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QUARTIC DIFFERENTIALS AND HARMONIC MAPS IN

CONFORMAL SURFACE GEOMETRY

FRANCIS BURSTALL, EMILIO MUSSO, AND MASON PEMBER

Abstract. We consider codimension 2 sphere congruences in pseudo-conformal

geometry that are harmonic with respect to the conformal structure of an or-

thogonal surface. We characterise the orthogonal surfaces of such congruences
as either S-Willmore surfaces, quasi-umbilical surfaces, constant mean curva-

ture surfaces in 3-dimensional space forms or surfaces of constant lightcone
mean curvature in 3-dimensional lightcones. We then investigate Bryant’s

quartic differential in this context and show that generically this is divergence

free if and only if the surface under consideration is either superconformal or
orthogonal to a harmonic congruence of codimension 2 spheres. We may then

apply the previous result to characterise surfaces with such a property.

1. Introduction

Bryant’s quartic differential is a well known conformal invariant of a surface in the
conformal 3-sphere S3, see [5]. Bryant proved that if a surface in S3 is Willmore then
this quartic differential is holomorphic. Voss [31] characterised surfaces for which
this quartic differential is holomorphic as either Willmore surfaces or surfaces with
constant mean curvature in some space form. See [2, 3, 23] for a recent overview. An
analogous problem was studied in [26] in the context of Laguerre geometry. In this
paper we shall define an analogous quartic differential for spacelike and timelike
surfaces in the (p, q)-sphere. We shall then see that generically this operator is
divergence free if and only if the surface is orthogonal to a harmonic congruence of
codimension 2 spheres.

Harmonic maps play a central role in conformal geometry and in particular the
study of Willmore surfaces. It is well known that a surface is Willmore if and only if
its central sphere congruence (alternatively known as the conformal Gauss map or
mean curvature sphere congruence) is harmonic [1, 5, 17, 29]. In [24, Theorem 4.8]
it is shown that a pair of surfaces in Sn, considered as a map into the space of point
pairs of Sn, is harmonic if and only if the surfaces are an adjoint pair of Willmore
surfaces (see also [18] when n = 3). Motivated by our result regarding Bryant’s
quartic differential, we shall investigate codimension 2 sphere congruences that are
harmonic with respect to the conformal structure of an orthogonal surface. We
characterise the orthogonal surfaces of such sphere congruences as either Willmore
surfaces, quasi-umbilic surfaces, constant mean curvature surfaces in 3-dimensional
space forms or surfaces of constant lightlike mean curvature in 3-dimensional light-
cones. In this way, we extend Voss’ characterisation to arbitrary codimension and
signature.

2020 Mathematics Subject Classification:. 53A31, 53B25, 53C43.

1



2 FRANCIS BURSTALL, EMILIO MUSSO, AND MASON PEMBER

Acknowledgements. The authors were partially supported by PRIN 2017 “Real
and Complex Manifolds: Topology, Geometry and Holomorphic Dynamics” (proto-
collo 2017JZ2SW5-004). The second and third authors also gratefully acknowledge
the support of GNSAGA of INdAM and the MIUR grant “Dipartimenti di Eccel-
lenza” 2018 - 2022, CUP: E11G18000350001, DISMA, Politecnico di Torino.

2. Conformal geometry

Given a vector space V and a manifold Σ, we shall denote by V the trivial
bundle Σ × V . If W is a vector subbundle of V , we denote by W (1) the subset of
V consisting of the images of sections of W and derivatives of sections of W with
respect to the trivial connection on V and call W (1) the derived bundle of W . In
general W (1) will not be a subbundle of V , however, in many instances, we may
assume that it is.

Let p, q ∈ N and let Rp+1,q+1 denote a (p + q + 2)-dimensional vector space
equipped with a non-degenerate symmetric bilinear form (., .) of signature (p+1, q+
1). Let L denote the lightcone of Rp+1,q+1. As in Möbius geometry, the projective
lightcone P(L) is a model of the conformal geometry that we are considering and
the pseudo-orthogonal group O(p+1, q+1) represents the group of transformations
of this geometry. We shall refer to P(L) as the (p, q)-sphere.

It is well known that the exterior algebra ∧2Rp+1,q+1 is isomorphic to the Lie
algebra o(p + 1, q + 1) of O(p + 1, q + 1), i.e., the space of skew-symmetric endo-
morphisms of Rp+1,q+1, via the isomorphism

a ∧ b 7→ (a ∧ b),

where for any c ∈ Rp+1,q+1,

(a ∧ b)c = (a, c)b− (b, c)a.

We shall make silent use of this identification throughout this paper.
As in the case of the conformal geometry of Sn (see [11, 20]), one can break

symmetry to study space form geometry. Choose a non-zero vector q ∈ Rp+1,q+1.
Then we define

(1) Qp,q := {y ∈ L : (y, q) = −1}.

This is isometric to a union of (p+ q)-dimensional space forms with signature (p, q)
and constant sectional curvature κ = −(q, q). q is called the space form vector
of Qp,q. In particular, if (q, q) = 0, then Qp,q is isometric to Rp,q: after fixing
a complementary lightlike vector o ∈ Rp+1,q+1 with (o, q) = −1, we have that
〈o, q〉⊥ ∼= Rp,q, where angled brackets 〈·〉 denotes the span of vectors. Now the
orthogonal projection

(2) π : Rp+1,q+1 → 〈o, q〉⊥, y 7→ y + (y, q)o + (y, o)q

restricts to an isometry from Qp,q to 〈o, q〉⊥. Moreover, the image of Qp,q ∩ 〈o〉⊥
under π is the lightcone of 〈o, q〉⊥.

