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Stefano Grivet-Talocia and Luis Miguel Silveira
5 Post-processing methods for passivity
enforcement

Abstract: Many physical systems are passive (or dissipative): they are unable to gen-
erate energy on their own, but they can store energy in some form while exchanging
power with the surrounding environment. This chapter describes the most prominent
approaches for ensuring that Reduced Order Models are passive, so that their math-
ematical representation satisfies an appropriate dissipativity condition. The main fo-
cus is on Linear and Time-Invariant (LTI) systems in state-space form. Different condi-
tions for testing passivity of a given LTI model are discussed, including Linear Matrix
Inequalities (LMIs), Frequency-Domain Inequalities, and spectral conditions on asso-
ciated Hamiltonian matrices. Then we describe common approaches for perturbing
a given non-passive system to enforce its passivity. Various examples from electronic
applications are used to demonstrate both theory and algorithm performance.

Keywords: passivity, dissipativity, positive real lemma, bounded real lemma, Hamil-
tonian matrices, state-space systems, descriptor systems, eigenvalue perturbation

5.1 Introduction and motivations

Let us consider the problem of designing a complete electronic product, such as a
smartphone or a high-end computing server. The complexity of such a system is over-
whelming: a singlemicroprocessormight include several billions transistors, and this
is just one component. All components are tightly interconnected to exchange signals
and power: they interact both through electrical connections as well as (unwanted)
electromagnetic couplings, which are inevitable due to the close proximity of compo-
nents in tightly integrated systems. A proper design flow must ensure that all signals
behave as expected during real operation, which requires accounting for all interac-
tions between components and subsystems. A first-pass design can only be achieved
by extensive numerical simulation at the system level, in order to verify full compli-
ance with specifications.

All of us would agree that a direct, brute-force simulation of the complete sys-
tem is totally unrealistic. This is why common engineering practices partition a given
complex system into several simpler subsystems, which are modeled independently.
All models are then interconnected to obtain a system description that is amenable
for numerical simulation. These individual models are very often obtained through
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some Model Order Reduction scheme applied to some initial device-level characteri-
zation.

Suppose now that one of the above individual models represents some signal
or power interconnect network. Such interconnect structure is intended to feed sig-
nal and power supply to all elements of the system, in the form of electrical current
flowing through metal wires. The interconnect network is unable to generate en-
ergy on its own, but rather redistributes the energy that it receives from its input
signals to its output signals. It may store energy through electric and magnetic field
densities in the physical space surrounding the interconnect, and it may dissipate
energy as heat through metal and dielectric losses, but no more energy can be sup-
plied to the environment than the amount of energy previously stored. Such a system
is called dissipative (or passive). The concept of dissipativity naturally arises from
energy conservation principles and is therefore ubiquitous in several engineering
fields.

A (reduced order) model of the interconnect must respect such property: the sim-
ulationmodel must not be able to releasemore energy than previously stored. This re-
quirement is not just for self-consistencywith fundamental physical principles, but for
a very practical reason: a non-passive model may trigger instabilities during system-
level simulation. An example is provided in Figure 5.1, which compares the voltage
received by a state of the art (at the time of writing) smartphone through a high-speed
interconnect, computed using a passive vs. non-passive model connected to various
other system parts, including drivers and receiver circuits that send and receive the
signals. The non-passive model triggers a resonance, by injecting a continuous flow
of power that is responsible for the instability. Conversely, the passive model provides
a well-behaved bounded response.

Figure 5.1: Comparison between the responses of passive (thick line) and non-passive (thin line)
models of a high-speed smartphone interconnect link.

A fundamental result states that the interconnection of passive subsystems leads to
a passive system; see e. g. [74]. Therefore, a guarantee of passivity for all individual
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models for which this requirement is adequate1 is also a guarantee that amodel-based
system-level simulationwill run smoothly. This is a relevant problemnot only for elec-
tronic applications, but for several applied engineering fields such as, e. g.,mechanics
or fluid dynamics. Energy conservation or dissipation properties must be preserved in
the simulation models.

Figure 5.1 illustrates in a clearmanner that anymodeling procedure used for anal-
ysis of the dynamics of dissipative physical systems should ensure that the resulting
model or reduced order model is dissipative. There exist MOR algorithms that are able
to preserve dissipativity if applied to an original large-scale dissipative model. Exam-
ples are the PRIMA algorithm [63, 67] (see also [6, Chapter 4]) or the PR-TBR algo-
rithm [19, 62, 64, 65, 68] (see also [5, Chapter 2]). Unfortunately, for a variety of reasons,
possibly including efficiency considerations, such schemes are not always applicable,
and one has to resort to one of the many reduced order modeling techniques that are
not able to preserve or enforce dissipativity. Therefore, it is often necessary to perform
a-posteriori checks and possibly implement a post-processing procedure that enforces
model passivity.

In this Chapter, we review the various forms in which the passivity conditions of a
model can be stated. The particular class of systems that we focus on is defined in Sec-
tion 5.2, although generalizations are discussed in Section 5.6. Different forms of pas-
sivity conditionswill lead to corresponding different numerical schemes for their veri-
fication, discussed in Section 5.3.We thenpresent in Section 5.5 a selection ofmethods
for passivity enforcement, mainly cast as perturbation approaches that, starting from
the original non-passive model, update its coefficients in order to achieve passivity.
Model accuracy is retained by minimizing the perturbation amount in some norm, as
discussed in Section 5.4.

The style of this chapter is informal, with main results being stated with some
essential derivation, but without a formal proof. Emphasis is on the practical aspects
of the various formulations, which lead to algorithms presented in pseudocode form.
Pointers to the relevant literature are provided for additional insight.

5.2 Passivity conditions
In order to keep this chapter self-contained, our discussion is based on the special
class of Linear Time-Invariant (LTI), finite-dimensional systems in regular state-space
form

𝒮 : {
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(5.1)

1 Note that not all components are passive: for instance, signal or power sources or amplifier circuits
do not and must not be expected to behave as passive elements.
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where t denotes time, vectors u ∈ 𝒰 ⊆ ℝM and y ∈ 𝒴 ⊆ ℝM collect the system inputs
and outputs, respectively, and x ∈ 𝒳 ⊆ ℝN is the state vector, with ẋ denoting its time
derivative. TheM ×M transfer function of the system is

H(s) = C(sI − A)−1B + D, (5.2)

where s is the Laplace variable. We start by assuming the system to be asymptotically
stable, with all eigenvalues of A, i. e., the poles of H(s), having a strictly negative real
part.

The above assumptions may seem overly restrictive, but most common macro-
modeling schemes that arewidespread in electronic applications such, e. g. the Vector
Fitting algorithm [5, Chapter 8], produce reduced order models in this form. General-
izations will be discussed in Section 5.6.

5.2.1 Dissipative systems

The system 𝒮 in (5.1) is dissipative [15, 74, 88] with respect to the supply function s :
𝒰 × 𝒴 → ℝ if there exists a storage function V : 𝒳 → ℝ such that

V(x(t1)) ≤ V(x(t0)) +
t1

∫
t0

s(u(t), y(t)) dt (5.3)

for all t0 ≤ t1 and all input, state and output signals u, x, y that satisfy the state-space
equations (5.1). In the above definition, V represents the internal energy that the sys-
tem is able to store, and s is the power flow exchanged by the systemwith the environ-
ment. Thus, for a dissipative system the increase in the internal energy that the system
undergoes during any time interval (t0, t1) cannot exceed the cumulative amount of en-
ergy received from the environment, expressed as a time integral of the input power
flow. If the storage function is differentiable, the dissipation inequality (5.3) can also
be cast in the equivalent form

dV(x(t))
dt
≤ s(u(t), y(t)). (5.4)

As a typical example, one may consider an electric RLC circuit made of an arbi-
trary number of arbitrarily connected resistorsRk > 0, inductors Lk > 0 and capacitors
Ck > 0, which interacts with the environment through M ports. Each port defines an
input, e. g., the port voltage vj, with the port current ij acting as the corresponding out-
put (this representation is called admittance). For this example, the state vector com-
prises all capacitor voltages vCk and inductor currents iLk, so that the energy storage
function is defined as V := 1

2 (∑k Ckv
2
Cv +∑k Lk i

2
Lk). The electric power entering the cir-

cuit at the jth port is vjij, so that the power supply function reads s(u, y) = uTy = ∑j vjij.



5 Passivity enforcement | 143

By Tellegen’s (power conservation) theorem [4, 24], we have

s(u, y) =∑
j
vjij =∑

k
vCk iCk +∑

k
vLk iLk +∑

k
Rk i

2
Rk

=
dV
dt
+∑

k
Rk i

2
Rk ≥

dV
dt

(5.5)

wherewe used the definition of capacitor currents iCk = Ck
dvCk
dt , inductor voltages vLk =

Lk
diLk
dt , and where iRk are the resistor currents. So, we see that any RLC circuit with

positive elements is dissipative.
The system 𝒮 in (5.1) is called strictly dissipative [74, 88] with respect to the supply

function s if the stronger condition

V(x(t1)) ≤ V(x(t0)) +
t1

∫
t0

s(u(t), y(t)) dt − ε2
t1

∫
t0

‖u(t)‖2 dt (5.6)

holds for some ε > 0 instead of (5.3), which is thus satisfied with a strict inequality.
The following three subsections provide different equivalent passivity conditions

that are applicable to linear state-space systems in the form (5.1).

5.2.1.1 Linear matrix inequalities

Building on the above example, we consider for the general system (5.1) a quadratic2

storage function V(x) = 1
2x

TPx associated to a symmetric and positive definite matrix
P = PT > 0. Also, we adopt the same supply function3

s(u, y) = uTy = yTu = 1
2
(uTy + yTu). (5.7)

Imposing the dissipation inequality in differential form (5.4) leads to

d
dt
{
1
2
xTPx} = 1

2
(ẋTPx + xTPẋ) ≤ 1

2
(uTy + yTu) (5.8)

and using (5.1) to eliminate ẋ and y, we obtain the following condition:

(
x
u
)
T

(
ATP + PA PB − CT

BTP − C −D − DT)(
x
u
) ≤ 0, P = PT > 0, (5.9)

2 It is well known [89] that, if a storage function V satisfying (5.3) for system (5.1) exists, it can be
found as a positive definite quadratic form.
3 In many physical systems power is expressed as the product of relevant variables, such as voltage–
current in electrical circuits, pressure–flow in hydraulic systems, and force–velocity in mechanical
systems.
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which provides the passivity condition to the state-space system (5.1). This condition
leads to the well-known Positive Real Lemma (PRL), which is a particular case of the
Kalman–Yakubovich–Popov (KYP) lemma [51, 66, 92] (see also [2, 56, 74]), which states
that the state-space system (5.1) is passive if and only if

∃P = PT > 0 : (A
TP + PA PB − CT

BTP − C −D − DT) ≤ 0. (5.10)

This class of conditions is generally known as Linear Matrix Inequalities (LMIs) [2, 13,
14, 87]. For a strictly passive (dissipative) system (5.10) holds with a strict inequality.

5.2.1.2 Frequency-domain inequalities

An equivalent condition for passivity characterization is provided by a frequency-
domain inequality. It is well known [2, 81, 90] that the transfer function of a general
passive system must be Positive Real (PR), i. e., the following three conditions must
hold:
1. H(s)must be regular in the open right half complex planeℜ{s} > 0;
2. H(s∗) = H∗(s), where ∗ denotes the complex conjugate;
3. Ψ(s) = H(s) + HT (−s) ≥ 0 forℜ{s} > 0.

