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Abstract— Recently, deep neural networks (DNNs) for 

beamforming and segmenting plane-wave ultrasound images have 

been proposed. The promising results obtained so far focus on 

segmenting anechoic, almost circular structures using one 

architecture trained on a large dataset. We present a study of 

DNNs generalizability for beamforming and segmenting 

structures of various shapes and echogenicity. Three different 

encoder architectures (i.e. VGG13/16/19) and target images with 

standard dynamic range (dR = 60 dB, E60) or an automatically 

determined dR (Eauto) were compared. Field II was used to 

simulate 6560 images (with hyperechoic, hypoechoic, anechoic and 

mixed targets) using random bunches of ellipses to generate 

different shapes for DNN training. The test set included 816 

simulated images, 21 images of a phantom (CIRS040GSE) and 24 

images of the carotid artery. The DNN architecture has 1 encoder 

and 2 decoders, for segmentation and beamforming, based on the 

UNet. Using the VGG19 trained with Eauto images, a considerable 

improvement was achieved when compared to other architectures, 

especially when performing tests on experimental data. Overall, 

the promising results obtained encourage us to further investigate 

the use of DNNs for beamforming and segmentation, with the aim 

to improve the performance and generalize their use for specific 

ultrasound imaging applications. 

Keywords—Deep learning, Beamforming, Segmentation, 

Dynamic range, Deep neural networks 

I. INTRODUCTION  

Ultrasound images are widely used to support diagnosis in 
the clinical field. Deep learning approaches have skyrocketed 
over the last years and have been applied to various ultrasound 
tasks, such as classification, segmentation and image quality 
assessment [1]. Recently, deep neural networks (DNNs) have 
also been proposed for beamforming [2],[3],[4],[5],[6] and 

segmentation of plane-wave ultrasound images [3]. Indeed, 
starting from the raw data, it is possible to obtain information 
and directly generate the ultrasound image and a segmentation 
map [3]. Another innovation is the introduction of the generative 
adversarial network (GAN) model into the field of ultrasound 
image reconstruction, as an alternative beamforming method 
[7], [8]. Recent promising results by Nair et al. [3] segment 
anechoic, almost circular structures, without training the 
network to consider structures with different shapes or 
echogenicity. Furthermore, the network was often trained using 
a very large dataset, which involves a high computational cost 
and time. Given the different shapes and echogenicity of 
anatomical structures, the generalization of DNNs for 
simultaneous beamforming and segmentation is necessary to 
optimize their application. Moreover, different beamforming 
methods may alter the dynamic range (dR) of B-mode images. 
Our previous study [9] proposed an innovative method to 
estimate an automatic dR based on the image histogram.  

We present here a study of DNNs’ generalizability for 
beamforming and segmenting structures of various shapes and 
echogenicity. We compare the performances using 3 different 
encoder architectures and a standard dR (60 dB) or an 
automatically-determined dR for the target images. The 
following sections are organized as follows. Section II describes 
the network architecture, the dataset, and the training modality. 
Section III reports the results obtained on our dataset. Section 
IV includes a discussion about the results and future works.  

II. MATERIALS AND METHODS 

We aim to produce a DNN beamformed image and a 
segmentation mask prediction, starting from raw data (phase and 
quadrature IQ data).  



A. Ultrasound images dataset 

The dataset was composed of simulated and experimental 
plane-wave ultrasound images. A total of 8192 simulated 
images (6560 in the training set, 816 in the validation set and 
816 in the test set) were generated using Field II and Matlab 
2019b software. The simulation generated the IQ data, the RF 
data, the beamformed image (using the Delay and Sum (DAS) 
method), the segmentation map and the enhanced image (the 
combination of the B-mode image and segmentation mask). The 
images could contain individual or double random bunches of 
ellipses. The radius, the axial and lateral position of the 
simulated cysts were changed to increase the data variability. 
The radius varied randomly in the range of 2-10 mm. These 
cysts were contained within a cuboidal phantom volume located 
between an axial depth of 10 mm and 50 mm, with a lateral 
width of 32 mm, and an elevational thickness of 1 mm. To have 
fully developed speckle, 10000 scatterers were contained in the 
simulated phantom. All images were simulated with an 
attenuation coefficient of 1.5 dB/(cm MHz). The simulated 
transducer had 128 elements working at 5 MHz. The structures 
were simulated by varying the echogenicity of the inclusions 
(i.e., hyperechoic, hypoechoic, anechoic, and mixed targets).  