2.1. Sphere congruences. (r, s)-spheres in P(L), that is totally umbilic submani-
folds of signature (r, s) that are maximal with respect to inclusion, are parametrised
by linear subspaces of Rp+1,q+1. Namely, given a subspace V of Rp+1,q+1 with sig-
nature (r+1, s+1), we identify this with an (r, s)-sphere via the map V 7→ P(V ∩L).
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Definition 2.1. An m-dimensional (r, s)-sphere congruence is an m-dimensional
manifold Σ together with a signature (r + 1, s + 1) subbundle V of Rp+1,q+1 or,
equivalently, a map from Σ into Grr+1,s+1(Rp+1,q+1). Thus t 7→ P(Vt ∩ L) is an
m-parameter family of (r, s)-spheres.

Submanifolds of conformal geometry are maps f : Σ → P(L) or, equivalently,
null line subbundles f ≤ Rp+1,q+1. We shall make no distinction between these two
objects.

Definition 2.2. An enveloping submanifold of a sphere congruence V is a null line
subbundle f ≤ V satisfying f (1) ≤ V .

An orthogonal submanifold of a sphere congruence W is a null line subbundle
f ≤W satisfying f (1) = f ⊕ (f (1) ∩W⊥).

Thus f envelopes V if, for all t ∈ Σ, f is tangent to P(Vt ∩ L) at t. On the
other hand, f is orthogonal to W if, for all t ∈ Σ, f cuts the sphere P(Wt ∩ L)
orthogonally at t.

2.2. Spacelike and timelike immersions. Suppose that Σ is a 2-dimensional
manifold and that f : Σ → P(L) is a spacelike or timelike immersion, i.e., f (1)/f
is a rank 2 bundle inheriting a non-degenerate metric from Rp+1,q+1. Let f (1)/f
have signature (2− ε, ε) for ε ∈ {0, 1}. Since f is null, it follows that f (1) ≤ f⊥.

Suppose that V is a (2− ε, ε)-sphere congruence enveloping f and suppose that
U ≤ f (1) is a rank 2 subbundle of f (1) that is complementary to f , i.e., f (1) = f⊕U .
Then U has signature (2− ε, ε). Since V ∩ U⊥ has signature (1, 1), we may choose

a null line subbundle f̂ , called a Weyl structure of f , such that V = (f ⊕ f̂)⊕⊥ U .
We now have a splitting of Rp+1,q+1:

(3) Rp+1,q+1 = f ⊕ f̂ ⊕ U ⊕ V ⊥.
This yields a splitting of the trivial connection as

(4) d = D − β − β̂ + II +A

where D is a metric connection preserving f , f̂ , U and V ⊥, and β ∈ Ω1(f̂ ∧ U),

β̂ ∈ Ω1(f ∧ U), II ∈ Ω1(U ∧ V ⊥) and A ∈ Ω1(f ∧ V ⊥).

Remark 2.3. Given a section F̂ ∈ Γf̂ , we have that

dF̂ = DF̂ − β̂F̂ +AF̂ .

Since DF̂ − β̂F̂ ∈ Ω1(V ) and AF̂ ∈ Ω1(V ⊥) we see that A is the obstruction to f̂
being a second enveloping surface of V .

The sphere congruence V also gives rise to a splitting of the trivial bundle

(5) Rp+1,q+1 = V ⊕ V ⊥,
and thus a splitting of the trivial connection

(6) d = DV +N V ,

where DV is the sum of the induced connections on V and V ⊥ and N V ∈ Ω1(V ∧
V ⊥). The condition that f envelopes V can the be characterised by N V f ≡ 0. In
terms of the splitting (3), (4), we have that

(7) DV = D − β − β̂ and N V = II +A.
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2.3. Central sphere congruence. Σ inherits a signature (2 − ε, ε) conformal
structure from the metrics (dF, dF ) for F ∈ Γf×. We write TΣ⊗C = T 1,0Σ⊕T 0,1Σ,
where T 1,0Σ and T 0,1Σ are the complex null line subbundles of this conformal
structure. When ε = 0 these are complex conjugate and when ε = 1 these are
the complex span of real null line bundles. We may then split U ⊗ C = U+ ⊕ U−,
where U+ = β(T 1,0Σ)f and U− = β(T 0,1Σ)f are complex null line subbundles of

Rp+1,q+1 ⊗ C. The restriction of β to T 1,0Σ then satisfies β1,0 ∈ Ω1,0(f̂ ∧ U+) and

similarly β0,1 ∈ Ω0,1(f̂ ∧ U−). Note that, since U+, U− ≤ U ⊗ C are complex null
lines subbundles, we have that they are parallel for the metric connection D.

The conformal structure gives rise to a Hodge star operator ? on T ∗Σ satisfying

?2 = (−1)1−εid. By fixing an orientation, we may assume that ? acts as (−1)
1−ε

2 id

on (T 1,0Σ)∗ and −(−1)
1−ε

2 id on (T 0,1Σ)∗.
The central sphere congruence of f is given by

Vcsc := f (1) ⊕ 〈dZ+
dZ−F 〉,

where F ∈ Γf , Z+ ∈ ΓT 1,0Σ and Z− ∈ ΓT 0,1Σ. Note that Vcsc does not depend
on choices. It is characterised by the following property:

Proposition 2.4. Suppose that V is a (2− ε, ε) sphere congruence enveloped by f .
Then V is the central sphere congruence of f if and only if II1,0 ∈ Ω1,0(U− ∧ V ⊥)
and II0,1 ∈ Ω0,1(U+ ∧ V ⊥).