Condition 1 is directly related to the stability of H(s), which is here assumed a pri-
ori; condition 2 implies that the impulse response of the system is real-valued; con-
dition 3 completes passivity characterization through a Frequency-Domain Inequal-
ity. The connection between the PR conditions and the PRL/KYP Lemma are well-
developed and proved in [2].

Since by our assumption all the poles of H(s) are strictly stable, and since the
adopted state-space realization is real-valued, both conditions 1 and 2 are automati-
cally satisfied, whereas condition 3 can be restricted to the imaginary axis s = 𝚥ω by
the minimum principle of harmonic functions [69], showing that

Ψ(𝚥ω) = H(𝚥ω) + HH (𝚥ω) ≥ 0 ∀ω ∈ ℝ (5.11)

where H denotes Hermitian transpose and 𝚥 is the imaginary unit. Continuing on the
same RLC circuit example above, the latter condition states that the input admittance
(matrix) of the circuit block must be nonnegative (Hermitian) definite, which in the
scalar caseM = 1 reduces to the requirement that the real part of the input admittance
or impedance of any passive one-port element must be nonnegative at any frequency.
Condition (5.11) can be further conveniently rewritten as

λi ≥ 0, ∀λi ∈ λ(Ψ(𝚥ω)), ∀ω ∈ ℝ, (5.12)
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where λ(⋅) denotes the set of all eigenvalues of its matrix argument. Nonnegativity can
thus be tested for all individual frequency-dependent eigenvalue trajectories λi(𝚥ω) of
Ψ(𝚥ω), for 1 ≤ i ≤ M. Inequalities (5.11) and (5.12) are strict for ω ∈ ℝ ∪ {∞} in the case
of strictly passive systems.

5.2.1.3 Hamiltonian matrices

There is a third class of conditions that can be used to characterize a passive system,
basedon the so-calledHamiltonianmatrix associated to (5.1).We introduce thismatrix
by finding the set of spectral zeros of Ψ(s). Let us assume that Ψ(s0) v = 0 for some
vector v ̸= 0, with s0 ∈ ℂ. Using (5.2) we have

[C(s0I − A)
−1B + D + BT(−s0I − A

T)−1CT + DT]v = 0. (5.13)

Let us define

r = (s0I − A)
−1Bv → s0r = Ar + Bv,

q = (−s0I − A
T)−1CTv → s0q = −A

Tq − CTv.
(5.14)

Substituting in (5.13) and solving for v under the assumption that W0 = D + DT is
nonsingular (see Section 5.6 for a generalization) leads to

v = −W−10 (Cr + B
Tq), (5.15)

which, inserted in (5.14), again leads to

(
A − BW−10 C −BW−10 BT

CTW−10 C −AT + CTW−10 BT
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℳ

(
r
q
) = s0 (

r
q
) . (5.16)

The matrixℳ in (5.16) has (real) Hamiltonian structure, since

(Jℳ)T = Jℳ where J = ( 0 I
−I 0
) . (5.17)

It is easily shown that the corresponding eigenspectrum is symmetric with respect to
both real and imaginary axis. Condition (5.16) states that the spectral zeros of Ψ(s)
are the eigenvalues of the Hamiltonian matrixℳ. If one of such eigenvalues is purely
imaginary s0 = 𝚥ω0, then we may have a violation of the frequency-domain inequal-
ity (5.12). In fact, if (5.16) holds for some purely imaginary s0 = 𝚥ω0, then Ψ(𝚥ω) is
singular at ω0, implying that one of its eigenvalues λi(𝚥ω) vanishes at ω0. If this zero
is simple, then the eigenvalue trajectory λi(𝚥ω) changes sign at ω0, thus violating the
passivity condition (5.12).
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The above observations can be summarized in the following statements [12, 33].
Assuming that A is asymptotically stable, and thatW0 = D +DT > 0 is strictly positive
definite, then system (5.1) is strictly passive if and only if the Hamiltonian matrix ℳ
in (5.16) has no purely imaginary eigenvalues. In presence of purely imaginary eigen-
values, the system is passive only if the associated Jordan blocks have even size, in
which case it can be shown that the corresponding eigenvalue trajectory λi(𝚥ω) does
not change sign atω0. A qualitative illustration of the above statements is provided by
Figure 5.2. For a more complete treatment, which is outside the scope of this introduc-
tory chapter, see [1, 54].We remark that the conditionW0 > 0 is equivalent to requiring
that the system is asymptotically passive, so that the transfer function is nonnegative
Hermitian for ω→∞.

Figure 5.2: Illustration of the relationship between Hamiltonian eigenvalues μk (left) and eigen-
values λi(𝚥ω) of Ψ(𝚥ω) (right). In the left panel, purely imaginary Hamiltonian eigenvalues are de-
noted with circles (number of circles denote multiplicity) to distinguish them from other eigenvalues
(squares); only eigenvalues with nonnegative imaginary part are shown. In the right panel, the non-
passive frequency bands Ω2 = (ω2,ω3) and Ω4 = (ω4,ω5) are highlighted with a thick line, with
corresponding local minima λ2,1 and λ4,1.

5.3 Checking passivity
There are two main approaches for checking whether a given state-space model (5.1)
is passive. Thesemethods exploit the Positive Real Lemma (5.10) and the properties of
the Hamiltonian matrix (5.16), respectively.

5.3.1 Checking passivity via linear matrix inequalities

The Positive Real Lemma discussed in Section 5.2.1.1 states that system (5.1) is passive
if and only if (5.10) holds. Note that this condition embeds as a corollary also a stability
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check, since restricting (5.10) to its upper-left block, which corresponds to setting u =
0, i. e., considering the zero-input response, results in thepopular Lyapunov condition
for (simple) stability, here restricted to the LTI case, which reads

∃P = PT > 0 : ATP + PA ≤ 0. (5.18)

Both (5.18) and (5.10) are recognized as LMI feasibility (convex) problems. As such,
they can be readily solved by specialized LMI convex optimization software, such as
SeDuMi [77] and Yalmip [55]. For a survey of tools see [49], part 6. If the system is
passive, such tools will return a Lyapunov matrix P for which the above conditions
are satisfied. Conversely, they will return a certificate of non-feasibility, thus proving
existence of passivity violations.

The main advantage of the LMI-based passivity check is simplicity: one does not
have to write any particular code, since most LMI solvers have simple-to-use inter-
faces. This advantage is counterbalanced by two important drawbacks. The first dis-
advantage is computational complexity. The PRL in (5.10) requires proving nonnega-
tivity of a M + N matrix, with P being unknown. The number of decision variables is
N(N + 1)/2, i. e., the number of elements of P. A direct implementation thus requires a
computational cost that scales as𝒪(N6), although advanced solvers exist that can re-
duce this cost to𝒪(N4) [82]. Exploitation of sparsity, structure and symmetries can be
used to reduce this cost even further in many practical cases (for an example see [21]).

The second main disadvantage of LMI-based passivity checks is in the binary na-
ture of their output (passive/non-passive). If the system is not passive, no additional
information is available from the solver that can be exploited to fix the passivity viola-
tion by a suitable perturbation process. Fortunately, this information is available from
the Hamiltonian-based passivity check, discussed next.

5.3.2 Checking passivity using Hamiltonian eigenvalues

As discussed in Section 5.2.1.3, an asymptotically stable system (5.1) with D + DT > 0
is passive if the Hamiltonian matrix ℳ defined in (5.16) does not have purely imag-
inary eigenvalues with odd-sized Jordan blocks (in the vast majority of cases these
eigenvalues, if any, are simple). This suggests a simple algorithm for checking passiv-
ity, summarized as pseudocode in Algorithm 5.1. This scheme is formulated so that
it provides as output some additional information, in particular the frequency bands
where (5.12) is violated [33]. This information will prove very useful in Section 5.5 for
removing such passivity violations via perturbation.

As a first step, we form the Hamiltonian matrix and we compute its eigenvalues
μk ∈ eig(ℳ). If no such eigenvalues are purely imaginary, and if D + DT > 0, then the
model is concluded to be strictly passive and the algorithm stops. No eigenvalue tra-
jectory will cross the imaginary axis, otherwise the corresponding intersection would
be pinpointed by some imaginary Hamiltonian eigenvalue.
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The more interesting case occurs in the presence of purely imaginary eigenvalues
μk = 𝚥ωk . Let us extract the subset of these eigenvalues with nonnegative imaginary
part (recall that, if 𝚥ωk is an eigenvalue, also −𝚥ωk is an eigenvalue due to the Hamil-
tonian structure ofℳ) and sort them in ascending order,

0 = ω0 < ω1 < ω2 < ⋅ ⋅ ⋅ < ωK < ωK+1 = +∞ (5.19)

where ω0 is added even if 0 is not an eigenvalue ofℳ, and where we set ωK+1 = +∞.
The frequenciesωk induce a partition of the frequency axis into disjoint adjacent sub-
bands Ωk = (ωk ,ωk+1) for k = 0, . . . ,K. From the above discussion, Ψ(𝚥ω) is nonsingu-
lar ∀ω ∈ Ωk , ∀k.

Each subbandΩk is then flagged as passive or non-passive by assigning k to corre-
sponding index sets 𝒦p and 𝒦np, respectively, depending on whether (5.12) is verified
or not for ω ∈ Ωk . This condition is very easy to check, due to the continuity of all
eigenvalue trajectories λi(𝚥ω), which is a consequence of the assumed asymptotic sta-
bility, so that bothH(s) and Ψ(s) are regular on the imaginary axis. It is thus sufficient
to check whether

Ψ(𝚥ω̆k) > 0, where ω̆k =
ωk + ωk+1

2
, (5.20)

is the midpoint of band Ωk . If (5.20) is verified, then the model is uniformly passive
in Ωk and k ∈ 𝒦p. Otherwise, k ∈ 𝒦np and the number of negative eigenvalues λi(𝚥ω)
(which is constant in Ωk), is determined based on their evaluation at the midpoint ω̆k .

As a final optional step, the subbands Ωk with k ∈ 𝒦np can be subjected to a lo-
cal (adaptive) sampling in order to find all local minima of the eigenvalue trajectories
λi(𝚥ω). These minima, denoted with their frequency location as (ωkν , λkν), correspond
to the worst-case local passivity violations. See Figure 5.2 for a graphical illustration.
See also [20, 34].

The computational cost of the passivity check in Algorithm 5.1 is dominated by
the Hamiltonian eigenvalue evaluation. A general-purpose eigenvalue solver scales
as𝒪(κN3) where κ is a constant, since the size of the Hamiltonian matrix (5.16) is 2N .
Specialized eigensolvers exist that reduce this cost by exploiting the particular matrix
structure [7, 10]; see also [1, 9, 79], but still retaining the scaling 𝒪(κN3) albeit with
a smaller constant κ. If the transfer function H(s) of the model is symmetric (which
is usually verified in electrical and electronic applications), additional computational
savings can be achieved by defining equivalent and smaller-size eigenproblems, often
referred to as half-size passivity tests; see [23, 36, 47, 48, 75].

When the number of states N is medium-large and the state-space realization is
sparse (for instance with A diagonal or quasi-diagonal), then it is more convenient to
use eigensolvers based on repeated shift-invert iterations; see e. g. [3, 41, 85]. It has
been demonstrated that these methods are able to reduce the scaling law of purely
imaginary eigenvalue determination to 𝒪(κN), although with a possibly large κ. See
also [8, 60, 85] for details on more general structured eigenproblems.