The experimental ultrasound images included 24 phantom 
images (model 040GSE, CIRS Inc, USA) and 21 in vivo carotid 
images, acquired on two healthy volunteers. A Verasonics 
Vantage 128 system (with a L11-5v linear array) was used for 
experimental plane-wave acquisitions. The phantom contains 
hyperechoic, hypoechoic and anechoic targets, that are placed at 
a depth between 5 and 60 mm.  Examples of the simulated and 
experimental test set images are displayed in Fig. 1.  

The standard 60 dB value was used as a dynamic range for 

all images. Furthermore, an automatic dynamic range was also 

computed [9] for all images. Indeed, the different target 

positions and echogenicity may alter the image dynamic range 

and further processing. Thus, to avoid this problem, we used the 

automatic dR, which may vary between the images, to obtain 

visually similar results.  

B. Deep learning network architecture and training 

The DNN architecture proposed in [3] is based on the UNet 
[10] for biomedical image segmentation, which consists of a 
contraction path and two expansive paths: one for the DNN 
image and the other for the segmentation map. We tested three 
different encoders, i.e. the VGG13, VGG16 and VGG19 
architectures, which differ in the number of weight layers (13, 
16 and 19 respectively) [11]. The DNNs were trained for 50 
epochs, with a learning rate of 5*10-5 and using Adam optimizer. 
The minibatch size was set to 8. An early-stopping criterion was 
set, to stop the training if the validation loss did not change for 
6 consecutive epochs. For data augmentation, each plane-wave 
acquisition was flipped from left to right. The input data were 
rescaled to ensure that the values lie in a range of 0-1.  

The networks were trained using four different targets: the 
enhanced beamformed image with a dynamic range of 60 dB 
(E60), the enhanced image with an automatically determined dR 
(Eauto), the original beamformed image with a dynamic range of 
60 dB (B-mode60) or again with the automatically determined 
dR (B-modeauto). For the enhanced images, we considered the 
enhancement of the original image with a segmentation mask 
only for the anechoic cyst cases. Instead, when considering 
hyperechoic or hypoechoic cysts, we did not enhance the target 
image and used the original beamformed one. 

The networks were trained to learn the reference,  that is 
composed of the combination of the segmentation map and the 
beamformed image (i.e., E60/Eauto/B-mode60/B-modeauto) 
obtained from the input signals; it then generates the DNN 
image and DNN segmentation mask predictions. The loss 
function was defined as the sum of the following two losses: the 
mean absolute error and the Dice similarity coefficient (DSC) 
[3]. The first loss was computed as the mean absolute error 
between the predicted DNN image D and the reference 
beamformed image. As mentioned before, the latter could be 
either the enhanced beamformed image E60/Eauto (in the case of 
anechoic targets) or the original beamformed image B-
mode60/B-modeauto (for the hypo/hyperechoic targets). The 
second loss was the Dice Similarity coefficient between the 
predicted DNN segmentation and the true segmentation. 

 For testing the DNNs, 816 simulated images, 24 images of 
the phantom, and 21 images of the carotid artery were used. 
Segmentation performance was analysed using the DSC, while 
the DNN beamformed image was evaluated using contrast 
(Con), signal to noise ratio (SNR), generalized contrast to noise 
ratio (gCNR) and peak SNR (PSNR) [3]. The DSC [12] 
quantifies the overlap between the predicted and real 
segmentation mask. To compute the contrast, two ROIs (circles 
with radius of 2 mm) were placed on the image as follows: a first 
ROI was placed inside the cyst and the second outside, at the 
same depth of the cyst center. The signal-to-noise ratio (SNR)  
[13] quantifies the smoothness of the background region near 
the cyst. The generalized contrast to noise ratio (gCNR) [14] is 
an accurate index of lesion detectability. Furthermore, the peak 
SNR (PNSR) [13], [15] was computed to quantify the similarity 
between the DNN image and the beamformed image. The 
validation metrics were estimated for each network (VGG13,  

 

Fig. 1. Top row: examples of the training set images with hyperechoic (A) 

hypoechoic (B) and mixed echogenicity cysts (C). Bottom row: examples of 
the test set, including simulated images (D), phantom images (E) and in vivo 

carotid images (F). 



