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Abstract—Transorbital sonography is able to provide 

reliable information about (a) intra-cranial pressure estimation 
through the optic nerve sheath diameter (ONSD) measurement, 
and (b) optic nerve atrophy in patients with multiple sclerosis 
through the optic nerve diameter (OND). In this study, we 
present the first method for the automatic measurement of the 
OND and ONSD using a deep learning technique (UNet with 
ResNet50 encoder) for the optic nerve segmentation. The dataset 
included 201 images from 50 patients. The automated 
measurements were compared with manual ones obtained by 
one operator. The mean error was equal to 0.07 ± 0.34 mm and 
-0.07 ± 0.67 mm, for the OND and ONSD, respectively. The 
developed system should aid in standardizing OND and ONSD 
measurements and reduce manual evaluation variability. 

Keywords—optic nerve diameter, optic nerve sheath diameter, 
segmentation, deep learning, CNN 

I. INTRODUCTION  
Transorbital sonography (TOS) allows the non-invasive 

evaluation of the optic nerve (ON) structures and has been 
used mainly for the assessment of the optic nerve sheath 
diameter (ONSD) for estimating and monitoring increased 
intra-cranial pressure in many neurological disorders 
including traumatic brain injury, coma, ischemic and 
hemorrhagic stroke, idiopathic intracranial hypertension, 
hydrocephalus, posterior reversible encephalopathy [1], [2]. 
In addition, TOS has found application in the detection of ON 
atrophy in patients with multiple sclerosis [3] by measuring 
the ON diameter (OND), thus opening the way for a wider 
use of the technique also in neurodegenerative diseases.  

Manual evaluation of the OND and ONSD have shown to 
have good intra- and inter-observer reproducibility when 
using high frequency (> 7MHz) linear probes [4], but it is also 
highly affected by the operator’s expertise [5]. Fig. 1 shows 
an example of how the manual computation of the OND and 
ONSD are done.  

Deep learning segmentation methods based on 
convolutional neural networks (CNNs) have recently become 
the go-to technique in the medical image analysis field. The 
main advantage of CNNs is that they automatically learn 
high-level features on the image and then can provide a 
semantic segmentation by associating each pixel to a label. 

One of the main drawbacks to deep learning methods is the 
need of a large annotated database, which has somewhat, but 
not totally, been mitigated with the employment of transfer 
learning [6].  

Recently, there have been a number of methods presented 
in literature to aid the computation of the OND and ONSD, 
using either semi-automatic or completely automatic 
techniques [7]–[11]. The majority of these studies, however, 
utilize a rather limited database size with a maximum of 88 
images, presented in the study by Rajajee et al. [11], and all 
methods are based on traditional image-processing 
techniques, which are often fine-tuned to the specific 
database that is used entirely as both a training and a test set.  

In this study, we present an automatic segmentation 
method of the optic nerve in transorbital ultrasound images 
employing a large dataset and using a deep learning approach 
for the first time. 

 

 

Fig. 1. Example of manual optic nerve diameter (OND) and optic nerve 
sheath diameter (ONSD) measurement. 



II. MATERIALS AND METHODS 

A. Dataset and CNN architecture  
The ultrasonographic studies were performed with 5 

different ultrasound machines (MyLab Gold 30 and MyLab 
Seven, Esaote, Genova, Italy; Toshiba Medical System Aplio 
300 and AplioXG, Nasu, Japan; Vivid 7 sonography system, 
GE Healthcare, Milwaukee, USA), equipped with linear 
transducers in the 3-11 MHz or 7.2-14 MHz frequency range 
and a lateral resolution of <0.4mm. The dataset employed in 
this work contains 201 images obtained from 50 subjects. 
Written consent was obtained from each participant. Since 
the size of the dataset is too limited to have an unbiased 
estimation of the model performance, we divided the dataset 
into 5 folds, and then performed cross-validation. For each 
run, we used 3 folds for training, one for validation, and one 
for testing. The number of images in each fold ranges from 
31 to 46 images because not all the subjects have the same 
number of images and we enforced that all the images of a 
subject must belong to the same fold. The images were 
automatically cropped into 256x256 pixel squares containing 
the optic nerve and were input to the network. The automatic 
cropping was done searching for anechoic circular structures 
in the image by the circular Hough transform. 