5 Passivity enforcement | 149

Algorithm 5.1: Hamiltonian-based passivity check.
Require: real state-space matrices A,B,C,D
Require: A asymptotically stable, D + DT nonsingular
1: form the Hamiltonian matrixℳ of (5.16) and compute its eigenvalues μk
2: if no eigenvalue is purely imaginary and D + DT > 0 then
3: system is strictly passive: exit
4: end if
5: extract all imaginary eigenvalues μk = 𝚥ωk and sort them as in (5.19)
6: set 𝒦p = 𝒦np = 0
7: for k = 0, . . . ,K do
8: form subband Ωk = (ωk ,ωk+1) and its midpoint ω̆k
9: ifΨ(𝚥ω̆k) > 0 then
10: system is locally passive ∀ω ∈ Ωk, add k to 𝒦p
11: else
12: system is not passive in Ωk, add k to 𝒦np
13: find all local minima (ωkν , λkν) of the eigenvalues of Ψ(𝚥ω) in Ωk
14: end if
15: end for

5.4 System perturbation

Assuming that the system (5.1) is detected as non-passive from a passivity check, the
main question arises whether we can enforce its passivity through a small perturba-
tion of its coefficients. What is actually important is not the amount of coefficient per-
turbation, but rather the perturbation in the model response, which should be kept
under control in order to maintain model accuracy. Of course, this approach makes
sense only if the passivity violations of the initial model are relatively small to enable
correction via perturbation. This situation is in fact commonly encountered in appli-
cations. Very large passivity violations inmodels that should represent dissipative sys-
tems are a clear indication of poor model quality. Such models should be discarded
and regenerated.

Several perturbation approaches are possible for (5.1). In the following, we focus
on one particular strategy, which amounts to perturbing only the state-output matrix
as Ĉ = C + δC while leaving the other state-space matrices unchanged. This strategy
induces the following perturbation in the transfer function:

Ĥ(s) = H(s) + δH(s) with δH(s) = δC(sI − A)−1B. (5.21)

The corresponding impulse response perturbation is thus

ĥ(t) = h(t) + δh(t) with δh(t) = δCeAtBu(t) (5.22)
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where u is the Heaviside step function. This approach leaves the state matrix A un-
changed, thus preserving the system poles. Allowing for poles perturbation induced
by a modification of A would require in fact additional constraints for ensuring that
stability is not compromised. Except for very few cases [22, 53], most existing passivity
enforcement schemes do not modify matrix A in order to preserve the system poles.
This is a common scenario in those applications where passivity enforcement is ap-
plied as a post-processing of amodel identified frommeasurementswithVector Fitting
(see [5, Chapter 8]). If the system is asymptotically passive with D + DT > 0, there is
also no need to modify the direct coupling matrix D. Modification of the input-state
map B can be considered as an alternative to (5.21).

Based on (5.21), we need to determine a cost function that measures the perturba-
tion amount in terms of the decision variables, i. e., the elements of δC. A number of
popular cost functions are reviewed below.

5.4.1 Gramian-based cost functions

A natural choice for measuring the system perturbation is the L2 norm. We have

ℰ22 = ‖δh‖
2
L2 =
+∞

∫
0

tr(δh(t)δh(t)T) dt = tr(δC𝒢cδC
T) (5.23)

where tr is the trace of its matrix argument, and

𝒢c =
+∞

∫
0

eAtBBTeA
T t dt = 1

2π

+∞

∫
−∞

(𝚥ωI − A)−1BBT (𝚥ωI − A)−H dω (5.24)

is the Controllability Gramian of the system, which is easily found by solving the Lya-
punov equation

A𝒢c + 𝒢cA
T = −BBT . (5.25)

Although simple to use, the cost function (5.23) is seldom used in applications.
This is due to the fact that most often a reduced order model is obtained from some
approximation process that ensures accuracy only in a well-defined frequency band,
which usually does not extend up to∞. Assuming that the model accuracy is of inter-
est only for ω ∈ [0,ωmax], then it is unnecessary and even detrimental to include any
contribution to the Gramian coming from frequencies |ω| > ωmax. A simple approach
to obtain a bandlimited norm is to limit the integration bounds in (5.24) to ∓ωmax. One
loses the possibility to compute 𝒢c through (5.25), so that the corresponding bandlim-
ited Gramian should be obtained by a direct numerical integration of (5.24) through
some quadrature rule.
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An alternative option is to introduce a nonnegative weighting function ρ(ω) in
the frequency-domain integral (5.24), which allows one to fine-tune the contributions
to the Gramian coming from different frequencies. The latter strategy lends itself to
a simple algebraic procedure for the weighted Gramian computation, in the case the
weight is restricted to be in form of a state-space system applied to the input or to the
output of our original transfer function H(s). Some details follow.

Let us consider a weighting function in state-space form with transfer matrix
Γ(s) = CΓ(sI −AΓ)−1BΓ +DΓ of compatible size, which is applied to defining a weighted
error function

δHΓ(s) = δH(s) Γ(s). (5.26)

Instead of (5.23), we measure system perturbation through the Γ-weighted norm de-
fined as

ℰ2Γ = ‖δH‖
2
Γ = ‖δHΓ‖

2
L2 . (5.27)

It can be easily shown [99] that this norm can be computed as

‖δH‖2Γ = tr(δC PΓ δC
T), (5.28)

where PΓ is the upper-left block of the solution of the following augmented Lyapunov
equation:

Ã P̃ + P̃ ÃT = −B̃B̃T (5.29)

with

Ã = (A BCΓ
0 AΓ

) , B̃ = (BDΓ
BΓ
) , P̃ = (

PΓ P12
PT12 P22

) . (5.30)

We see that this characterization is fully compatible with the standard L2 norm, as far
as the standard Gramian 𝒢c is replaced by its weighted counterpart PΓ. This formula-
tion canbe adapted to applications that require control over relative error, by choosing
Γ(s) = H−1(s) or even elementwise relative error [42]. If we are interested in retaining
accuracy only in some prescribed frequency band (ωmin,ωmax), then Γ(s) can be de-
fined as a band pass filter matched to this band.

The two Gramian-based error characterizations (5.23) and (5.28) are further sim-
plified as follows. Let us consider (5.23), and let us assume that the initial model is
controllable, so that the controllability Gramian 𝒢c is full-rank and strictly positive
definite.4 Computing the Cholesky factorization 𝒢c = QT

cQc and inserting it into (5.23)
leads to

ℰ22 = tr(δC Q
T
cQc δC

T) = tr(ΞΞT) = ‖Ξ‖2F = ‖ξ ‖
2
2 (5.31)

4 In case 𝒢c is singular, a preprocessing step based, e. g., on Balanced Truncation [5, Chapter 2] can
be applied to remove any uncontrollable states.
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where ‖ ⋅ ‖F denotes the Frobenius norm of its matrix argument, Ξ = δC QT
c and ξ =

vec(Ξ) stacks the columns of Ξ into a single column vector.5We see that themodel per-
turbation is now cast as the Euclidean norm of the (vectorized) decision variables ξ in
a new coordinate system induced by the Cholesky factor of the Gramian.Minimization
of (5.31) is thus trivial.

5.4.2 Data-based cost functions

A further alternative for defining a cost function thatmeasures themodel perturbation
error is based on a purely discrete formulation. Let us suppose that the model (5.1)
was obtained in first place through a data-driven MOR scheme, starting form a set
of frequency-domain measurements of the underlying system response (ωℓ, H̆ℓ) for
ℓ = 1, . . . , L. A natural choice would be to minimize the error of the perturbed model
with respect to these initial data [21, 43, 44, 46]

ℰ2 =
L
∑
ℓ=1

ρ2ℓℰ
2
ℓ with ℰ2ℓ = ‖H(𝚥ωℓ) + δH(𝚥ωℓ) − H̆ℓ‖

2
F , (5.32)

wherewe used the Frobenius norm to define the local error ℰℓ for each frequency point
(of course other normchoices are possible), andwhere ρℓ is aweighting factor to bede-
fined based on the desired approximation criteria. A straightforward derivation shows
that, vectorizing the decision variables as δc = vec(δC), we can write

ℰ2 = ‖Kδc − d‖22 (5.33)

with

KT = (ρ1KT
1 ⋅ ⋅ ⋅ ρLKT

L ) , dT = (ρ1dT1 ⋅ ⋅ ⋅ ρLdTL ) , (5.34)

where the various components are defined using the Kronecker product ⊗ as

Kℓ = [(𝚥ωℓI − A)
−1B]T ⊗ I , dℓ = vec(H(𝚥ωℓ) − H̆ℓ). (5.35)

A particular case of (5.32) is obtained by defining

ℰ2ℓ = ‖δH(𝚥ωℓ)‖
2
F . (5.36)

This choice corresponds to setting the “target” data samples as the responses of the
initial model, so that H̆ℓ = H(𝚥ωℓ) and consequently dℓ = 0. Correspondingly, (5.33)
reduces to the simple quadratic form

ℰ2 = ‖Kδc‖22. (5.37)

5 We will denote the inverse operation Ξ = mat(ξ ), where the size of Ξ is inferred from the context.
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5.5 Passivity enforcement

In Section 5.4, we showed how the perturbation of a model based on a modification
of the state-output map can be algebraically characterized as a quadratic form of the
decision variables, i. e., the elements of δC, possibly cast in a different coordinate sys-
tem. The resulting cost function provides an effective control over model perturbation
if used within an optimization problem, combined with suitable constraints for pas-
sivity enforcement. In this section, we discuss the three most prominent approaches
for casting the passivity conditions introduced in Section 5.2.1 as constraints, giving
rise to three classes of algorithms for passivity enforcement. An overviewof alternative
approaches and a more complete treatment is available in [39].

5.5.1 Passivity enforcement via LMI constraints

Let us consider an initial non-passive system (5.1), forwhich the PRL condition (5.10) is
not satisfied. We try to enforce this condition on a perturbed system, where the state-
output matrix C is updated as

Ĉ = C + δC = C + ΞQ−Tc , (5.38)

where we used the change of variables in (5.31) based on the Cholesky factor Qc of the
controllability Gramian. Enforcing the PRL for the perturbed system while minimiz-
ing the perturbation, based, e. g., on the cost function (5.31), amounts to solving the
following constrained optimization problem

min
P,Ξ
‖Ξ‖2F s. t. P = PT > 0 and ℱ(P,Ξ) ≤ 0 (5.39)

where

ℱ(P,Ξ) = (
ATP + PA PB − CT − Q−1c ΞT

BTP − C − ΞQ−Tc −D − DT ) . (5.40)

The cost function in (5.39) is a quadratic form in the decision variables, and both con-
straints are of LMI type [21]. Problem (5.39) is known to be convex, therefore there
is a theoretical guarantee that a unique optimal solution exists, which can be found
in polynomial time. In fact, specialized solvers for this class of problems exist, see
e. g. [55, 77], therefore we do not detail any particular algorithm any further (see also
section 5.3.1). The reader is referred to standard textbooks on convex optimization for
more details [14].

As already discussed in Section 5.3.1, the computational cost that is required to
solve (5.39) scales quite badlywith thenumber of decision variables, equivalentlywith
the system size. The main motivation for this high computational requirements is the
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presence of the Lyapunov matrix P in the set of decision variables, which is only in-
strumental to the PRL formulation, but which is not really needed as a result of the
optimization process. Therefore, we can think of eliminating P with a suitable pre-
processing step, in order to obtain a smaller LMI problem that can be solved more
efficiently. The so-called trace parameterization provides a solution to this problem;
see [25, 21, 18] for details.Wenow seek alternatives that provide even better scalability.
The reader is encouraged to also see [43].

5.5.2 Passivity enforcement via Hamiltonian perturbation

Let us consider the Hamiltonian-based passivity constraints discussed in
Section 5.2.1.3. Under the assumptions that A is asymptotically stable and system (5.1)
is asymptotically passive with D + DT > 0, then (strict) passivity holds if the Hamil-
tonian matrix ℳ in (5.16) has no purely imaginary eigenvalues. If this is not true, as
Figure 5.2 shows, the Hermitian part of the frequency response has some negative
eigenvalues in some frequency bands, and the system is not passive due to those
localized violations.