TABLE I.   VALIDATION METRICS IN THE SIMULATED CYST IMAGES 

(VGG19 TRAINED WITH EAUTO)  

Metrics 
Simulated hypo/anechoic  Simulated hyperechoic 

DAS DNN DAS DNN 

DSC / 0.96±0.09 / 0.97±0.02 

Con (dB) -12.67±9.08 -54.64±40.6 6.05±2.59 6.00±2.96 

SNR 4.24±1.67 5.48±1.67 3.79±1.70 7.32±3.13 

gCNR 0.58±0.20 0.63±0.23 0.37±0.10 0.39±0.10 

PSNR 

(dB) 
/ 24.33±0.94 / 23.78±1.21 

 

VGG16 and VGG19), using the four different 
targets(E60/Eauto/B-mode60/B-modeauto). 

III. RESULTS 

The validation metrics are listed in Table I for the simulated 
images and in Tables II and III for experimental datasets. For the 
simulated and phantom images, the metrics were reported for the 
hypo/anechoic cyst and the hyperechoic cyst separately. Fig. 2 
shows an example of DAS and DNN images and the two 
segmentation masks for two different simulated images, one 
phantom image, and a carotid image. 

With the simulated image test set, the validation parameters 
were comparable between the three architectures. In these 
images with hypo/anechoic cysts, the test set produced mean ± 
standard deviation DSC of 0.96±0.09, contrast of -54.64±2.96  

TABLE II.  VALIDATION METRICS IN THE PHANTOM IMAGES  

 Metrics 
VGG13 VGG16 VGG19 

DAS DNN DAS DNN DAS DNN 

H
y

p
o
/a

n
e
c
h

o
ic

 c
y

st
s DSC / 

0.11 ± 

0.07 
/ 

0.10± 

0.15 
/ 

0.54 ± 

0.18 

Con 

(dB) 

-5.42± 

3.87 

-2.50± 

1.90 

-5.42± 

3.87 

-8.13± 

8.53 

-5.43± 

3.87 
-31.7± 

33.03 

SNR 
5.07± 
0.54 

7.86± 
0.87 

5.07± 
0.54 

9.68± 

1.96 

5.07± 
0.54 

9.40± 
0.79 

gCNR 
0.38± 

0.09 

0.33± 

0.03 

0.38± 

0.09 

0.42± 

0.14 

0.38± 

0.09 
0.57± 

0.26 

PSNR 
(dB) 

/ 
16.97± 

0.33 
/ 

16.83± 
0.48 

/ 
17.17± 

0.80 

H
y

p
er

e
c
h

o
ic

 c
y

st
s 

DSC / 
0.25 ± 

0.02 
/ 

0.29± 

0.26 
/ 

0.76± 

0.14 

Con 

(dB) 

2.22± 

0.49 

1.36± 

0.30 

2.22± 

0.49 
1.64± 

0.12 

2.22± 

0.49 

1.55± 

0.24 

SNR 
5.65± 
0.47 

9.54± 
0.94 

5.65± 
0.47 

11.49± 

1.27 

5.65± 
0.47 

10.74± 
1.88 

gCNR 
0.34± 

0.06 

0.29± 

0.03 

0.34± 

0.06 

0.28± 

0.04 

0.34± 

0.06 
0.37± 

0.07 

PSNR 
(dB) 

/ 
17.91± 

0.23 
/ 

17.84± 
0.24 

/ 
18.16± 

0.43 

 

dB, SNR of 5.48±1.67, and PSNR of 24.33±0.94 dB using the 
VGG19 trained with Eauto. For the hyperechoic cyst, we obtained 
DSC=0.97±0.02, Con=6.00±2.96 dB, SNR=7.32±3.13, 
gCNR=0.39±0.10, PSNR 23.79±1.21 dB for the hyperechoic 
cyst (again using VGG19 with Eauto). The results obtained using 
the other two encoders (i.e., VGG13 and VGG16) were similar 
when considering the simulated dataset. Hence, Table I reports 
only the metrics obtained with the network VGG19 trained with 
Eauto target images.  

For the experimental phantom case, the VGG19 trained with 
Eauto images showed the best results. Tables II shows the 
validation metrics of the VGG13, VGG16 and VGG19 trained 
with Eauto, for the hypo/anechoic cysts and hyperechoic cysts, 
respectively. A considerable improvement with the VGG19 
encoder can be observed, especially for the DSC value. Indeed, 
the segmentation considerably improved both for the 
hypoechoic (DSC=0.54±0.18 vs 0.10±0.15 and 0.11±0.07 with 
VGG19, VGG16 and VGG13, respectively) and hyperechoic 
cysts (DSC=0.76±0.18 vs 0.29±0.14 and 0.25±0.02 with 
VGG19, VGG16 and VGG13, respectively).  