Proof. Using the splitting (5) and (6), we have that

dZ+
dZ−F = DVZ+

dZ−F +N V
Z+
dZ−F,

for Z+ ∈ ΓT 1,0Σ, Z− ∈ ΓT 0,1Σ and F ∈ Γf . Since DVZ+
dZ−F ∈ ΓV it follows that

dZ+
dZ−F ∈ ΓV if and only if N V

Z+
dZ−F . Since N V f ≡ 0, the latter is equivalent

to 0 = N V
Z+
U− = (IIZ+ + AZ+)U− = IIZ+U−, using (7). Similarly, dZ−dZ+F ∈ ΓV

if and only if IIZ−U+ = 0. Finally, we have that dZ−dZ+
F ≡ dZ+

dZ−F modulo

f (1). Thus dZ+
dZ−F ∈ ΓV if and only if IIZ+

U− = 0 and IIZ−U+ = 0, proving the
result. �

From now on, let us assume that V is the central sphere congruence of f . Since
U± are null, Proposition 2.4 implies that

(8) [β1,0 ∧ II0,1] = [β0,1 ∧ II1,0] = 0.

Let us consider β̂. We may write β̂ = Q+ β̂0 where

Q1,0 ∈ Ω1,0(f ∧ U−), Q0,1 ∈ Ω0,1(f ∧ U+), and

β̂1,0
0 ∈ Ω1,0(f ∧ U+), β̂0,1

0 ∈ Ω0,1(f ∧ U−).

Notice that, since U± are rank 1 null subbundles,

[β1,0 ∧Q0,1] = [β0,1 ∧Q1,0] = 0, and(9)

[II1,0 ∧ β̂0,1
0 ] = [II0,1 ∧ β̂1,0

0 ] = 0.(10)

Remark 2.5. We may identify Q with the quadratic differential

q(X,Y ) = tr(f → f : F 7→ Q(X)β(Y )F ) = −(β(Y ), Q(X)).

Since Q1,0 ∈ Ω1,0(f ∧ U−) and Q0,1 ∈ Ω0,1(f ∧ U+), we have that q = q2,0 + q0,2,
where q2,0 ∈ Γ(T ∗Σ)2,0 and q0,2 ∈ Γ(T ∗Σ)0,2.
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In addition to the equations (8), (9) and (10), the flatness of the trivial connection

d = D − β −Q− β̂0 + II +A

gives rise to the Gauss-Codazzi-Ricci equations of the splitting:

RD + [β ∧ β̂0] +
1

2
[II ∧ II] = 0,(11)

dDβ = 0,(12)

dDQ+ dDβ̂0 − [A ∧ II] = 0,(13)

dDA− [Q ∧ II] = 0, and(14)

dDII− [β ∧A] = 0,(15)

where RD is the curvature tensor of the connection D. In the following sections we
shall utilise the equations derived in this section when U is a given rank 2 subbundle
of f (1).

2.4. Superconformal surfaces. In the conformal n-sphere Sn there is a class of
surfaces called superconformal surfaces that arise in the study of Willmore surfaces
(see [8, 13, 14, 15, 25]). These are the surfaces f for which II1,0V is isotropic, where
V is the central sphere congruence of f . In this setting, since these surfaces are
spacelike, one has that II0,1V is also isotropic.

When a surface is timelike, it is possible for II1,0V to be isotropic, independent
of the nature of II0,1V . We therefore make the following definitions in our more
general setting:

Definition 2.6. We call p ∈ Σ a superconformal (respectively, half-superconformal)
point of f if (II1,0V )(p) and (II0,1V )(p) are isotropic (exactly one of (II1,0V )(p) or
(II0,1V )(p) is isotropic).
f is called superconformal (respectively, half-superconformal) if every point p ∈ Σ

is superconformal (half-superconformal).
f is called nowhere superconformal (respectively, nowhere half-superconformal)

if no point p ∈ Σ is superconformal (half-superconformal).

3. Orthogonal surfaces of codimension 2 harmonic sphere
congruences

Suppose that f is an orthogonal surface to a codimension 2 sphere congruence
W . Then, it follows from Definition 2.2, that f (1) = f ⊕ U where U := W⊥. We
ask when U⊥ is a harmonic map with respect to the conformal structure of f . The
following theorem gives a complete answer to this question:

Theorem 3.1. Orthogonal surfaces of codimension 2 harmonic sphere congruences
are characterised, away from a nowhere dense subset of their domain, as either

• S-Willmore surfaces,
• quasi-umbilical surfaces,
• surfaces of constant mean curvature in 3-dimensional space forms, or
• surfaces of constant lightcone mean curvature in 3-dimensional lightcones.

This section is devoted to proving Theorem 3.1.
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Let V be the central sphere congruence of f and let f̂ be the Weyl structure of

f such that V = (f ⊕ f̂)⊕⊥ U . Let us now consider the orthogonal splitting

Rp+1,q+1 = U ⊕ U⊥

which yields the splitting of the trivial connection

(16) d = DU +NU ,

where DU is the sum of the induced connections on U and U⊥ and NU ∈ Ω1(U ∧
U⊥). Comparing this with the splitting (3) and (4), we have that

DU = D +A and NU = II− β −Q− β̂0.