Themain idea of passivity enforcement via Hamiltonian perturbation is to induce
a spectral perturbation on the imaginary Hamiltonian eigenvalues, so that they are
displaced in the correct direction as to eliminate the local passivity violations [33].
A graphical illustration of this strategy is provided in Figure 5.3, where we show that
when two imaginary eigenvalues are displaced along the imaginary axis in a direction
that points inward each passivity violation band, the extent of the violation is effec-
tively reduced (top panels). If the perturbation amount is sufficiently large to induce a
collision of the two imaginary eigenvalues (bottom panels), then a bifurcation occurs
and the two eigenvalues move off the imaginary axis. The passivity violation is thus
removed.

The above spectral perturbation is an inverse problem, which requires a precise
characterization of the relation between matrix element perturbations and the corre-
sponding induced change in the eigenvalues that we need to displace. The algorithm
that we describe below is based on a first-order approximation of this relation.

Let us consider once again a non-passive system which is perturbed by changing
the state-output matrix as Ĉ = C + δC. A straightforward first-order approximation
analysis leads to the following expression for the perturbed Hamiltonian matrix:

ℳ̂ =ℳ + δℳ with δℳ ≈ ( −BW−10 δC 0
CTW−10 δC + δCTW−10 C δCTW−10 BT

) (5.41)

whereW0 = D + DT . Let us now consider a generic eigenvalue μk ofℳ with unit mul-
tiplicity, and let us denote the corresponding right and left eigenvectors as vk and wk,
normalized such that ‖vk‖ = ‖wk‖ = 1. We have the following first-order eigenvalue
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Figure 5.3: Illustration of passivity enforcement via Hamiltonian eigenvalue perturbation. Top and
bottom panels refer to two different scenarios that may occur. In the top left panel the purely imag-
inary Hamiltonian eigenvalues are depicted with empty dots, and their perturbation direction and
extent is represented with thick arrows. The corresponding eigenvalue trajectories λi(𝚥ω) before
(solid lines) and after (dashed lines) perturbation are depicted in the top right panel. Bottom pan-
els show that when two imaginary Hamiltonian eigenvalues collide (left panel), the corresponding
intersections of the eigenvalue trajectories λi(𝚥ω) with the frequency axis are removed (right panel).

perturbation result [86]:

μ̂k ≈ μk + δμk with δμk =
wH
k δℳ vk
wH
k vk
. (5.42)

We now particularize (5.42) to the case of a purely imaginary eigenvalue μk = 𝚥ωk . It
is well known that, for such eigenvalues, the left and right eigenvectors are related by
wk = −Jvk, where J is defined in (5.17), so that we can write

δμk =
vHk J δℳ vk
vHk J vk

. (5.43)

Splitting now the right eigenvector as vTk = (v
T
k1, v

T
k2) according to the block structure

ofℳ, we see that the denominator of (5.43) is purely imaginary

vHk J vk = 2𝚥ℑ{v
H
k1vk2} (5.44)

whereas the numerator is real-valued since Jℳ is real and symmetric. A tedious but
straightforward calculation leads to

vHk J δℳ vk = 2ℜ{v
T
k1 ⊗ y

H
k } δc (5.45)
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where δc = vec(δC) and the auxiliary vector yk is defined as

yk = W
−1
0 (Cvk1 + B

Tvk2). (5.46)

Using the above expressions, we can finally rewrite (5.43) as

ℜ{vTk1 ⊗ y
H
k } δc ≈ (ωk − ω̂k)ℑ{v

H
k1vk2}, (5.47)

where we used the fact that under the adopted first-order approximation also the per-
turbed eigenvalue is purely imaginary μ̂k = 𝚥ω̂k . Furthermore, applying the change of
variables (5.31) to (5.47) gives

zTk ξ ≈ ηk (5.48)

where

zk = ℜ{(Q
−T
c vk1) ⊗ y

∗
k }, ηk = (ωk − ω̂k)ℑ{v

H
k1vk2}. (5.49)

This expression is a linearized constraint that relates the amount of (imaginary) eigen-
value perturbation to the corresponding perturbation on the decision variables ξ .

When using (5.48) as a constraint to determine ξ , the desired location for ω̂ needs
to be provided as input. With reference to Figure 5.3, we see that the direction where
ωk should be perturbed is directly related to the slope λ′i,k of the eigenvalue trajectory
λi(𝚥ω) that vanishes at ωk . A heuristic yet effective choice for ω̂k is

{
ω̂k = ωk + α(ωk+1 − ωk) for λ′i,k < 0,
ω̂k = ωk − α(ωk − ωk−1) for λ′i,k > 0,

(5.50)

where the control parameter 0 < α < 1 determines the maximum extent of the pertur-
bation amount relative to the size of the violation subband. Additional details on how
to determine the slopes λ′i,k as well as appropriate values of α can be found in [33].

Supposing now that multiple eigenvalues μk = 𝚥ωk for k = 1, . . . ,K are to be per-
turbed concurrently, we need to collect all independent constraints (5.48) so that they
are enforced simultaneously. The resulting optimization problem to be solved reads

min
ξ
‖ξ ‖22 s. t. zTk ξ = ηk , k = 1, . . . ,K (5.51)

This is a simple linearly constrained minimum norm problem, whose optimal solu-
tion is ξopt = Z†η, where † denotes the pseudoinverse [14], with Z and η collecting zTk
and ηk as rows. Compared to the evaluation of the Hamiltonian eigenvalues required
to set up the constraints (5.48), the solution of (5.51) has a negligible computational
cost.

Although the solution of (5.51) is straightforward, its passivity constraint is based
on a linearization process and is therefore only accurate up to first order. Therefore,
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the perturbation fraction α should be selected to be small enough for the first-order
approximation to be accurate, and multiple iterations may be required to displace all
imaginary eigenvalues. Figure 5.3 illustrates two scenarios that may typically occur
during iterations, whereas Algorithm 5.2 provides the pseudocode of a possible imple-
mentation. The computational cost of this implementation is dominated by theHamil-
tonian eigensolution; see the discussion in Section 5.3.2. We remark that, despite the
fact the optimization problem (5.51) at each iteration has a closed-form solution, the
overall iterative scheme in its basic formulation is not guaranteed to converge, since
a local perturbation of few eigenvalues does not guarantee that new imaginary eigen-
values will not occur at other locations. The approach that is presented in the next
section provides a more robust scheme.

Algorithm 5.2: Passivity enforcement via Hamiltonian perturbation.
Require: real state-space matrices A,B,C,D
Require: A asymptotically stable, D + DT > 0
Require: control parameter 0 < α < 1 and max iterations imax
1: run Alg. 5.1 to check passivity, store {ωk} and non-passive bands Ωk
2: compute Gramian 𝒢c or weighted Gramian PΓ and its Cholesky factor Qc
3: set iteration count i = 0
4: while (system not passive and i < imax) do
5: i ← i + 1
6: compute right eigenvectors vk and form vectors zk in (5.49), for all k
7: define ω̂k as in (5.50) and form ηk in (5.49) for all k
8: solve optimization problem (5.51) for ξ
9: update state-output map C ← C + ΞQ−Tc where Ξ = mat(ξ )
10: run Alg. 5.1 to check passivity, store {ωk} and non-passive bands Ωk
11: end while

Before closing this section we remark that the above discussion was based on the as-
sumption of simple Hamiltonian eigenvalues. A full characterization of the general
casewith arbitrary highermultiplicity requires knowledge of the complete structure of
the possibly multiple Jordan blocks of the Hamiltonian matrix. This discussion is out-
side the scope of this chapter, the reader is referred to [1, 61] for a complete treatment.
We only remark that the presence of defective eigenspaces is structurally unstable to
small perturbations, so that the defectivity usually disappears if a small perturbation
is applied.

Passivity enforcement via Hamiltonian perturbation was first introduced in [33],
followed by various applications [17, 31, 71] and extensions to large-scale systems [41]
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with possibly frequency weighted accuracy norms [42]. It is worth mentioning the
straightforward extension [11, 57] to so-called negative imaginary systems.6

5.5.3 Passivity enforcement via local perturbation

Let us consider once again a system that is detected as non-passive fromAlgorithm 5.1.
One of the results that this algorithm provides in addition to the index set k ∈ 𝒦np that
identifies the non-passive bands Ωk = (ωk ,ωk+1) is a set of local minima (ωkν , λkν)
of the eigenvalues of Ψ(𝚥ω) in each of these subbands. Figure 5.4 depicts these local
minima with filled dots.

Figure 5.4: Illustration of passivity enforcement via local perturbation. Linearized constraints are
used to perturb (thick arrows) the local minima λi,k (filled dots) of the eigenvalue trajectories λi(𝚥ω)
(solid lines) so that they become nonnegative. The resulting perturbed eigenvalue trajectories
(dashed lines) are uniformly positive after few iterations.

Assume now to perturb the system through the usual state-output matrix as Ĉ = C +
δC. This perturbation leads to an induced perturbation on the eigenvalue trajectories
λ(𝚥ω), represented in Figure 5.4 by solid lines. We seek a constraint that displaces the
local minima to a new nonnegative value [72, 73]. Denoting with vkν the eigenvector of
Ψ(𝚥ωkν) normalized as ‖vkν‖ = 1 corresponding to the eigenvalue λkν, we can express
the induced eigenvalue perturbation through the following first-order approximation,
which results in an inequality constraint after imposing nonnegativity:

λ̂kν = λkν + v
H
kν δΨ(𝚥ωkν) vkν ≥ 0. (5.52)

6 A system with square, strictly proper and stable transfer matrix H(s) is negative imaginary if and
only if sH(s) is Positive Real.
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Figure 5.4 provides a graphical illustration of the perturbation, together with the ex-
pected perturbed eigenvalue trajectories (dashed lines). Note that these trajectories
remain continuous after perturbation, thanks to the assumed asymptotic stability of
the model (no poles on the imaginary axis).

The constraint (5.52) can now be readily expressed in terms of our decision vari-
ables δC, noting that

δΨ(𝚥ω) = δC T(𝚥ω) + TH (𝚥ω) δCT (5.53)

where T(𝚥ω) = (𝚥ωI − A)−1B. Using the vectorized form δc = vec(δC) together with the
change of variable (5.31) leads to

zTkν ξ ≥ −λkν , with zkν = 2ℜ{(Q
−T
c T(𝚥ωkν) vkν) ⊗ v

∗
kν}. (5.54)

As a result, we cast our minimum model perturbation subject to local passivity con-
straints as

min
ξ
‖ξ ‖22 s. t. zTkν ξ ≥ −λkν , ∀k ∈ 𝒦np, ∀ν. (5.55)

This problem is convex and is readily solved through off-the-shelf software. Based
on the analysis in [43] the computational cost for solving (5.55) can be reduced to
𝒪(κNM2).

As for the Hamiltonian perturbation passivity enforcement, the above local per-
turbation is not guaranteed to achieve a passive model after the solution of (5.55). In
fact
– the inequality constraint in (5.54) is only first-order accurate and does not guaran-

tee that the perturbed eigenvaluewill be nonnegative after applying the computed
model correction;

– it is not guaranteed that a local perturbation of all local eigenvalue minima
(ωkν , λkν) will not induce new passivity violations at new locations, in terms
of new negative eigenvalue minima.

The first problem can be easily addressed by embedding (5.55) within an iterative
scheme that, after solving (5.55), applies model correction and repeats the perturba-
tion until all local eigenvalue minima are nonnegative. The second problem is also
easily addressed by the so-called robust iterations, described next.