The CNN network that was employed was a Unet with a 
ResNet50 Encoder pretrained on the ImageNet dataset [12]; 
a representation of the model is shown in Fig. 2. 

We applied on the fly augmentation performing random 
affine transformations, sharpening, and blurring of the 
images. The network was trained using Adam's optimization 
algorithm with an initial learning rate of 0.0002, batch size of 
8, and Dice Loss as the objective function. The learning rate 
decreases by a factor of 10 every 10 epochs without 
improvements in the IoU, and the training stops if this 
condition reaches 25 epochs, the maximum number of epochs 
is 50. For the network implementation and training, we 
adopted the same code we used in our previous work [1]. For 
each fold, the network reached its optimal state between 
epoch 33 and epoch 49, with a training time of under 10 

minutes using an Nvidia RTX 3070 with 8 GB of VRAM. 
The loss path on the validation set for each fold is visualized 
in Fig. 3. 

The output of the network is then post-processed to ensure 
the presence of only the left and right ON sheaths, maintaining 
only the two larger connected areas. 

B. Validation 
The deep learning approach produces a binary mask of the 

optic nerve structure as an output. To validate the model, two 
approaches were employed: a first one compared the manual 
masks with the network output masks using the Precision, 
Recall, and Dice parameters, limiting the manual and 
automatic segmentation comparison only in the image rows 
where both the manual and the automatic segmentation are 
present. Secondly, since the parameters that are of actual 
clinical use are the OND and ONSD, the manual and 
automatic masks were analyzed to automatically compute the 
diameters. This was done by a custom-made code in Matlab 
2020b, and is based on (1) locating the optic nerve centerline 
thanks to the binary masks and finding the line perpendicular 

 
Fig. 2. Representation of the Unet with ResNet50 encoder deep learning model. 

 

 

Fig. 3. Loss path on the validation set for each fold 



to it, (2) locating the optic bulb as a circular anechoic region 
within the image, and finally (3) computing the Euclidean 
distance between the intersection points between the line 
perpendicular to the centerline and the segmentation mask at 
a 3mm distance below the optic bulb. 

III. RESULTS 
Merging the test sets in each fold we achieved a Dice 

score of 0.79 ± 0.11, a Precision of 0.77 ± 0.13, and a Recall 
equal to 0.82  ±  0.12. The mean OND error was equal to 0.07 
± 0.34 mm. The mean absolute error for the ONSD 
measurements was equal to -0.07 ± 0.67 mm. 

We performed a Wilcoxon paired test to investigate the 
differences in the OND and ONDS measurements between a 
human operator and the automatic algorithm, resulting in a p-
value of 0.004 and 0.057 respectively. 

Fig. 4 portrays an example of the obtained segmentation 
and diameter computation results.  

IV. DISCUSSION AND CONCLUSIONS 
This study is the first in literature that employs a deep 

learning technique for the segmentation of the optic nerve in 
transorbital ultrasound images. The proposed method is fully 
automated, starting from the optimal cropping of the image 
that is input to the deep network, to the post processing 
computation of the OND and ONSD. The total 
implementation time of the CNN, including the training and 
testing for each of the 5-folds was equal to 20 minutes.   

The obtained mean errors and mean absolute errors are 
comparable to those obtained in literature in previous studies. 
In particular, in our previous study [10], we presented a 
method based on dual snakes that obtained a mean error for 
the OND and ONSD equal to 0.06 ± 0.35 mm and 0.06 ± 
0.522 mm, respectively. More recently, Rajajee et al. [11] 

presented a method based on clustering and the mean error 
was equal to 0.012 ± 0.046. Table 1 shows a comparison 
between our obtained results and other recent clinical studies 
focusing on optic nerve segmentation in ultrasound images. 
We can see how here we show results for the largest dataset 
(i.e., 201 images) acquired with different ultrasound devices 
and in different centers. Moreover, the deep learning model 
was trained and tested on completely different images, 
showing unbiased and more robust results. The other studies 
in literature do not mention the division of their datasets into 
training/testing, so it is assumed that the training and test set 
coincide, which can polarize results and make the developed 
system less robust to new images.  