The flatness of d implies that dD
UNU = 0. Thus U⊥ is harmonic with respect to

the conformal structure of f , i.e., dD
U

?NU = 0, if and only if

(17) dD
U

(NU )1,0 = 0 = dD
U

(NU )0,1.

The equation dD
U

(NU )1,0 = 0 then splits as

dDII1,0 − [A ∧ β1,0] = 0,(18)

−dDQ1,0 − dDβ̂1,0
0 + [A ∧ II1,0] = 0.(19)

Since U±, V
⊥ are D-parallel subbundles, we have that dDII1,0 ∈ Ω1,1(U− ∧ V ⊥),

whereas [A ∧ β1,0] ∈ Ω1,1(U+ ∧ V ⊥). Hence, (18) holds if and only if

dDII1,0 = 0,(20)

[A ∧ β1,0] = 0.(21)

Since β1,0 is nowhere zero, (21) holds if and only if A0,1 = 0. Equation (19) then
reduces to

dDQ1,0 = 0,(22)

dDβ̂1,0
0 = 0,(23)

using again the fact that U± are parallel subbundles of D. Similarly, one can show

that dD
U

(NU )0,1 = 0 if and only if

A1,0 = dDII0,1 = dDQ0,1 = dDβ̂0,1
0 = 0.

Since dDQ1,0 ∈ Ω2(f ∧ U−) and dDQ0,1 ∈ Ω2(f ∧ U+), we have that dDQ1,0 =

dDQ0,1 = 0 if and only if dDQ = 0. An analogous statement holds for dDβ̂0.
Recalling Remark 2.3, we have thus arrived at the following lemma:

Lemma 3.2. U⊥ is harmonic with respect to the conformal structure induced by f

if and only if f̂ is a second enveloping surface of V ,

dDQ = 0, and(24)

dDβ̂0 = 0.(25)

Suppose now that U⊥ is harmonic with respect to the conformal structure in-
duced by f . Together with (9) and (14), (24) implies that dQ = 0. Equivalently, q
is a divergence free quadratic differential. In particular, if ε = 0, then q is holomor-
phic. Since Q ∈ Ω1(f ∧ f⊥), it follows that if q 6= 0 then f is an isothermic surface
(see [7, 11]).
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Using the splitting (5) and (6), we have that

dD
V

(N V )1,0 = dDII1,0 − [β ∧ II1,0]− [β̂ ∧ II1,0]

= dDII1,0 − [Q0,1 ∧ II1,0]− [β̂0,1
0 ∧ II1,0]

= −[Q0,1 ∧ II1,0]

= −[Q ∧ (N V )1,0].

Similarly, one can show that DV (N V )0,1 = −[Q ∧ (N V )0,1]. Thus,

(26) DV ?N V = −[Q ∧ ?N V ],

implying that f is a constrained Willmore surface with Lagrange multiplier −q
(see [6, 10]). In particular, if q vanishes then f is a Willmore surface.

Lemma 3.3. Let p ∈ Σ and suppose that Q1,0(p) = 0 and Q0,1(p) 6= 0 (or Q1,0(p) 6=
0 and Q0,1(p) = 0). Then II1,0(p) = 0 (respectively, II0,1(p) = 0).

Proof. It follows from (14) that [Q ∧ II] = 0. Hence,

[Q1,0(p) ∧ II0,1(p)] + [Q0,1(p) ∧ II1,0(p)] = 0.

Since Q1,0 ∈ Ω1,0(f ∧ U−) and II0,1 ∈ (U+ ∧ V ⊥), one deduces that [Q1,0(p) ∧
II0,1(p)] = 0 if and only if Q1,0(p) = 0 or II0,1(p) = 0. Similarly, [Q0,1(p)∧ II1,0(p)] =
0 if and only if Q0,1(p) = 0 or II1,0(p) = 0. �

It follows from Lemma 3.3 that if q is degenerate then N V has rank one. Note
that this can only happen in the case that f is timelike, since in the spacelike case
q2,0 = q0,2. In accordance with [12, 27, 30] we have the following definition:

Definition 3.4. A timelike surface is called quasi-umbilical if its central sphere
congruence has rank 1.

Remark 3.5. In the case that f is a spacelike surface, we have that q is a holomorphic
quadratic differential. Thus q is either identically zero or has indefinite signature
away from a discrete subset of Σ where q vanishes. In the case that f is a timelike
surface, a divergence free quadratic differential locally has the form q = Udu2+V dv2

where (u, v) are null coordinates and U is a function of u and V is a function of v.
Therefore, at a point p ∈ Σ, qp can be one of 3 types: qp can be zero, degenerate
or non-degenerate. It is then not difficult to see that, off a nowhere dense subset of
Σ, each point has a neighbourhood on which q has constant type.

In summary, away from a nowhere dense subset of Σ, we may restrict to a subset
of Σ where f falls into one of the three categories:

(1) if q = 0 then f is a Willmore surface,
(2) if q is degenerate then f is a quasi-umbilical surface, and
(3) if q is non-degenerate then f is an isothermic constrained Willmore surface

with respect to the same divergence free quadratic differential.

We shall examine these cases separately and see that stronger statements on f hold.
Firstly we see that the nature of q can be characterised by the geometry of U . We
have that

(NU )1,0 = II1,0 − β1,0 −Q1,0 − β̂1,0
0 .