Assume that after model perturbation a new local eigenvalue minimum λnew < 0
is detected at some frequencyωnew where themodel was locally passive before pertur-
bation. Ifwe could enforce the eigenvalues ofΨ(𝚥ωnew) to remainnonnegative through
anadditional constraint togetherwith those in (5.55), then thenewviolationwouldnot
have arisen. This is exactly the main idea of robust iterations, where problem (5.55) is
solved only as a preliminary step. All new violations are collected and nonnegativity
constraints are formulated as in (5.54) at the corresponding frequencies and added to
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the set of already available constraints. This prediction step is repeated until no new
violations are introduced. Then iterations continue after the model is updated.

The passivity enforcement scheme based on local perturbations (without robust
iterations) is outlined as pseudocode in Algorithm 5.3. More details on the robust iter-
ation scheme are available in [44, 45].

Algorithm 5.3: Passivity enforcement via local perturbations.
Require: real state-space matrices A,B,C,D
Require: A asymptotically stable, D + DT > 0
Require: max iterations imax
1: run Alg. 5.1 to check passivity, store local eigenvalue minima (ωkν , λkν)
2: compute Gramian 𝒢c or weighted Gramian PW and its Cholesky factor Qc
3: set iteration count i = 0
4: while (system not passive and i < imax) do
5: i ← i + 1
6: compute eigenvectors vkν and form vectors zkν in (5.54), for all k, ν
7: solve optimization problem (5.55) for ξ
8: update state-output map C ← C + ΞQ−Tc where Ξ = mat(ξ )
9: run Alg. 5.1 to check passivity, store local eigenvalue minima (ωkν , λkν)
10: end while

5.6 Extensions

The various passivity check and enforcement algorithms discussed in previous sec-
tions were restricted to the narrow class of regular state-space systems (5.1), with A
asymptotically stable, with D +DT > 0, and with a supply rate defined by (5.7). In this
section, we release these assumptions by providing suitable generalizations.

5.6.1 Releasing asymptotic passivity requirements

When W0 = D + DT is singular but positive semidefinite, then the system might still
be passive (although not strictly passive), with at least one of the eigenvalues λi(𝚥ω) of
Ψ(𝚥ω) vanishing forω→∞. In this scenario, the passivity check based on the Hamil-
tonian matrixℳ in (5.16) cannot be performed, sinceℳ is ill-defined and cannot be
constructed.

The Hamiltonian matrix can, however, be generalized [93] by avoiding the in-
version of W0 in (5.15). Retaining the vector v and adding it as an additional block-
component to the eigenvector in (5.16) leads to the following generalized eigenvalue
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problem:

(
A 0 B
0 −AT −CT

C BT W0

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℳ

(
r
q
v
) = s0 (

I 0 0
0 I 0
0 0 0

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝒩

(
r
q
v
) . (5.56)

The pencil (ℳ,𝒩 ) has at least one infinite eigenvalue due to the singularity of W0.
However, by the same argument used in Section 5.2.1.3, the finite purely imaginary
eigenvalues μk = 𝚥ωk of the pencil still correspond to the frequencies ωk where one
eigenvalue of Ψ vanishes as λi(𝚥ωk) = 0. Therefore, the passivity check detailed in
Section 5.3.2 and Algorithm 5.1 can still be applied as far as the Hamiltonian matrix
eigenvalue problem (5.16) is replaced by (5.56). Alternative approaches for handling
this case, based on frequency transformations, can be found in [23, 72, 76].

5.6.2 Enforcing asymptotic passivity

When W0 = D + DT is not sign definite, with at least one negative eigenvalue, most
of the foregoing results do not apply if not properly generalized. For instance, the
PRL condition (5.10) cannot be satisfied, since the model is not passive at infinite fre-
quency. Therefore, the proposed system perturbation (5.21) for passivity enforcement
will not be effective since also matrix D should be modified.

There are two main alternative approaches to recovering strict asymptotic passiv-
ity and enable all passivity enforcement schemes discussed in Section 5.5. One ap-
proach involves a preprocessing step that first modifies D so that its symmetric part is
strictly positive definite. Let us compute the following eigendecomposition:

D + DT

2
= VΛVT (5.57)

where Λ = diag(λ1, . . . , λP) collects the eigenvalues and V the corresponding eigenvec-
tors. We can simply redefine the eigenvalues in (5.57) as λ̂p = max(λp, ε)where ε > 0 is
a prescribed positiveminimumvalue assigned to the eigenvalues. The resultingmodel

Hap(s) = C(sI − A)
−1B + D̂, D̂ = Vdiag(λ̂1, . . . , λ̂P)V

T +
D − DT

2
(5.58)

is guaranteed to be asymptotically passive. This newmodelHap(s)may exhibit a large
deviation with respect to the original model response H(s), since a constant term is
added affecting the response at all frequencies. This accuracy loss can be partially
compensated by a standard state-output matrix correction Ĉ = C + δC, where δC is
determined through

min
δC
‖δC (𝚥ωI − A)−1B + D̂ − D‖2 (5.59)
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where the norm is defined, e. g., as a data-based cost function at discrete frequencies
ωℓ, as in Section 5.4.2.

A second (preferable) approach for handling models that are not asymptotically
passive amounts to:
1. Allowing for a perturbation of the direct coupling matrix D̂ = D + δD in addition

to the usual state-output map. The model perturbation thus becomes

δH(s) = δC(sI − A)−1B + δD = (δC δD) ((sI − A)
−1B

I
) (5.60)

which is compatible with all previous derivations with obvious modifications.
Note that, in this case, the Gramian-based cost functions become ill-defined since
the L2 norm of δH(s) is not finite, and a data-based cost function over a limited
bandwidth, such as (5.32), should be used during passivity enforcement.

2. Including an explicit local passivity constraint atω =∞ during passivity enforce-
ment. This constraint is just a simple particular case of (5.52), where δD + δDT

replaces δΨ(𝚥ωkν).

We leave details of the above generalization to the reader.

5.6.3 Descriptor systems

Many model order reduction methods lead to systems in descriptor form

S : { Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(5.61)

with a possibly singular matrix E, and often with D = 0, instead of the regular state-
space form (5.1). A fundamental requirement to avoid an ill-defined (non-solvable)
model is that the pencil (A,E) is regular with |sE − A| ̸= 0 for some s ∈ ℂ. In the
following, we only discuss the case of impulse-free or equivalently index-one systems,
for which the transfer function

H(s) = C(sE − A)−1B + D (5.62)

has a finite asymptotic valueH∞ = lims→∞ H(s). Descriptor systemswith higher index
require a special treatment7 which is outside the scope of this chapter. See [58, 84, 91,
96, 98] for details.

7 Index-two systems can be passive with a positive real transfer funciton H(s) only when the leading
asymptotic term H(s) ∼ sL∞ for s → ∞ is such that L∞ = LT∞ ≥ 0. Higher index systems are not
passive and, in order to recover passivity, the high order impulsive part must be deflated.
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For index-one descriptor systems the Hamiltonian-based passivity check is appli-
cable with a minimal modification [91, 96, 98]. In fact, repeating the derivations of
Sections 5.2.1.3 and 5.6.1 while using (5.61) as a starting point leads to the same gener-
alized eigenvalue problem (5.56), but with𝒩 redefined as

𝒩 =(
E 0 0
0 ET 0
0 0 0

) . (5.63)

Special care should be taken in the (generalized) Hamiltonian eigenvalue computa-
tion, for which structured eigensolvers should be preferred to general-purpose eigen-
solvers; see e. g. the implicitly restarted Krylov method of [59].

Passivity enforcement of descriptor systems viaHamiltonian eigenvalue perturba-
tion is discussed in [83, 84, 91, 96, 97, 98] and further generalized to para-Hermitian
pencils in [16]. The Gramian-based cost function for minimizing model perturbation
of Section 5.4.1 should also be properly generalized; see [78, 84] and [5, Chapter 2] for
details. Finally, we refer the reader to [30] for an extension of the Positive Real Lemma
to descriptor systems.

5.6.4 Other supply rates

All above derivations and algorithms assume that the supply rate s(u, y) through
which power is delivered to the system from the environment is given by (5.7). How-
ever, this is not the only possible choice in general application fields.We review below
the notable cases of scattering representations and general quadratic supply rates,
discussing the various modifications that are required to define, check, and enforce
passivity.

5.6.4.1 Scattering representations and bounded realness

The scattering representation is themost appropriate description of models in several
application fields, in particular high-frequency electronics and electromagnetics. This
is due to a number of reasons, including regularity and boundedness of the transfer
function, as well as the ability to measure it with high accuracy. In scattering repre-
sentations, the inputs u and outputs y are related to the power flow that is incident
and reflected by the structure. In particular, the supply rate is defined as

s(u, y) = uTu − yTy = ‖u‖2 − ‖y‖2 (5.64)

and is interpreted as the net power transferred to the system from the environment,
with the term ‖u‖2 denoting the power flow incident into the system and ‖y‖2 the corre-
sponding power flow that is reflected or scattered back into the environment [2, 4, 90].
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The supply rate s(u, y) in (5.64) leads to a set of passivity8 conditions that are listed
below, and which are obtained by repeating the derivations of Section 5.2.1 while ap-
plying the appropriate modifications.

The KYP Lemma for scattering representation is known as Bounded Real Lemma
(BRL) [2, 74] and states that a scattering state-space system (5.1) is passive if and only if

∃P = PT > 0 : (A
TP + PA + CTC PB + CTD
BTP + DTC −(I − DTD)

) ≤ 0. (5.65)

This lemma can also be stated in the equivalent LMI form

∃P = PT > 0 : (
ATP + PA PB CT

BTP −I DT

C D −I
) ≤ 0. (5.66)

A scattering system is passive when its transfer function H(s) is Bounded Real
(BR), i. e., the following three conditions hold [2, 81, 90]:
1. H(s)must be regular in the open right half complex planeℜ{s} > 0;
2. H(s∗) = H∗(s);
3. Ψ(s) = I − HT (−s)H(s) ≥ 0 forℜ{s} > 0.

These conditions should be compared to the PR conditions of Section 5.2.1.2, noting
that the only difference between PR and BR is in the definition of the function Ψ(s).
Correspondingly, the frequency-domain inequality conditions for the passivity of a
scattering systemstill requireΨ(𝚥ω) ≥ 0 for allω ∈ ℝ, and canbe expressedas in (5.12).
An equivalent statement is based on the singular values of the transfer function

σi ≤ 1, ∀σi ∈ σ(H(𝚥ω)), ∀ω ∈ ℝ, (5.67)

which implies in turn that passive scatteringmodelsmust have a bounded and regular
transfer function H(s) when restricted to the imaginary axis s = 𝚥ω, further requiring
that the state-space matrix A must be asymptotically stable. Another yet equivalent
condition for passivity is expressed in terms of the superior of the largest singular
value throughout the imaginary axis, leading to the well-knownℋ∞ norm condition

‖H‖ℋ∞ = supω∈ℝ
σmax(H(𝚥ω)) ≤ 1. (5.68)

The Hamiltonian matrix associated to a scattering state-space system (5.1) reads

ℳ = (
A − B(I − DTD)−1DTC −B(I − DTD)−1BT

CT (I − DDT )−1C −AT + CTD(I − DTD)−1BT
) . (5.69)

8 We retain the general term passivity also in the scattering (and for general quadratic supply rates),
as a standard denomination in circuit, electronic and electromagnetic applications, although in some
scientific communities this term is dedicated to immittance representations, and the term dissipative
is used in the more general setting.
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The system is passive ifℳ has no purely imaginary eigenvalues (strictly passive) or at
most purely imaginary eigenvalues with even-sized Jordan blocks [12, 33]. The same
considerations of Section 5.2.1.3 apply. When the model is not asymptotically passive
for ω → ∞, then D has one unit singular value and the above Hamiltonian matrix
becomes ill-defined. In this case,ℳ generalizes to the pencil (ℳ,𝒩 ) where

ℳ =(

A 0 B 0
0 −AT 0 −CT

0 BT −I DT

C 0 D −I

) , 𝒩 =(

I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

) (5.70)

which replaces (5.56) for scattering representations [91, 94, 97, 98]. Finally, when the
underlying system is in descriptor form (5.61), then we simply replace I with E in 𝒩 ,
as in (5.63).

