_{2}\right) \\
& +x \log ^{\beta_{f}(0)+\beta_{\mu_{f}}(1)+\beta_{\Lambda_{f g}}(1)+\epsilon}\left(x U_{0} V_{2}\right), \\
S_{2}^{\prime \prime}(x, Q) & \ll\left(\left(x^{\frac{1}{2}} Q^{2}+x\right) \log U_{1}+x^{\frac{1}{2}} Q\left(U_{1}^{\frac{1}{2}}+\frac{x^{\frac{1}{2}}}{U_{0}^{\frac{1}{2}}}\right)\right) \frac{\log ^{\frac{\alpha_{\Lambda_{f g}}}{2}+1+\epsilon} x}{\log ^{\frac{1}{2}}\left(\frac{V_{2}}{V_{1}}\right)}, \\
S_{3}(x, Q) & \ll g(x) V_{2} Q^{\frac{5}{2}} \log ^{\beta_{\mu_{f}}(0)+1+\epsilon}\left(V_{2} Q\right)+g(x) x \log ^{\beta_{\mu_{f}}(1)+\epsilon} V_{2}, \\
S_{4}(x, Q) & \ll\left(\left(x^{\frac{1}{2}} Q^{2}+x\right) \log x+x Q\left(\frac{1}{V_{1}^{\frac{1}{2}}}+\frac{1}{U_{1}^{\frac{1}{2}}}\right)\right) \frac{\log ^{\frac{\alpha_{\Lambda_{f g}}^{2}}{2}+1+\epsilon} x}{\log ^{\frac{1}{2}}\left(\frac{V_{2}}{V_{1}}\right)} .
\end{aligned}
$$

This gives the claim. We must be careful with $g(x)$: in Corollary 2.2 we have chosen to incorporate it in L since in the benchmark case we have $g(x)=\log x$ but in general we have to know its growth and understand if it is better to integrate it in L or in M.

5. The choice of $U_{0}, U_{1}, V_{1}, V_{2}$

Since we have the trivial bounds (2.6) and (2.7) we would like to find four parameters such that $M=o\left(x Q^{2}\right)$. We also note that there is symmetry in M with U_{1} and V_{1}, so we can always assume $U_{1}=V_{1}$ and so the scale is $U_{0} \leq U_{1}=V_{1}<V_{2}$. Assuming that we can choose $U_{0} \leq U_{1}=V_{1}<V_{2} \ll x$, with $V_{2} / U_{1} \gg x^{c}$ for some $c>0$ then $L \ll \log ^{l+\epsilon} x$, where

$$
\begin{aligned}
l=\max \{ & \beta_{\Lambda_{f g}}(0), \beta_{\mu_{f}}\left(\theta_{f}\right)+\beta_{\Lambda_{f g}}\left(\theta_{f}\right)+1, \beta_{\mu_{f}}\left(\gamma_{f}\right)+\beta_{\Lambda_{f g}}\left(\gamma_{f}\right) \\
& \left.\beta_{f}(0)+\beta_{\mu_{f}}(1)+\beta_{\Lambda_{f g}}(1), \frac{\alpha_{\Lambda_{f g}}+3}{2}, \beta_{\mu_{f}}(0)+1, \beta_{\mu_{f}}(1)\right\} .
\end{aligned}
$$

In view of Lemma 3.1 we have the rough bound for l

$$
\begin{aligned}
& l \leq \max \left\{\frac{\alpha_{\Lambda_{f g}}}{2}, \frac{\alpha_{\mu_{f}}+\alpha_{\Lambda_{f g}}}{2}+2 \cdot \mathbb{1}\left(\theta_{f}\right)+1, \frac{\alpha_{\mu_{f}}+\alpha_{\Lambda_{f g}}}{2}+2 \cdot \mathbb{1}\left(\gamma_{f}\right)\right. \\
&\left.\frac{\alpha_{f}+\alpha_{\mu_{f}}+\alpha_{\Lambda_{f g}}}{2}+2, \frac{\alpha_{\Lambda_{f g}}+3}{2}, \frac{\alpha_{\mu_{f}}}{2}+1\right\} \\
& \leq \max \left\{\frac{\alpha_{f}+\alpha_{\mu_{f}}+\alpha_{\Lambda_{f g}}}{2}+2, \frac{\alpha_{\mu_{f}}+\alpha_{\Lambda_{f g}}}{2}+2 \cdot \mathbb{1}\left(\theta_{f}\right)+1\right\}
\end{aligned}
$$

6. The classic case

In R. C. Vaughan's basic mean value Theorem we treat

$$
f=1, \quad g=\log , \quad \mu_{f}=\mu, \quad \Lambda_{f g}=\Lambda
$$

We have

$$
\begin{array}{ll}
\sum_{n \leq x} 1=x+O(1), & \sum_{n \leq x}|\Lambda(n)|^{2}=x \log x+O(x), \\
\sum_{n \leq x} \Lambda(n)=x+O\left(\frac{x}{\log x}\right), & \sum_{n \leq x} \frac{1}{n}=\log x+O(1) \\
\sum_{n \leq x} \frac{\Lambda(n)}{n}=\log x+O(1)
\end{array}
$$