Hence,
((NU )1,0, (NU )1,0) = 2(β1,0, Q1,0) = −2q2,0.

Similarly, ((NU )0,1, (NU )0,1) = −2q0,2. Hence:
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Lemma 3.6. The metric induced by U is (weakly) conformally equivalent to the
conformal structure induced by f if and only if q = 0.

3.1. U⊥ conformal harmonic. Suppose now that U⊥ is a harmonic congruence
whose induced metric is conformally equivalent to the conformal structure induced
by f , i.e., by Lemma 3.6, Q = 0. Hence, f is a Willmore surface. Moreover,

since A = 0, f̂ is a second enveloping surface of V by Lemma 3.2. Using again

that Q = 0, yields that the induced conformal structure of f̂ is weakly conformally
equivalent to that of f and induces the same orientation on TΣ. This implies that
f is S-Willmore in the sense of Ejiri [17].

Conversely, suppose that f is S-Willmore with dual surface f̂ . Let V be the

central sphere congruence of f and define U := V ∩ (f ⊕ f̂)⊥. Since f̂ envelopes

V we have that A = 0. Then since f̂ is weakly conformally equivalent to f and
induces the same orientation on TΣ, we have that Q ≡ 0. It then follows by (13)

that dDβ̂0 = 0. Therefore, by Lemma 3.2, U⊥ is harmonic and by Lemma 3.6, U⊥

is conformally equivalent to f .
In summary:

Proposition 3.7. U⊥ is a conformal harmonic congruence of codimension 2-
spheres with respect to the conformal structure of an orthogonal surface f if and

only if f is S-Willmore with dual Willmore surface f̂ as a second orthogonal surface.

If, in addition to q = 0, we have that β̂0 ≡ 0, then f̂ is constant. We may then

choose a constant non-zero lightlike vector q ∈ Γf̂ . This defines a pseudo-Euclidean
space form Qp,q via (1) and V corresponds to the tangent plane congruence of f .
Since V is also the central sphere congruence, it follows that f is a minimal surface
(see [6]). Conversely, if f projects to a minimal surface in a pseudo-Euclidean space
form Qp,q then the tangent plane congruence of this surface and the central sphere

congruence coincide. Thus q ∈ V and we define f̂ = 〈q〉. Since f̂ is constant it

follows that β̂0 = 0 and q = 0.

Proposition 3.8. f̂ envelopes V with q = β̂0 = 0 if and only if f projects to a

minimal surface in a pseudo-Euclidean space form with space form vector q ∈ Γf̂ .

3.2. Degenerate q. Suppose that q is non-zero and degenerate. Then we have
already seen that this implies that f is a a quasi-umbilical surface.

Conversely, suppose that f is a quasi-umbilical surface. Then W := N V (TΣ)V ⊥

is a rank 1 null subbundle of V . Now W⊥ ∩ V has signature (1, 1, 1) (i.e. a rank
3 bundle spanned by an orthogonal basis consisting of a spacelike, timelike and

degenerate vector field) and thus there exists a rank 1 null subbundle f̂ ≤ W⊥

that only depends on 1 parameter and is complementary to W and f . Then,

since N V f̂ = 0, f̂ envelopes V . Let U := f ⊕ f̂ . Then, since f̂ only depends

on 1-parameter, it follows that dDβ̂0 = dDQ = 0, and thus U⊥ is harmonic by
Lemma 3.2.

Proposition 3.9. U⊥ is a harmonic congruence of codimension 2-spheres with
respect to the conformal structure of an orthogonal surface f with q degenerate if
and only if f is a quasi-umbilical surface.

When β̂0 ≡ 0, we have that β̂ = Q. This implies that β̂f̂ = IIV ⊥. Such surfaces
are called exceptional quasi-umbilical surfaces, see [27]. They satisfy the property
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that V ⊥ belongs to a constant (p+ q)-dimensional subspace of Rp+1,q+1. Namely,
if q1,0 ≡ 0, then this subspace is given by

W := U+ ⊕ f̂ ⊕ V ⊥.

Proposition 3.10. f̂ envelopes V with q degenerate and β̂0 = 0 if and only if f is
an exceptional quasi-umbilical surface.

3.3. Non-degenerate q. In [9] the surfaces in S3 that are simultaneously isother-
mic and constrained Willmore with respect to the same quadratic differential q are
characterised as constant mean curvature surfaces in 3-dimensional Riemannian
space forms (see also [4, 28]). In this subsection we shall see that an analogous
result is true in the (p, q)-sphere, yielding a characterisation of orthogonal surfaces
of a harmonic congruence of 2-spheres when q is non-degenerate.

Suppose that U⊥ is a harmonic sphere congruence with q non-degenerate. Since
this implies that f is isothermic, we have that V ⊥ is flat.

Lemma 3.11. One may write

II = [Q, ξ],

for some section ξ ∈ Γ(f̂ ∧ V ⊥).

Proof. Fix two nowhere zero one forms ω+ ∈ Ω0,1(U+) and ω− ∈ Ω1,0(U−). Then
we may write

II = ω− ∧N− + ω+ ∧N+

for some sections N+, N− ∈ Γ(V ⊥ ⊗ C). We may also write

Q = λF ∧ ω− + µF ∧ ω+,

for some nowhere zero functions λ and µ, and a nowhere zero section F ∈ Γf . Now
the condition [Q ∧ II] = 0 from (14) implies that

λN+ − µN− = 0.