With all above redefinitions of appropriate passivity conditions for scattering sys-
tems, all passivity check and enforcement algorithmsdiscussed in Section 5.3 and Sec-
tion 5.5 apply with obvious modifications.

5.6.4.2 General quadratic supply rates

Immittance and scattering representations are just particular cases of the more gen-
eral situation in which the supply rate is a quadratic function of input and output
variables. Such case is compactly described by

s(u, y) = (u
y
)
T

(
Q S
ST R
)(

u
y
) (5.71)

with Q = QT and R = RT , from which the immittance case (5.7) and the scattering
case (5.64) are obtained by setting Q = R = 0, S = I (up to the irrelevant scaling factor
1/2) and Q = I, R = −I, S = 0, respectively.

The LMI condition (KYP lemma) that characterizes a passive (dissipative) state-
space system (5.1) with supply rate (5.71) reads

∃P = PT > 0 : (
ATP + PA − CTRC PB − (SC)T − CTRD
BTP − SC − DTRC −Q − SD − (SD)T − DTRD

) ≤ 0, (5.72)

and the corresponding Frequency-Domain Inequality reads

Ψ(𝚥ω) = Q + HH (𝚥ω)ST + SH(𝚥ω) + HH (𝚥ω)RH(𝚥ω) ≥ 0, ∀ω ∈ ℝ. (5.73)

Finally, the Hamiltonian matrix that generalizes (5.16) and (5.69) reads

ℳ = (
A − BW−1Z −BW−1BT

−CTRC + ZTW−1Z −AT + ZTW−1BT
) (5.74)

where W = Q + SD + (SD)T + DTRD and Z = (SC + DTRC). We leave all details to the
reader, pointing to [74, 88, 89] for a complete theoretical discussion. With suitable
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modifications, all passivity verification and enforcement schemes of Section 5.3 and
Section 5.5 are applicable to this general case as well.

5.6.5 Enforcing stability

All results and algorithms presented up to noware based on the fundamental assump-
tion that the system at hand is asymptotically stable, with all eigenvalues of state ma-
trix A, or pencil (A,E) in the descriptor case, having a strictly negative real part. Many
MOR schemes are able to preserve stability if the original model is stable, for instance
balanced truncation [5, Chapter 2] or Krylov subspacemethods based on split congru-
ence transformations such as PRIMA [6, Chapter 4]. Basic Arnoldi or Lanczosmethods
are instead not generally able to preserve stability in the reduced order model. Con-
sidering data-drivenmethods, the Vector Fitting algorithm [5, Chapter 8] incorporates
a pole-flipping strategy that guarantees stability, whereas basic Loewner interpola-
tion/reduction schemes [5, Chapter 6] do not guarantee stability. Further, even if a
stability-preserving MOR method is used, roundoff errors in computer implementa-
tions may compromise the stability and may result in some eigenvalue with a positive
real part.

Stabilization of a given model or system is a standard problem in Control Theory,
where many alternative approaches usually based on feedback are routinely applied.
The Reader is referred to any textbook such as [99]. The requirements we have in MOR
applications are stronger than simple stabilization, since the final model should be as
close as possible to the initial (unstable)model according to a prescribed performance
metric or norm. Therefore, the simplistic approach of separating the unstable modes
through an eigenvalue or, better, Schur decomposition and simply discarding them is
not appropriate. Optimal stabilizing approximations are in fact available through ro-
bust and reliable algorithms. As an example, we refer the reader to [52], where some
approaches for finding the closest stable system based on ℋ2 and ℋ∞ norms are in-
troduced; see also [32].

5.6.6 Parameterized systems

Passivity verification andenforcementmethods canbe extended toparameterized sys-
tems, whose response H(s, ϑ) depends both on frequency s and (multivariate) param-
eters ϑ ∈ Θ ⊆ ℝd. In this framework, many different approaches and solutions have
been proposed, depending on how parameters are embedded in the model and on
how themodel is constructed. A complete treatmentwould be outside the scope of this
chapter, so that we discuss only a specific yet wide class of model parameterizations

H(s; ϑ) = N(s, ϑ)
D(s, ϑ)
=
∑n̄n=0∑

̄ℓ
ℓ=1 Rn,ℓ ξℓ(ϑ)φn(s)

∑n̄n=0∑
̄ℓ
ℓ=1 rn,ℓ ξℓ(ϑ)φn(s)

, (5.75)
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where Rn,ℓ ∈ ℝM×M and rn,ℓ ∈ ℝ are the model coefficients, φn(s), ξℓ(ϑ) are suitable
basis functions representing the dependence of model numerator and denomina-
tor on frequency and parameters, respectively, and ℓ is a scalar index spanning the
parameter basis set through a suitable linear ordering. The parameterization (5.75) in-
cludes as particular cases themultivariate barycentric form leading to the (parameter-
ized) Loewner framework [50] (see [5, Chapter 6]) and the generalized Sanathanan–
Koerner form [38, 80], which extends to the multivariate setting the Vector Fitting
scheme [5, Chapter 8]. In the latter case the frequency basis functions are φ0(s) = 1
and φn(s) = (s − qn)−1 for n > 0, where qn are predefined stable “basis poles”, either
real or in complex conjugate pairs, and the parameter-dependent basis functions ξℓ
can be orthogonal or trigonometric polynomials, or any other choice that is appro-
priate for the application at hand. A parameterized (descriptor) realization is easily
obtained from (5.75) as (5.61), where

A = A(ϑ) =
̄ℓ
∑
ℓ=1

Aℓξℓ(ϑ), C = C(ϑ) =
̄ℓ
∑
ℓ=1

Cℓξℓ(ϑ) (5.76)

and E,B,D are constant.
One notable and simple approach to obtain a uniformly passive model, so that

all passivity conditions discussed in Section 5.2.1 hold ∀ϑ ∈ Θ, is to suppress the
denominator in (5.75) as D(s) = 1 and construct the parameterized system through
interpolation of a set of non-parameterized models. This is achieved by choosing ξℓ
as interpolating, e. g. Lagrange, basis functions. There exist passivity-preserving in-
terpolation schemes that ensure that, if the individual models being interpolated
are passive, then also the interpolated parameterized model is passive ∀ϑ ∈ Θ.
See [26, 27, 28, 29, 70] and the references therein for details on various alternative
approaches within this framework.

A complementary approach is to consider the fully-parameterized model in
form (5.75) and extend the passivity verification and enforcement methods of Sec-
tion 5.3 and Section 5.5 to the multivariate case. The main difficulty that arises in this
scenario is that the Hamiltonian matrix, which is the main tool providing localization
of the passivity violations, becomes parameter-dependent due to (5.76). The conve-
nience of the purely algebraic test based on its eigenvalues is partially lost, since the
purely imaginary eigenvalues (if any) are parameter-dependent. A possible strategy
for tracking these eigenvalues based on adaptive sampling in the parameter space is
discussed in [95], where a first-order perturbation analysis on the full Hamiltonian
eigenspectrum is used to determine the regions in the parameter space that need re-
fined sampling, in order to track the boundaries between the regions defining passive
and non-passive models. Figure 5.5 provides an illustration by depicting the results of
this adaptive sampling process in a case with two parameters d = 2. If any passivity
violation region is detected (the red dots in Figure 5.5, left panel), then the worst-case
passivity violations are determined as in Algorithm 5.1 and a multivariate extension
of Algorithm 5.3 is applied to eliminate them. All details are available in [37, 40, 95].
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Figure 5.5: Adaptive sampling in a two-dimensional parameter space, applied to a non-passive
model (left panel) and to the corresponding passive model after enforcement (right). Each dot rep-
resents a non-parameterized model instance obtained by evaluating the parameterized model (5.75)
at the corresponding sampling point. Each dot is colored in green/red if the corresponding model
instance is locally passive/non-passive, respectively, as resulting from the absence/presence of
imaginary Hamiltonian eigenvalues. Iterative refinement leads to tracking the boundaries between
passive/non-passive regions. Courtesy of A. Zanco, Politecnico di Torino.

5.7 Examples

5.7.1 A high-speed interconnect in a mobile device
The passivity enforcement process is here applied to amodel of a high-speed intercon-
nect providing a data link in a smartphone. An initial characterization of the struc-
ture was obtained through a full-wave numerical simulation of the time-harmonic
Maxwell’s equations, which provided a set of frequency samples of the 4 × 4 (scatter-
ing) transfer function S(𝚥ω) from0 to 50GHz. These sampleswere processed by Vector
Fitting [5, Chapter 8], obtaining a rational approximationof the system responses. This
rational approximation was then converted to a state-space realization as in [5, Chap-
ter 8]. The accuracy of the rational approximation is excellent, as depicted in the two
top panels of Figure 5.6.

AHamiltonian-based passivity check on thismodel reveals the presence ofK = 10
purely imaginary Hamiltonian eigenvalues μk = 𝚥ωk (see Figure 5.7, left panel). Cor-
respondingly, a sweep of the model singular values σi(H(𝚥ω)) (see the top panel of
Figure 5.8) up to a maximum frequency slightly beyond ωK reveals a few evident pas-
sivity violations, corresponding to singular value trajectories exceeding the passivity
threshold σ = 1. The local singular value maxima are highlighted with red dots in
Figure 5.8.

Figure 5.8 depicts the typical situation that arises when fitting a rational model to
response data over a finite frequency band: passivity violations usually occur at fre-
quencies that fall outside the range where data samples are available. The fact that
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Figure 5.6: Comparison between model and original data used for model extraction for the smart-
phone interconnect. For illustration, only response S22(𝚥ω) of the 4 × 4 scattering matrix is reported.
Top two panels refer to the initial non-passive model, whereas bottom two panels refer to the model
after passivity enforcement.
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Figure 5.7: Hamiltonian eigenvalues before (left) and after (right) passivity enforcement for the
smartphone interconnect model (only eigenvalues with positive imaginary parts are shown). The
purely imaginary eigenvalues are highlighted with a darker color in the left panel.

such violations are not located within the modeling bandwidth may induce a false
sense of confidence in the model user, who may argue that out-of-band passivity vi-
olations are unimportant, since located at frequency ranges that are not of interest.
In fact, a time-domain simulation of the model using a transient ODE solver is agnos-
tic whether the passivity violation occurs within or off-band: during time-stepping,
numerical approximation errors due to the adopted ODE solver will inevitably excite
those frequencies where the model amplifies energy, leading to instability. This is ex-
actly what happens in Figure 5.1, where the thin blue line demonstrates the instability
induced by this initial non-passive model. In this simulation scenario, the model was
interconnected to a set of other linear (passive) circuits, and it was indeed possible to
determine exactly the two poles p = 2π(α ± 𝚥β) that are responsible for this instabil-
ity, obtaining α = +1.13 × 108 Hz and β = 5.32 × 1010 Hz. The real part is positive, and
the imaginary part nearly matches the frequency of the singular value peak; see Fig-
ure 5.8. This is exactly the frequency where the model injects energy into the system.
See [35] for additional details on destabilization of non-passive models.