In our notation we obtain

$$
\begin{array}{lr}
\beta_{\mu}(0)=\beta_{1}(0)=0, & \alpha_{\Lambda}=1, \\
\beta_{\Lambda}(0)=0, & \beta_{\mu}(1)=1, \\
\beta_{\Lambda}(1)=1 ; &
\end{array}
$$

all these values clearly are minima. From Pólya-Vinogradov inequality we have

$$
\theta_{1}=\gamma_{1}=0
$$

To satisfy (H4) we recall an estimate due to M. B. Barban and P. P. Vehov [1] related to Selberg's sieve (see S. Graham for a stronger result [3]). For each $1 \leq$ $V_{1}<V_{2}$ it holds

$$
\begin{equation*}
\left.\sum_{n=1}^{V} \mid(\mu \cdot \eta) \star 1\right)\left.(n)\right|^{2} \ll \frac{V}{\log \left(\frac{V_{2}}{V_{1}}\right)}, \tag{6.1}
\end{equation*}
$$

where

$$
\eta(b)= \begin{cases}1 & b \leq V_{1} \tag{6.2}\\ \frac{\log \left(\frac{V_{2}}{b}\right)}{\log \left(\frac{V_{2}}{V_{1}}\right)} & V_{1}<b \leq V_{2} \\ 0 & b>V_{2}\end{cases}
$$

As a Corollary of Theorem 2.1] we have the main result of [5].
Corollary 6.1. For each $U_{0}=U_{0}(x, Q) \leq U_{1}=U_{1}(x, Q), V_{1}=V_{1}(x, Q)<V_{2}=$ $V_{2}(x, Q)$ it holds

$$
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y} \Lambda(n) \chi(n)\right| \ll M L
$$

where M and L are

$$
M=\max \left\{U_{1} Q^{2},\left(U_{0} V_{2}\right) Q^{\frac{5}{2}}, x, x^{\frac{1}{2}} Q^{2}, \frac{x Q}{U_{0}^{\frac{1}{2}}}, x^{\frac{1}{2}} U_{1}^{\frac{1}{2}} Q, \frac{x Q}{V_{1}^{\frac{1}{2}}}\right\}
$$

and

$$
L=\max \left\{\log \left(U_{0} V_{2} Q\right), \log ^{2}\left(x U_{0} V_{2}\right), \frac{\log ^{\frac{5}{2}}\left(x U_{1}\right)}{\log ^{\frac{1}{2}}\left(\frac{V_{2}}{V_{1}}\right)}, \log ^{2}\left(x V_{2} Q\right), \frac{\log ^{\frac{5}{2}} x}{\log ^{\frac{1}{2}}\left(\frac{V_{2}}{V_{1}}\right)}\right\}
$$

With this result A. Sedunova, in [5], obtained
Theorem 6.2. For each $\epsilon>0$,

$$
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y} \Lambda(n) \chi(n)\right| \ll\left(x+x^{\frac{13}{14}+\epsilon} Q+x^{\frac{1}{2}} Q^{2}\right) \log ^{2} x
$$

This follows taking for $Q \in\left[x^{3 / 7+\epsilon}, x^{1 / 2}\right]$

$$
U_{0}=x^{\frac{4}{7}-\epsilon} Q^{-1}, \quad U_{1}=V_{1}=x^{\frac{4}{7}} Q^{-1}, \quad V_{2}=x^{\frac{4}{7}+\frac{5 \epsilon}{2}} Q^{-1}
$$

while for $Q \in\left[1, x^{3 / 7+\epsilon}\right]$

$$
U_{0}=x^{\frac{1}{7}-\epsilon}, \quad U_{1}=V_{1}=x^{\frac{1}{7}}, \quad V_{2}=x^{\frac{1}{7}+\frac{\epsilon}{2}} .
$$

We remark that the exponent $13 / 14$ is optimal here, i.e. searching for the minimal $A>0$ such that for each $\epsilon>0$ it holds

$$
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y} \Lambda(n) \chi(n)\right| \ll\left(x+x^{A+\epsilon} Q+x^{\frac{1}{2}} Q^{2}\right) \log ^{2} x
$$

then one can show that only using Corollary 6.1 it cannot be taken $A<13 / 14$.