Then N+ = µ
λN−. Hence,

II =
1

λ
(λω− ∧N− + µω+ ∧N−).

Therefore, II = [Q, ξ] with ξ := − 1
λ F̂ ∧ N−, where F̂ ∈ Γf̂ such that (F, F̂ ) =

−1. �

Assume that Σ is umbilic-free, i.e., II is nowhere zero. By Lemma 3.11, there

exists ξ ∈ Γ(f̂ ∧ V ⊥) such that II = [Q, ξ]. Since we are only considering points

where II is non-zero, we may write ξ = F̂ ∧N for some nowhere zero sections F̂ ∈ Γf̂
and N ∈ ΓV ⊥. Let L := 〈N〉. By (20) and (22), we deduce that

0 = [Q1,0 ∧ dDξ].

Since Q1,0 is nowhere zero, this implies that (dDξ)0,1 = 0. Similarly, using that
dDQ0,1 = dDII0,1 = 0, we can deduce that (dDξ)1,0 = 0. Hence

(27) 0 = dDξ = dDF̂ ∧N + F̂ ∧ dDN.

Thus dDN ∈ Ω1(L) and dDF̂ ∈ Ω1(f̂). Hence, L is a parallel subbundle of V ⊥.

Since D|V ⊥ is flat, there exists a section Ñ ∈ ΓL such that dDÑ = 0. After

rescaling F̂ , we may assume that N = Ñ . It then follows from (27) that dDF̂ = 0.
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In particular, this implies that RD|f⊕f̂ = 0. Moreover, RD|V ⊥ = 0 and, since

U⊥ = f ⊕ f̂ ⊕ V ⊥, it follows that U⊥ is flat.
Now set W := V ⊕ 〈N〉. This is a 5-dimensional subbundle of Rp,q. Since

II ∈ Ω1(U ∧ 〈N〉) and N is D-parallel, it follows that W is constant.

Lemma 3.12. Away from umbilic points we have that U⊥ is flat, i.e., U⊥ is a
cyclic congruence1, and f takes values in a 5-dimensional constant subspace W of
Rp,q.

Since f⊕ f̂ is flat, it follows from (11) that [β∧ β̂0]|f⊕f̂ = 0. We can then deduce

that

(28) β̂0F̂ = µβF,

for some function µ and F ∈ Γf such that (F̂ , F ) = −1. Note that since F̂ is
D-parallel, it follows that F is D-parallel. By (12) and (25) we have that

0 = dD(β̂0F̂ ) = dD(βF ).

Hence, µ is constant.
Since N is D-parallel and D is a metric connection, we have that (N,N) is

constant. Assume that (N,N) 6≡ 0 or, equivalently, (II, II) 6≡ 0. Without loss of
generality, assume that (N,N) = ±1. Set

q := F̂ − µF − (N,N)N.

Then

dq = dF̂ − µdF − (N,N)dN

= −QF̂ + β̂0F̂ − µβF − (N,N)IIN

= −QF̂ − (N,N)[Q, F̂ ∧N ]N

= −QF̂ + (N,N)2QF̂

= 0,

since (N,N) = ±1. We then conclude from [9] that f has constant mean curvature
H = −(N, q) = 1 in the space form defined by q with sectional curvature κ =
−(q, q) = −2µ− 1. We thus arrive at the following lemma:

Lemma 3.13. Assume that (II, II) 6≡ 0. Then f projects to a surface of constant
mean curvature in a 3-dimensional space form.

We now wish to see the converse of Lemma 3.13. Assume that (p + 1, q + 1) =
(4−ε, 1+ε) or (p+1, q+1) = (3−ε, 2+ε) and suppose that f projects to a constant
mean curvature surface F in a 3-dimensional space form defined by q with H ≡ 1.
That is, there exists N ∈ ΓV ⊥ with (N,N) = ±1, (q, N) = −1. Fix U such that

U⊥ = f ⊕ V ⊥ ⊕ 〈q〉.

We then obtain a line bundle f̂ such that V ∩ U⊥ = f ⊕ f̂ . We may now write

q = F̂ − µF − (N,N)N

1For more information on cyclic congruences, see [19].
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for some constant µ with F̂ ∈ Γf̂ such that (F, F̂ ) = −1. As before, U induces a
splitting of the trivial connection d = DU +NU with

DU = D +A and NU = −β − β̂ + II.

Since q ∈ U⊥ is constant, we have that DUq = 0 and NUq = 0. Hence,

(29) 0 = DUq = DF̂ − µDF − (N,N)DN +AF̂ − (N,N)AN.

Since, (N,N) = ±1 and V ⊥ is a 1-dimensional bundle, it follows that DN = 0.

Hence, AF̂ = 0, from which we deduce that A ≡ 0. Moreover, we deduce from (29)

that DF̂ = 0. Since (F, F̂ ) = −1, we then have that DF = 0.
On the other hand, NUq = 0 implies that

(30) 0 = NUq = µβF − (β̂0 +Q)F̂ − (N,N)IIN.

By evaluating the (1, 0) and (0, 1) parts of (30), we have that

0 = µβF − β̂0F̂(31)

0 = −QF̂ − (N,N)IIN.(32)

By (12), we have that dDβ = 0. Then since F and F̂ are D-parallel, we learn

from (31) that dDβ̂0 = 0. We then have by (13) that dDQ = 0. Thus, by applying
Lemma 3.2, we deduce that U⊥ is harmonic. If we assume that II is nowhere zero,
then (32) implies that Q is non-degenerate.