Enforcing model passivity removes the instability, as we already know from Fig-
ure 5.1. Application of Algorithm 5.3 leads to a passive model in 5 iterations, docu-
mented by the singular value plots in the various panels of Figure 5.8. The final pas-
sivemodel hasnopurely imaginaryHamiltonianeigenvalues, as evident from the right
panel of Figure 5.7, and its responses still match very accurately the original data sam-
ples, as depicted in the bottom panel of Figure 5.6.
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Figure 5.8: Evolution of the singular values (blue solid lines) of the smartphone interconnect during
passivity enforcement iterations through Algorithm 5.3. Passive and non-passive frequency bands
are highlighted with green and red color, respectively. Local maxima of all singular value trajecto-
ries in each non-passive frequency band, which are used to set up local passivity constraints, are
highlighted with red dots.
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5.7.2 An interconnect link on a high-performance PCB

We consider here the coupled interconnect link on a high-performance Printed Circuit
Board (PCB), already discussed in [5, Chapter 8], where an accurate model was ex-
tractedusing theVector Fitting algorithm fromscatteringmeasurements performedon
the real hardware. As depicted in [5, Chapter 8], Figures 6 and 7, the model responses
of this initial model are visually undistinguishable from the measured samples, with
a model-data error of 1.34 ⋅ 10−3 (worst-case RMS error among all responses).

A passivity check performed on this initial model reveals some small passivity vi-
olations at low frequencies. This is actually expected, since the system is almost loss-
less at low frequency, and passivity violations induced by the rational approximation
process of VF are therefore more likely than at high frequency, where energy dissi-
pation is more pronounced. The passivity violations are detected by the presence of
eight pairs of purely imaginary Hamiltonian eigenvalues, depicted in Figure 5.9, pan-
els (a), (c) and (d). The corresponding frequencies denote crossings of the singular

Figure 5.9: Hamiltonian eigenvalues α + 𝚥β = μ/2π of the PCB interconnect model. Panels (a), (c), (d):
original model after Vector Fitting; panels (b), (e), (f): model after passivity enforcement. Top panels
(a), (b) depict the full Hamiltonian eigenspectrum. Bottom panels (c), (d) and (e), (f) are enlarged
views of the top panels (a) and (b), respectively, at different magnification levels. Panels (e) and (f)
show that all purely imaginary Hamiltonian eigenvalues clustered at low frequencies, depicted in
panels (c) and (d), are effectively removed by passivity enforcement.
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value trajectories σi(𝚥ω) of the threshold σ = 1, as depicted in Figure 5.10, top panel.
After few iterations of Algorithm 5.3 all these passivity violations are removed. As the
bottom panel of Figure 5.10 shows, all singular value trajectories of the passive model
are uniformly bounded by one. This is further confirmed by panels (e) and (f) of Fig-
ure 5.9, which show that all purely imaginary eigenvalues of the initial model are now
displaced from the imaginary axis.

Figure 5.10: Top panel: singular value trajectories (blue lines) of the initial (non-passive) PCB in-
terconnect model, revealing low-frequency passivity violations exceeding the passivity threshold
σ = 1 (red line). Black dots correspond to the frequencies of the purely imaginary Hamiltonian eigen-
values; see Figure 5.9, panels (c) and (d). Bottom panel: singular value trajectories after passivity
enforcement, which are uniformly below the passivity threshold.

The passivity enforcement process did not spoil model accuracy. Figure 5.11 compares
the scattering responses (1, 2) and (1, 3) of the passivemodel to the rawmeasured sam-
ples from which the initial model was derived (the same responses already depicted
in [5, Chapter 8], Figures 6 and 7). Also for the passive model the responses closely
match the measurements, with a worst-case RMS model-data error of 1.38 ⋅ 10−3.

5.8 Conclusions
The goal of this chapter was to survey the most widely used techniques for enforc-
ing passivity of reduced order models. To motivate the ensuing description, a simple
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Figure 5.11: Comparison between passive model responses and measured data used for model iden-
tification for the high-speed PCB interconnect of Section 5.7.2.
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example was shown that illustrates in striking fashion the need for ensuring passiv-
ity in models. The focus of the chapter was on Linear Time-Invariant (LTI) systems in
state-space form, although the techniques reviewed are applicable in other represen-
tations with appropriate modifications. Conditions for testing the passivity of a given
LTImodel aswell as approaches for perturbingnon-passive systems in order to enforce
passivity were reviewed and examples were shown to demonstrate the application of
such techniques to realistic cases.

Bibliography
[1] R. Alam, S. Bora, M. Karow, V. Mehrmann, and J. Moro. Perturbation theory for Hamiltonian

matrices and the distance to bounded-realness. SIAM J. Matrix Anal. Appl., 32(2):484–514,
2011.

[2] B. D. O. Anderson and S. Vongpanitlerd. Network analysis and synthesis. Prentice-Hall, 1973.
[3] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst. Templates for the solution

of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied
Mathematics, 2000.

[4] V. Belevitch. Classical network theory. Holden-Day, 1968.
[5] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders and L. Silveira.Model Order

Reduction. Volume 1: System- and Data-Driven Methods and Algorithms. De Gruyter, Berlin,
2020.

[6] P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders and L. Silveira.Model Order
Reduction. Volume 3: Applications. De Gruyter, Berlin, 2020.

[7] P. Benner and D. Kressner. Algorithm 854: Fortran 77 subroutines for computing the
eigenvalues of Hamiltonian matrices II. ACM Trans. Math. Softw., 32(2):352–373, 2006.

[8] P. Benner and D. Kressner. Balancing sparse Hamiltonian eigenproblems. Linear Algebra Appl.,
415(1):3–19, 2006. Special Issue on Large Scale Linear and Nonlinear Eigenvalue Problems.

[9] P. Benner, D. Kressner, and V. Mehrmann. Skew-Hamiltonian and Hamiltonian eigenvalue
problems: Theory, algorithms and applications. In Z. Drmac, M. Marusic and Z. Tutek, editors,
Proceedings of the Conference on Applied Mathematics and Scientific Computing, pages 3–39.
Springer, Netherlands, 2005.

[10] P. Benner, V. Mehrmann, V. Sima, S. Huffel, and A. Varga. SLICOT–a subroutine library in
systems and control theory. In B. Datta, editor, Applied and Computational Control, Signals,
and Circuits, pages 499–539. Birkhäuser, Boston, 1999.

[11] P. Benner and M. Voigt. Spectral characterization and enforcement of negative imaginariness
for descriptor systems. Linear Algebra Appl., 439(4):1104–1129, 2013. 17th Conference of the
International Linear Algebra Society, Braunschweig, Germany, August 2011.

[12] S. Boyd, V. Balakrishnan, and P. Kabamba. A bisection method for computing the H∞ norm of a
transfer matrix and related problems.Math. Control Signals Syst., 2(3):207–219, 1989.

[13] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system and
control theory, volume 15. Society for Industrial and Applied Mathematics, 1994.

[14] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.
[15] B. Brogliato, R. Lozano, B. Maschke, and O. Egeland. Dissipative systems analysis and control:

theory and applications. Springer, 2007.
[16] T. Brull and C. Schroder. Dissipativity enforcement via perturbation of para-Hermitian pencils.

IEEE Trans. Circuits Syst. I, Regul. Pap., 60(1):164–177, 2013.



176 | S. Grivet-Talocia and L.M. Silveira

[17] A. Buscarino, L. Fortuna, M. Frasca, and M. G. Xibilia. An analytical approach to one-parameter
MIMO systems passivity enforcement. Int. J. Control, 85(9):1235–1247, 2012.

[18] H. Chen and J. Fang. Enforcing bounded realness of S parameter through trace
parameterization. In Electrical Performance of Electronic Packaging, 2003, pages 291–294,
2003.

[19] X. Chen and J. T. Wen. Positive realness preserving model reduction with H∞ norm error
bounds. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 42(1):23–29, 1995.

[20] A. Chinea, S. Grivet-Talocia, S. B. Olivadese, and L. Gobbato. High-performance passive
macromodeling algorithms for parallel computing platforms. IEEE Trans. Compon. Packag.
Manuf. Technol., 3(7):1188–1203, 2013.

[21] C. P. Coelho, J. Phillips, and L. M. Silveira. A convex programming approach for generating
guaranteed passive approximations to tabulated frequency-data. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., 23(2):293–301, 2004.

[22] D. Deschrijver and T. Dhaene. Fast passivity enforcement of S-parameter macromodels by pole
perturbation. IEEE Trans. Microw. Theory Tech., 57(3):620–626, 2009.

[23] D. Deschrijver and T. Dhaene. Modified half-size test matrix for robust passivity assessment of
S-parameter macromodels. IEEE Microw. Wirel. Compon. Lett., 19(5):263–265, 2009.

[24] C. A. Desoer and E. S. Kuh. Basic circuit theory. McGraw-Hill, 1984.
[25] B. Dumitrescu. Parameterization of positive-real transfer functions with fixed poles. IEEE Trans.

Circuits Syst. I, Fundam. Theory Appl., 49(4):523–526, 2002.
[26] F. Ferranti, T. Dhaene, and L. Knockaert. Compact and passive parametric macromodeling using

reference macromodels and positive interpolation operators. IEEE Trans. Compon. Packag.
Manuf. Technol., 2(12):2080–2088, 2012.

[27] F. Ferranti, L. Knockaert, and T. Dhaene. Parameterized S-parameter based macromodeling
with guaranteed passivity. IEEE Microw. Wirel. Compon. Lett., 19(10):608–610, 2009.

[28] F. Ferranti, L. Knockaert, and T. Dhaene. Guaranteed passive parameterized admittance-based
macromodeling. IEEE Trans. Adv. Packaging, 33(3):623–629, 2010.

[29] F. Ferranti, L. Knockaert, T. Dhaene, G. Antonini, and D. De Zutter. Parametric macromodeling
for tabulated data based on internal passivity. IEEE Microw. Wirel. Compon. Lett.,
20(10):533–535, 2010.

[30] R. W. Freund and F. Jarre. An extension of the positive real lemma to descriptor systems. Optim.
Methods Softw., 19(1):69–87, 2004.

[31] S. Gao, Y.-S. Li, and M.-S. Zhang. An efficient algebraic method for the passivity enforcement of
macromodels. IEEE Trans. Microw. Theory Tech., 58(7):1830–1839, 2010.

[32] I. V. Gosea and A. C. Antoulas. Stability preserving post-processing methods applied in the
Loewner framework. In 2016 IEEE 20th Workshop on Signal and Power Integrity (SPI), pages
1–4, 2016.

[33] S. Grivet-Talocia. Passivity enforcement via perturbation of Hamiltonian matrices. IEEE Trans.
Circuits Syst. I, Fundam. Theory Appl., 51(9):1755–1769, 2004.

[34] S. Grivet-Talocia. An adaptive sampling technique for passivity characterization and
enforcement of large interconnect macromodels. IEEE Trans. Adv. Packaging, 30(2):226–237,
2007.

[35] S. Grivet-Talocia. On driving non-passive macromodels to instability. Int. J. Circuit Theory Appl.,
37(8):863–886, 2009.

[36] S. Grivet-Talocia. On passivity characterization of symmetric rational macromodels. IEEE Trans.
Microw. Theory Tech., 58(5):1238–1247, 2010.

[37] S. Grivet-Talocia. A perturbation scheme for passivity verification and enforcement of
parameterized macromodels. IEEE Trans. Compon. Packag. Manuf. Technol., 7(11):1869–1881,
2017.



5 Passivity enforcement | 177

[38] S. Grivet-Talocia and E. Fevola. Compact parameterized black-box modeling via Fourier-rational
approximations. IEEE Trans. Electromagn. Compat., 59(4):1133–1142, 2017.