7. Application to the generalized von Mangoldt function

The generalized von Mangoldt function is defined as

$$
\Lambda_{k}=\mu \star \log ^{k}
$$

for $k \in \mathbb{N}$. One can show the recursive relation

$$
\Lambda_{k+1}=\Lambda_{k} \cdot \log +\Lambda \star \Lambda_{k}
$$

and so, in particular, $\Lambda_{k}(n) \geq 0$. In [4] it is shown that

$$
\begin{equation*}
\sum_{n \leq x} \Lambda_{k}(n) \sim k x \log ^{k-1} x \tag{7.1}
\end{equation*}
$$

From the Möbius inversion formula it holds

$$
\log ^{k}=\Lambda_{k} \star 1
$$

and so $\Lambda_{k}(n) \leq(\log n)^{k}$. We can easily derive from this and (7.1) that

$$
\sum_{n \leq x}\left|\Lambda_{k}(n)\right|^{2} \ll k x \log ^{2 k-1} x
$$

moreover, by partial summation and (7.1) we have

$$
\sum_{n \leq x} \frac{\Lambda_{k}(n)}{n}=k \log ^{k-1} x+o\left(\log ^{k-1} x\right)+\int_{1}^{x} \frac{k \log ^{k-1} t}{t} d t \sim \log ^{k} x
$$

Finally, $\Lambda_{k} \in \mathscr{D}$ with $\beta_{\Lambda_{k}}(1)=k, \beta_{\Lambda_{k}}(0)=k-1$ and $\alpha_{\Lambda_{k}} \leq 2 k-1$. We can use the main Theorem 2.1 with $f=1, g=\log ^{k}$ and then proceeding with the same choice of U and V as in [5] to obtain

Theorem 7.1. For each $k \in \mathbb{N}, \epsilon>0$ it holds

$$
\sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\chi \bmod q}^{*} \max _{y \leq x}\left|\sum_{n \leq y} \Lambda_{k}(n) \chi(n)\right|<_{k}\left(x+x^{\frac{13}{14}+\epsilon} Q+x^{\frac{1}{2}} Q^{2}\right) \log ^{k+1} x
$$

This is clearly a generalization of Theorem 6.2.

8. Remark on hypothesis (H4)

We remark that in the classic case it holds something stronger than (6.1) as S . Graham has shown in [3]. We too can assume a stronger hypothesis than (H4) (H4') For each $1 \leq V_{1}<V_{2}$ it holds

$$
\sum_{n=1}^{V}\left(\Gamma_{1} \star f\right)(n)\left(\Gamma_{2} \star f\right)(n)=V \log V_{1}+O(V)
$$

where

$$
\Gamma_{i}(b)= \begin{cases}\mu_{f}(b) \log \left(\frac{V_{i}}{b}\right) & b \leq V_{i} \\ 0 & b>V_{i}\end{cases}
$$

This implies (H4) Indeed we consider the same η as in (6.2), and observe that $\eta \cdot \mu_{f}=\left(\Gamma_{2}-\Gamma_{1}\right) / \log \left(V_{2} / V_{1}\right)$, so we can write

$$
\begin{aligned}
\log ^{2}\left(\frac{V_{2}}{V_{1}}\right) \sum_{n=1}^{V}\left|\left(\left(\mu_{f} \cdot \eta\right) \star f\right)(n)\right|^{2} & =\sum_{n=1}^{V}\left(\Gamma_{1} \star f\right)^{2}(n)+\sum_{n=1}^{V}\left(\Gamma_{2} \star f\right)^{2}(n) \\
& -2 \sum_{n=1}^{V}\left(\Gamma_{1} \star f\right)(n)\left(\Gamma_{2} \star f\right)(n)
\end{aligned}
$$

Now we apply three times (H4') to obtain

$$
\log ^{2}\left(\frac{V_{2}}{V_{1}}\right) \sum_{n=1}^{V}\left|\left(\left(\mu_{f} \cdot \eta\right) \star f\right)(n)\right|^{2}=V \log V_{1}+V \log V_{2}-2 V \log V_{1}+O(V)
$$

and so (H4).
Acknowledgements The author is grateful to his supervisor Alessandro Zaccagnini for his help and his revision.

References

[1] M. B. Barban and P. P. Vehov. An extremal problem. Trudy Moskov. Mat. Obšč., 18:83-90, 1968.
[2] Alina Carmen Cojocaru and M. Ram Murty. An introduction to sieve methods and their applications, volume 66 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2006.
[3] S. Graham. An asymptotic estimate related to Selberg's sieve. J. Number Theory, 10(1):83-94, 1978.
[4] N. Levinson. A variant of the Selberg inequality. Proc. London Math. Soc. (3), 14a:191-198, 1965.
[5] A. Sedunova. A logarithmic improvement in the Bombieri-Vinogradov theorem. submitted. https://arxiv.org/pdf/1705.06660.pdf
[6] R. C. Vaughan. An elementary method in prime number theory. Acta Arith., 37:111-115, 1980.
Dipartimento di Scienze, Matematiche, Fisiche e Informatiche
Università di Parma
Parco Area delle Scienze 53/a
43124 Parma, Italia
email (MF): matteo.ferrari14@studenti.unipr.it