Remark 3.14. Geometrically, U⊥ represents the congruence of geodesics that inter-
sect F orthogonally, i.e., it is the congruence of normal geodesics.

We have thus arrived at the following proposition:

Proposition 3.15. U⊥ is a harmonic congruence of codimension 2-spheres with
respect to the conformal structure of an orthogonal surface f with q non-degenerate
and (II, II) 6≡ 0 if and only if f projects to a constant mean curvature surface in a
3-dimensional space form with U⊥ being the congruence of normal geodesics.

In the proof of Proposition 3.15 we observe that H ≡ 1 and the sectional curva-
ture κ = −2µ−1. Thus, H2 +κ = −2µ. When µ = 0 we then have that H2 +κ = 0
which corresponds to the case that f projects to a CMC-1 surface in hyperbolic
space H3, H2,1 or H1,2. Such surfaces can be constructed from holomorphic data,

see [21]. On the other hand, when µ = 0, we have that β̂0 = 0, i.e., f̂ has the

same conformal structure as f and induces opposite orientation on TΣ. Thus, f̂ is
a Darboux transform of f (see for example [7]).

Proposition 3.16. Suppose that and (II, II) 6≡ 0. Then f̂ envelopes V with q

non-degenerate and β̂0 = 0 if and only if f projects to a CMC-1 surface in a 3-
dimensional space form with κ = −1.

We now wish to study the case when (II, II) ≡ 0. Note that, by Definition 2.6,
f is a superconformal surface. Suppose that U⊥ is a harmonic sphere congruence
with q non-degenerate. Then by Lemma 3.12 we have that f is contained in a
constant 5-dimensional space W . This space is degenerate and there exists a vector
o ∈ W such that W ⊥ o. Now H := U ⊕ NU (TΣ)U is a constant 4-dimensional
subspace of W with signature (3 − ε, 1 + ε). We may choose a complementary
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lightlike vector q ∈ H⊥ with (o, q) = −1. Without loss of generality, we shall
assume that (p+ 1, q + 1) = (4− ε, 2 + ε), so that

Rp+1,q+1 = H ⊕⊥ 〈o, q〉.
The projection (2) then yields an isometry between H and Qp,q as in (1). Since
dF ∈ Ω1(U), we may rescale F so that (F, q) = −1. Moreover, since F ⊥ o,

x := π(F ) takes values in the 3-dimensional lightcone L3 of H. Since f ⊕ f̂ is flat,

we may choose sections F ∈ Γf and F̂ ∈ Γf̂ such that (dF, F̂ ) = 0 and (F, F̂ ) = −1.

Defining xl = 2π(F̂ ) we have that xl take values L3 and 〈x, xl〉 is a flat bundle with
(x, xl) = −2. Thus the ordered pair formed by x and xl is a Legendrian submanifold
Σ→ L3×L3 in the sense of [22] and xl is a lightcone normal vector to x. Moreover,
the condition (28) implies that x is a surface of constant lightcone mean curvature
Hl = −µ2 .

Conversely, suppose that o, q ∈ R4−ε,2+ε and consider a surface of constant
lightcone mean curvature x in the 3-dimensional lightcone of 〈o, q〉⊥. Let xl denote
the lightcone normal vector x. Then x lifts to a surface F := x+ o in Q3−ε,1+ε and
one can check that U := dF (TΣ) gives rise to a codimension 2 harmonic sphere
congruence U⊥ = 〈x, xl, o, q〉 for which f = 〈F 〉 is orthogonal.

Proposition 3.17. U⊥ is a harmonic congruence of codimension 2-spheres with
respect to the conformal structure of an orthogonal surface f with q non-degenerate
and (II, II) ≡ 0 if and only if f projects to a surface of constant lightcone mean

curvature in a 3-dimensional lightcone with f̂ projecting to the lightcone normal
vector of f .

This concludes the proof of Theorem 3.1.

4. Bryant’s quartic differential

In this section we shall derive a quartic differential Q for a surface in the (p, q)-
sphere, analogous to Bryant’s quartic differential in S3. We then investigate the
vanishing of Q and when Q is divergence free, giving us generalisations of the results
of [2, 3, 31] to higher codimension and arbitrary signature.

Let V be the central sphere congruence of f and recall that we may split the
trivial connection as

d = DV +N V ,

where DV is the sum of the induced connections on V and V ⊥ and N V ∈ Ω1(V ∧
V ⊥). Define a quartic differential Q ∈ Γ((T 4,0Σ)∗ ⊕ (T 0,4Σ)∗) by

Q(Z,Z,Z, Z) := (DVZN V
Z ,DVZN V

Z ),

for Z ∈ ΓT 1,0Σ or Z ∈ ΓT 0,1Σ.

Definition 4.1. Q ∈ Γ((T 4,0Σ)∗⊕ (T 0,4Σ)∗) is called Bryant’s quartic differential.
Surfaces for which V admits a second envelope and Q is divergence free are called
Voss surfaces2.

Suppose that V admits a second envelope f̂ and define U := f ⊕ f̂ . Then in
terms of the splitting of Section 2, (7) implies that

DV = D − β −Q− β̂0 and N V = II.