[39] S. Grivet-Talocia and B. Gustavsen. Passive Macromodeling: Theory and Applications. John
Wiley and Sons, New York, 2016 (published online on Dec 7, 2015).

[40] S. Grivet-Talocia and R. Trinchero. Behavioral, parameterized, and broadband modeling
of wired interconnects with internal discontinuities. IEEE Trans. Electromagn. Compat.,
60(1):77–85, 2018.

[41] S. Grivet-Talocia and A. Ubolli. On the generation of large passive macromodels for complex
interconnect structures. IEEE Trans. Adv. Packaging, 29(1):39–54, 2006.

[42] S. Grivet-Talocia and A. Ubolli. Passivity enforcement with relative error control. IEEE Trans.
Microw. Theory Tech., 55(11):2374–2383, 2007.

[43] S. Grivet-Talocia and A. Ubolli. A comparative study of passivity enforcement schemes for linear
lumped macromodels. IEEE Trans. Adv. Packaging, 31(4):673–683, 2008.

[44] B. Gustavsen. Computer code for passivity enforcement of rational macromodels by residue
perturbation. IEEE Trans. Adv. Packaging, 30(2):209–215, 2007.

[45] B. Gustavsen. Fast passivity enforcement for pole-residue models by perturbation of residue
matrix eigenvalues. IEEE Trans. Power Deliv., 23(4):2278–2285, 2008.

[46] B. Gustavsen and A. Semlyen. Enforcing passivity for admittance matrices approximated by
rational functions. IEEE Trans. Power Syst., 16(1):97–104, 2001.

[47] B. Gustavsen and A. Semlyen. Fast passivity assessment for S-parameter rational models via a
half-size test matrix. IEEE Trans. Microw. Theory Tech., 56(12):2701–2708, 2008.

[48] B. Gustavsen and A. Semlyen. On passivity tests for unsymmetrical models. IEEE Trans. Power
Deliv., 24(3):1739–1741, 2009.

[49] D. Henrion. Course on LMI optimization with applications in control, Czech Technical
University, Prague, Czech Republic, April 2013. http://homepages.laas.fr/henrion/courses/
lmi13/. Accessed: 2018-11-27.

[50] A. Ionita and A. Antoulas. Data-driven parametrized model reduction in the loewner framework.
SIAM J. Sci. Comput., 36(3):A984–A1007, 2014.

[51] R. E. Kalman. Lyapunov functions for the problem of Lur’e in automatic control. Proc. Natl.
Acad. Sci., 49(2):201–205, 1963.

[52] M. Köhler. On the closest stable descriptor system in the respective spaces RH2 and RH∞.
Linear Algebra Appl., 443:34–49, 2014.

[53] A. Lamecki and M. Mrozowski. Equivalent SPICE circuits with guaranteed passivity from
nonpassive models. IEEE Trans. Microw. Theory Tech., 55(3):526–532, 2007.

[54] P. Lancaster and L. Rodman. Existence and uniqueness theorems for the algebraic Riccati
equation. Int. J. Control, 32(2):285–309, 1980.

[55] J. L. Yalmip. A toolbox for modeling and optimization in Matlab. In Computer Aided Control
Systems Design, 2004 IEEE International Symposium on, pages 284–289. IEEE, 2004.

[56] A. I. Luré. Some Non-linear Problems in the Theory of Automatic Control: Nekotorye Nelineinye
Zadachi Teorii Avtomaticheskogo Regulirovaniya (Gos. Isdat. Tekh. Teor. Lit., 1951, U. S. S. R.) A
Translation from the Russian. H.M. Stationery Office, 1957.

[57] M. A. Mabrok, A. G. Kallapur, I. R. Petersen, and A. Lanzon. Enforcing a system model to be
negative imaginary via perturbation of Hamiltonian matrices. In Decision and Control and
European Control Conference (CDC-ECC), 2011 50th IEEE Conference on, pages 3748–3752,
2011.

[58] R. März. Canonical projectors for linear differential algebraic equations. Comput. Math. Appl.,
31(4–5):121–135, 1996. Selected Topics in Numerical Methods.

[59] V. Mehrmann, C. Schröder, and V. Simoncini. An implicitly-restarted Krylov subspace method
for real symmetric/skew-symmetric eigenproblems. Linear Algebra Appl., 436(10):4070–4087,
2012.



178 | S. Grivet-Talocia and L.M. Silveira

[60] V. Mehrmann and D. Watkins. Structure-preserving methods for computing eigenpairs of large
sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comput., 22(6):1905–1925, 2001.

[61] V. Mehrmann and H. Xu. Perturbation of purely imaginary eigenvalues of Hamiltonian matrices
under structured perturbations. Electron. J. Linear Algebra, 17:234–257, 2008.

[62] R. Ober. Balanced parametrization of classes of linear systems. SIAM J. Control Optim.,
29:1251, 1991.

[63] A. Odabasioglu, M. Celik, and L. T. Pileggi. PRIMA: Passive reduced-order interconnect
macromodeling algorithm. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
17(8):645–654, 1998.

[64] P. C. Opdenacker and E. A. Jonckheere. A contraction mapping preserving balanced reduction
scheme and its infinity norm error bounds. IEEE Trans. Circuits Syst., 35(2):184–189, 1988.

[65] J. R. Phillips, L. Daniel, and L. M. Silveira. Guaranteed passive balancing transformations for
model order reduction. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 22(8):1027–1041,
2003.

[66] V.-M. Popov. Absolute stability of nonlinear systems of automatic control. Autom. Remote
Control, 22(8):857–875, 1962.

[67] T. Reis. Circuit synthesis of passive descriptor systems: a modified nodal approach. Int. J.
Circuit Theory Appl., 38(1):44–68, 2010.

[68] T. Reis and T. Stykel. Positive real and bounded real balancing for model reduction of
descriptor systems. Int. J. Control, 83(1):74–88, 2010.

[69] W. Rudin. Real and Complex Analysis, 3rd edition. McGraw-Hill, Inc., New York, NY, USA, 1987.
[70] E. R. Samuel, L. Knockaert, F. Ferranti, and T. Dhaene. Guaranteed passive parameterized

macromodeling by using Sylvester state-space realizations. IEEE Trans. Microw. Theory Tech.,
61(4):1444–1454, 2013.

[71] D. Saraswat, R. Achar, and M. S. Nakhla. Global passivity enforcement algorithm for
macromodels of interconnect subnetworks characterized by tabulated data. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., 13(7):819–832, 2005.

[72] D. Saraswat, R. Achar, and M. S. Nakhla. Fast passivity verification and enforcement via
reciprocal systems for interconnects with large order macromodels. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., 15(1):48–59, 2007.

[73] C. S. Saunders, J. Hu, C. E. Christoffersen, and M. B. Steer. Inverse singular value method
for enforcing passivity in reduced-order models of distributed structures for transient and
steady-state simulation. IEEE Trans. Microw. Theory Tech., 59(4):837–847, 2011.

[74] C. Scherer and S. Weiland. Linear matrix inequalities in control. Lecture Notes. Dutch Institute
for Systems and Control, Delft, The Netherlands, 2000.

[75] A. Semlyen and B. Gustavsen. A half-size singularity test matrix for fast and reliable passivity
assessment of rational models. IEEE Trans. Power Deliv., 24(1):345–351, 2009.

[76] R. N. Shorten, P. Curran, K. Wulff, and E. Zeheb. A note on spectral conditions for positive
realness of transfer function matrices. IEEE Trans. Autom. Control, 53(5):1258–1261, 2008.

[77] J. F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim.
Methods Softw., 11(1–4):625–653, 1999.

[78] T. Stykel. Gramian-based model reduction for descriptor systems.Math. Control Signals Syst.,
16(4):297–319, 2004.

[79] F. Tisseur. A chart of backward errors for singly and doubly structured eigenvalue problems.
SIAM J. Matrix Anal. Appl., 24(3):877–897, 2003.

[80] P. Triverio, S. Grivet-Talocia, and M. S. Nakhla. A parameterized macromodeling strategy with
uniform stability test. IEEE Trans. Adv. Packaging, 32(1):205–215, 2009.

[81] P. Triverio, S. Grivet-Talocia, M. S. Nakhla, F. Canavero, and R. Achar. Stability, causality, and
passivity in electrical interconnect models. IEEE Trans. Adv. Packaging, 30(4):795–808, 2007.

[82] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Rev., 38(1):49–95, 1996.



5 Passivity enforcement | 179

[83] Y. Wang, Z. Zhang, C.-K. Koh, G. K.-H. Pang, and N. Wong PEDS. Passivity enforcement for
descriptor systems via Hamiltonian-symplectic matrix pencil perturbation. In Computer-Aided
Design (ICCAD), 2010 IEEE/ACM International Conference on, pages 800–807, 2010.

[84] Y. Wang, Z. Zhang, C.-K. Koh, G. Shi, G. K.-H. Pang, and N. Wong. Passivity enforcement for
descriptor systems via matrix pencil perturbation. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., 31(4):532–545, 2012.

[85] D. S. Watkins. On Hamiltonian and symplectic Lanczos processes. Linear Algebra Appl.,
385(0):23–45, 2004. Special Issue in honor of Peter Lancaster.

[86] J. H. Wilkinson. The algebraic eigenvalue problem. Clarendon Press, 1965.
[87] J. C. Willems. Least squares stationary optimal control and the algebraic Riccati equation. IEEE

Trans. Autom. Control, 16(6):621–634, 1971.
[88] J. C. Willems. Dissipative dynamical systems part I: General theory. Arch. Ration. Mech. Anal.,

45(5):321–351, 1972.
[89] J. C. Willems. Dissipative dynamical systems part II: Linear systems with quadratic supply

rates. Arch. Ration. Mech. Anal., 45(5):352–393, 1972.
[90] M. R. Wohlers. Lumped and Distributed Passive Networks. Academic press, 1969.
[91] N. Wong and C.-K. Chu. A fast passivity test for stable descriptor systems via

skew-Hamiltonian/Hamiltonian matrix pencil transformations. IEEE Trans. Circuits Syst. I,
Regul. Pap., 55(2):635–643, 2008.

[92] V. A. Yakubovich. Solution of certain matrix inequalities encountered in non-linear control
theory. In Doklady Akademii Nauk, volume 156, pages 278–281. Russian Academy of Sciences,
1964.

[93] Z. Ye, L. M. Silveira, and J. R. Phillips. Fast and reliable passivity assessment and enforcement
with extended Hamiltonian pencil. In Computer-Aided Design - Digest of Technical Papers,
2009. ICCAD 2009. IEEE/ACM International Conference on, pages 774–778, 2009.

[94] Z. Ye, L. M. Silveira, and J. R. Phillips. Extended Hamiltonian pencil for passivity assessment
and enforcement for S-parameter systems. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2010, pages 1148–1152, 2010.

[95] A. Zanco, S. Grivet-Talocia, T. Bradde, and M. De Stefano. Enforcing passivity of parameterized
LTI macromodels via hamiltonian-driven multivariate adaptive sampling. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., 39(1):225–238, 2020.

[96] Z. Zhang and N. Wong. An efficient projector-based passivity test for descriptor systems. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., 29(8):1203–1214, 2010.

[97] Z. Zhang and N. Wong. Passivity check of S-parameter descriptor systems via S-parameter
generalized Hamiltonian methods. IEEE Trans. Adv. Packaging, 33(4):1034–1042, 2010.

[98] Z. Zhang and N. Wong. Passivity test of immittance descriptor systems based on generalized
Hamiltonian methods. IEEE Trans. Circuits Syst. II, Express Briefs, 57(1):61–65, 2010.

[99] K. Zhou, J. C. Doyle, and K. Glover. Robust and optimal control. Prentice Hall, Upper Saddle
River, NJ, 1996.