This study presents some limitations. First of all, while 
the employed dataset is larger than those in previously 
published studies, it is still limited, especially for the 
application of deep learning methods. Secondly, we did not 
present any inter- or intra-operator variability study. In fact, 
in literature there is still a variability of manual OND and 
ONSD measurements, which mainly reflect operator 
experience, an un-standardized image acquisition and 
measurement method [13], and the use of different ultrasound 
devices used for image acquisition. Due to this un-
standardization, we recognize that the actual OND and 
ONSD measurements could be considered untrustworthy, 
due to the blooming effect in ultrasound images that is 
evident especially when measuring small structures in the 
absence of a standard gain setting [14]. The smallness of the 
measured structure also directly influences the OND and 
ONSD error measurements. In fact, the calibration factor 
(mm/pixel) in the images in our dataset ranged from 0.0316 
to 0.1210, which demonstrates how one pixel more or less in 
the computation of the automatic vs. the manual diameter has 
to potential to have a large impact on the obtained 

 
Fig. 4. Example segmentation results. A) Original 256x256 pixels image. 
B) Deep learning network output overlaid on original image. C) 
Automatically determined centerline (yellow line), points used for optic 
nerve diameter measurement (red asterisks), points used for optic nerve 
sheath diameter measurement (green asterisks). D) Automatic 
segmentation (red borders) overlaid on manual segmentation mask. 

 

TABLE I.  SEGMENTATION COMPARISON  

 
Segmentation comparison results 

Data-
set Method OND error 

(mm) 
ONSD error 

(mm) 

[7] 23 
images 

Threshold 
+ distance 
transform 

- 

Pearson 
Correlation 
range =  
0.35 – 0.95 

[8] 50 
videos 

Super pixel 
analysis - MSE = 0.0018 

[9] 42 
images 

Assymetry 
features + 
active 
contour 

- ME = -0.08 ± 0.45 
ME = -0.05 ± 0.41 

[10] 75 
images 

Dual 
snakes 

ME =  
0.06 ± 0.35 
MAE =  
0.28 ± 0.22 
MSE =  
0.12 ± 0.17 

ME =  
0.06 ± 0.52 
MAE =  
0.41 ± 0.32 
MSE =  
0.27 ± 0.37 

[11] 88 
images Clustering - ME =  

0.012 ± 0.046  

Unet 201 
images 

UNet with 
ResNet 50 
encoder 

ME =  
0.07 ± 0.34 
MAE =  
0.26 ± 0.23 
MSE =  
0.12 ± 0.20 

ME =  
-0.07 ± 0.67 
MAE =  
0.48 ± 0.48 
MSE =  
0.45 ± 0.93  

a. ME: Mean error; MAE: Mean absolute error; MSE: Mean square error. 

 



performance.  The measured diameters by the deep learning 
method compared to the manual diameters showed error 
values that are still not ideal. This is noticeable especially 
with the ONSD measurement, where there is a bias by the 
automated method that produces a mean absolute error of 
0.48 mm.  Still, the error results obtained are smaller than the 
1mm difference that is usually expected between subjects 
with normal or elevated ICP. Hence, an approach like the one 
proposed should be able to distinguish these patient groups, 
although not specifically demonstrated here. 

Our future studies will focus on continuing to increase the 
dataset size and including an inter- and intra-operator 
variability study. Moreover, other deep learning architectures 
and the potential combination of methods to obtain an 
Ensemble network will be investigated, and we aim to reduce 
the network’s error measurements when computing the final 
OND and ONSD. Moreover, we would like to look into the 
influence of different gain and device settings on the 
network’s segmentation performance.  

Overall, the results are encouraging and the use of an 
automated artificial intelligence system such as the one 
proposed here will hopefully promote the standardization of 
OND and ONSD measurements and in the future provide a 
more comparable interpretation of results among studies. 
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