2These are not to be confused with the “surfaces of Voss” studied by Eisenhart [16].
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Suppose that Z ∈ ΓT 1,0Σ. Then N V
Z = II1,0

Z ∈ Γ(U− ∧ V ⊥) and

DVZN V
Z = DZIIZ − [βZ , IIZ ]− [QZ , IIZ ]− [(β̂0)Z , IIZ ].

Now DZIIZ ∈ Γ(U− ∧ V ⊥), [βZ , IIZ ] ∈ Γ(f̂ ∧ V ⊥), [QZ , IIZ ] = 0 and [(β̂0)Z , IIZ ] ∈
Γ(f ∧ V ⊥). Hence,

(33) Q(Z,Z,Z, Z) = 2([βZ , IIZ ], [(β̂0)Z , IIZ ]) = 2([[βZ , IIZ ], IIZ ], (β̂0)Z),

using that the Killing metric is ad-invariant. Assume now that (z, z̄) are local null
coordinates for f and thus ∂

∂z ∈ ΓT 1,0Σ and ∂
∂z̄ ∈ ΓT 0,1Σ. Let

Q4,0 := Q( ∂∂z ,
∂
∂z ,

∂
∂z ,

∂
∂z ) and Q0,4 := Q( ∂∂z̄ ,

∂
∂z̄ ,

∂
∂z̄ ,

∂
∂z̄ ).

Lemma 4.2. Fix p ∈ Σ. Then Q4,0(p) = 0 if and only if β̂1,0
0 (p) = 0 or II ∂

∂z
V (p) is

an isotropic subspace of V ⊥(p)⊗C. Similarly, Q0,4(p) = 0 if and only if β̂0,1
0 (p) = 0

or II ∂
∂z̄
V (p) is an isotropic subspace of V ⊥(p)⊗ C.

Proof. A straightforward calculation shows that [[β ∂
∂z
, II ∂

∂z
], II ∂

∂z
] ∈ Γ(f̂ ∧ U−) and

vanishes if and only if II ∂
∂z
V is an isotropic subbundle of V ⊥ ⊗ C. Since β̂1,0

0 ∈
Ω1,0(f ∧ U+), the first part of the result follows from (33). An analogous analysis
can be applied to Q0,4 to complete the proof. �

Recalling Definition 2.6 we arrive at the following proposition:

Proposition 4.3. Suppose that f is nowhere half-superconformal, nowhere super-
conformal and that the central sphere congruence of f admits a second envelope.

Then Q ≡ 0 if and only if β̂0 = 0.

Proposition 3.8, Proposition 3.10 and Proposition 3.16 then yield the following
corollary:

Corollary 4.4. Suppose that f is nowhere half-superconformal and that the central
sphere congruence of f admits a second envelope. Then Q ≡ 0 if and only if, away
from a nowhere dense subset of Σ, f is either

• superconformal
• a minimal surface in Rp,q,
• an exceptional quasi-umbilical surface, or
• a CMC-1 surface in a 3-dimensional space form with sectional curvature
κ = −1.

Q is divergence free if and only if Q4,0
z̄ = Q0,4

z = 0. From (12) and (15) we have
that

D ∂
∂z̄
β ∂
∂z

= D ∂
∂z̄

II ∂
∂z

= 0.

Hence,

(34) Q4,0
z̄ = 2([[β ∂

∂z
, II ∂

∂z
], II ∂

∂z
], D ∂

∂z̄
((β̂0) ∂

∂z
)).

Similarly, we have that

Q0,4
z = 2([[β ∂

∂z̄
, II ∂

∂z̄
], II ∂

∂z̄
], D ∂

∂z
((β̂0) ∂

∂z̄
)).

Applying similar arguments as those in the proof of Lemma 4.2, we have that:
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Lemma 4.5. Fix p ∈ Σ. Q4,0
z̄ (p) = 0 if and only if D ∂

∂z̄
((β̂0) ∂

∂z
)(p) = 0 or

II ∂
∂z
V (p) is an isotropic subspace of V ⊥(p)⊗ C. Similarly, Q0,4

z (p) = 0 if and only

if D ∂
∂z

((β̂0) ∂
∂z̄

)(p) = 0 or II ∂
∂z̄
V (p) is an isotropic subspace of V ⊥(p)⊗ C.

Theorem 4.6. Suppose that f is nowhere half-superconformal and nowhere super-
conformal. Then f is a Voss surface if and only if f is an orthogonal surface of a
harmonic congruence of codimension 2 spheres.

Proof. Suppose that f̂ is a second envelope of the central sphere congruence V of

f and define U := f ⊕ f̂ . By Lemma 4.5, Q is divergence free if and only if

D ∂
∂z̄

((β̂0) ∂
∂z

) = D ∂
∂z

((β̂0) ∂
∂z̄

) = 0,

i.e., dDβ̂0 = 0. Since A ≡ 0, we learn from (13) that dDQ = 0 if and only if

dDβ̂0 = 0. The result then follows from Lemma 3.2. �

We may now apply Theorem 3.1 to obtain a characterisation of Voss surfaces:

Corollary 4.7. Nowhere half-superconformal Voss surfaces in the (p, q)-sphere are
characterised, away from a nowhere dense subset of their domain, as either

• superconformal surfaces
• S-Willmore surfaces,
• quasi-umbilical surfaces, or
• constant mean curvature surfaces in 3-dimensional space forms.
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Geom., 5(2):97–116, 1987.

[30] D. The. Conformal geometry of surfaces in the Lagrangian-Grassmannian and second-order

PDE. Proc. London Math. Soc., 104(1):79–122, 2012.
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