For the in vivo carotid images, the VGG19 architecture 
trained with automatic-dR images provided a performance 
increase for the DSC, contrast and PSNR parameters, when 
compared to VGG13 (i.e., DSC=0.72±0.22 vs 0.01±0.01, Con=-
5.47±2.84 dB vs -3.68±9.00 dB, SNR=6.29±1.12 vs 8.28±1.08, 
gCNR=0.34±0.10 vs 0.41±0.13, PSNR=19.01±0.67 dB vs 
15.40±0.77 dB). Due to the variability in echogenicity in the 
carotid images, the DNN often segmented other areas of interest. 
To mitigate this, post-processing was done on the segmentation 
mask, based on determining the most hypoechoic areas on the 
DNN images within the obtained segmentation mask and then 
performing region growing. This allowed a segmentation 
performance (DSC) increase from 0.08±0.09 to 0.72±0.22 (with 
VGG19). 

In general, the performance of the DNNs trained with 
different targets did not show significant differences. Indeed, the  

 

Fig. 2. Comparison between the DAS and DNN images: simulated images 

(first and second row), real phantom images (third row) and carotid images 

(last row). The area segmented both manually and by DNN is represented in 
green; the undersegmented and oversegmented areas by the DNN as 

compared to the manual mask are in red and yellow, respectively.  



TABLE III.  VALIDATION METRICS IN THE CAROTID IMAGES (VGG19 

TRAINED WITH EAUTO) 

C
a

ro
ti

d
 i

m
a

g
e
s 

Metrics DAS DNN 

DSC / 0.72±0.22 

Con (dB) -4.43±1.65 -5.47±2.84 

SNR 4.18±0.55 6.29±1.12 

gCNR 0.32±0.06 0.34±0.10 

PSNR (dB) / 19.01±0.67 

 

training using E only resulted in an improvement of the contrast 
in the experimental phantom images with hypo/anechoic cysts 
(Con=-14.66±15.78 dB, -31.82±33.03 dB, -3.96±2.35 dB and -
3.49±2.25 dB with E60, Eauto, B-mode60 and B-modeauto, 
respectively) and in the simulated images with hypo/anechoic 
cysts (Con=-55.17±40.44 dB, -54.64±40.64 dB, -12.77±9.85 dB 
and -14.31±10.88 dB with E60, Eauto, B-mode60 and B-modeauto, 
respectively), using VGG19. 

IV. DISCUSSION 

The results presented in this study show the feasibility of 

training DNNs for the beamforming and segmentation of 

ultrasound images that contain structures with different 

echogenicity and shapes. In addition to demonstrating the 

ability of DNNs to distinguish the background from cysts, we 

also demonstrated their ability to distinguish cysts with 

different echogenicity present in the same image. Testing 

different encoders, we were able to improve the results obtained 

with VGG13 by using the VGG19 architecture, especially in 

the case of in vivo carotid images. For simulations, the DNN 

with VGG19 trained with Eauto images obtained similar 

performances as when using the VGG13 and VGG16 encoders. 

However, the major improvement using the VGG19 was for the 

experimental images acquired on a phantom and on healthy 

volunteers. Indeed, the network manages to generate better 

segmentation maps and beamformed images with higher 

contrast and SNR. Furthermore, the novel use of the automatic 

dR [9] for the target images used in the training phase shows a 

small improvement of the performance, especially for the 

contrast and DSC in the phantom images with hypo/anechoic 

cysts. Another key observation should be made for the 

dimension of the training set. Indeed, the results were obtained 

using a much smaller training set compared to [3] (6560 here 

vs. 22230), which reduces the computational time and cost. 

Given the encouraging results obtained, future work could 

investigate the use of a dataset with an even higher variability 

of structures, as well as the inclusion of experimental images in 

the training dataset. Indeed, in this work the DNNs were able to 

generate images with specific structures; the use of 

experimental images in the training set could be a key factor to 

improve performance further and to generalize the 

experimental applications of DNNs. Furthermore, considering 

the influence of the encoder architecture on the obtained results, 

future works could focus on the training of the network with 

different architectures, both for the encoder and the decoder.  

V. CONCLUSION 

This work shows that a DNN can be used both for 

beamforming and segmenting ultrasound images with 

structures having different shape and echogenicity. Using 

VGG19 as an encoder, we were also able to improve the 

performance on experimental data. Overall, promising results 

have been obtained, which encourage analyses aimed at further 

generalizing the use of DNNs for ultrasound image 

reconstruction and segmentation.  
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