
08 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A simplified mathematical approach for the evaluation of the stabilizing forces applied by a passive cemented bolt to a
sliding rock block / Oreste, P.; Spagnoli, G.. - In: TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY. - ISSN
0886-7798. - STAMPA. - 103:(2020), p. 103459. [10.1016/j.tust.2020.103459]

Original

A simplified mathematical approach for the evaluation of the stabilizing forces applied by a passive
cemented bolt to a sliding rock block

Publisher:

Published
DOI:10.1016/j.tust.2020.103459

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2940996 since: 2021-11-28T20:47:45Z

Elsevier Ltd



1 

 

A simplified mathematical approach for the evaluation of the stabilizing forces 1 

applied by a passive cemented bolt to a sliding rock block 2 

Pierpaolo Oreste1, Giovanni Spagnoli2* 3 

1 Department of Environmental, Land and Infrastructure Engineering, Politecnico di 4 

Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy, pierpaolo.oreste@polito.it 5 

ORCID: 0000-0001-8227-9807 6 

2 BASF Construction Solutions GmbH, Dr-Albert-Frank-Strasse 32, 83308 Trostberg, 7 

Germany, *corresponding author, Tel: +49 8621 86-3702, 8 

giovanni.spagnoli@basf.com ORCID: 0000-0002-1866-4345 9 

Abstract 10 

Passive bolting is used to stabilise unstable rock blocks in surface and underground 11 

structures due to the various advantages it offers. Despite its use, the design phase 12 

still presents aspects of considerable complexity because the fact that the load of the 13 

bolt and therefore, its static action depends on its interaction with the block and the 14 

stable rock. In the present work, a mathematical model was developed which is 15 

capable of directly calculating the stabilisation forces as a function of the characteristic 16 

parameters of the bolt and of its interaction with the rock. This discussion is based on 17 

a simplified hypothesis of bolt behaviour, which provides negligible errors, and on the 18 

observation that the critical point is positioned at the intersection of the bolt with one 19 

of the lateral surfaces that separate it from the portion of stable rock. The formulation 20 

of the stabilisation forces obtained made it possible to evaluate the static contribution 21 

of each single bolt to the stability of the rock block, by varying the diameter of the steel 22 

bar and then designing the bolting operation to achieve acceptable stability conditions 23 
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for the rock block. The application of stabilising equations to a real case, for which the 24 

results of load tests on bolt tests were available, allowed us to outline steps to be taken 25 

in the bolt design process. 26 

 27 

Keywords: rock bolt; Winkler spring approach; rock block stabilisation; safety factor; 28 

bolt-rock relative displacement. 29 

  30 
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Abbreviations and nomenclature 31 

���� Area of the section of the steel bar constituting the bolt  32 

������	
 Axial stiffness of the bolt 33 

������	
,
�
 Axial stiffness of the tested bolt 34 

�������  Elastic modulus of the binder surrounding the steel bar in the hole 35 

������	
  Bending stiffness of the bolt 36 

������	
,
�
 Bending stiffness of the tested bolt 37 

�
  Steel elastic modulus 38 

�,���	� Safety factor of the bolt with respect to the tensile failure of the steel bar 39 

�,	�� Safety factor of the failure of the bolt-rock interface due to the bolt sliding 40 

��,� Integration constant in the axial rock-bolt interaction 41 

��,� Integration constant in the axial rock-bolt interaction 42 

��,�� Integration constant in the axial rock-bolt interaction 43 

��,�� Integration constant in the axial rock-bolt interaction 44 

����  Moment of inertia of the steel bar constituting the bolt  45 

�  Ratio between the normal pressure, �, which is applied on the perimeter 46 

of the bolt (on the wall of the hole) by the surrounding rock and the 47 

normal displacements, �, of the bolt 48 

�� Bolt length inside the unstable block 49 

�� Bolt length in the stable rock behind the unstable block 50 

�
�
 Length of the tested bolt 51 

� Bending moment in the bolt 52 

� Axial force in the bolt  53 

��, �! Bolt stabilising force in the direction of the bolt axis 54 
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�
�
 Tensile axial force applied at the bolt head from pull-out tests 55 

����	�  Force causing the bar failure under tensile stress 56 

�	��  Force causing the bolt-rock interface to fail for a unit bolt length  57 

�	��,
�
 Force causing the bolt-rock interface of the test bolt to fail (i.e., bolt slips 58 

away) 59 

�� Value of the tensile force in the axial direction of the bolt on the 60 

intersection point between the bolt and a block surface 61 

�  Value of the normal pressure (perpendicular to the axial direction) 62 

applied on the lateral surface of the bolt 63 

"#�	�  Perimeter of the cross-section of the bolt 64 

"#�	�,
�
 Perimeter of the cross-section of the tested bolt 65 

$���  Static moment of the half section of the bar with respect to the 66 

barycentric axis  67 

% Shear force in the bolt 68 

&������  Thickness of the binder annulus surrounding the steel bar 69 

%�  Value of the shear force perpendicular to the axial direction of the bolt 70 

on the intersection point between the bolt and a block surface 71 

%�, �! Bolt stabilising force in the transverse direction 72 

%
�
 Force perpendicular to the axis of the bolt in correspondence to its head 73 

from lateral shear tests 74 

'�  Value of the relative axial displacement between the bolt and the 75 

surrounding rock 76 

�  Normal displacements of the bolt perpendicular to the axial direction of 77 

the bolt 78 
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)  Parameter characterising the interaction in the axial direction between 79 

the bolt and the surrounding rock ) = +,-⋅/012345  80 

�  Parameter characterising the interaction in the transverse direction 81 

between the bolt and the surrounding rock 6 = +7⋅801239⋅4:;
 82 

�<  Ratio between the shear stresses, �, that develop on the perimeter of the 83 

bolt and the relative axial displacements, '� 84 

� Arbitrary displacement of the block 85 

��  Displacement component of the block in the axial direction of the bolt 86 

=�,
�
 Bolt head axial displacement due to the application of the axial force, 87 

�
�
 88 

�
  Displacement component of the block in the transverse direction of the 89 

bolt 90 

=
,
�
 Transverse bolt head displacement due to the application of a shear 91 

force, %
�
 92 

Φ���  Diameter of the steel bar 93 

Φ#�	�  Diameter of the hole (of the bolt) 94 

Φ#�	�,
�
 Diameter of the tested bolt 95 

? Adimensional parameter for the evaluation of the stabilising forces 96 

@ Adimensional parameter for the evaluation of the stabilising forces 97 

A Adimensional parameter for the evaluation of the stabilising forces 98 

B Adimensional parameter for the evaluation of the stabilising forces 99 

C Adimensional parameter for the evaluation of the stabilising forces 100 

D Adimensional parameter for the evaluation of the stabilising forces 101 

����	� Steel yield stress 102 
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E��  Ideal stress which accounts for the simultaneous presence of an axial 103 

and a shear stress in the same section of the steel bar 104 

F  Shear stress on the lateral surface of the bolt 105 

�	�  Ultimate limit shear stress of the rock-bolt interface 106 

F�,� Existing shear stress for x=0 (at the intersection with a lateral surface of 107 

the rock block) on the side of the potentially unstable rock block 108 

F�,��  Existing shear stress for x=0 (at the intersection with a lateral surface of 109 

the rock block) on the side of the portion of stable rock 110 

G Adimensional parameter for the evaluation of the stabilising forces  111 

 112 

  113 
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Introduction 114 

Passive rock bolts (Fig. 1), which have zero initial load, are normally used to 115 

prevent rock blocks from falling or sliding. The mobilised stabilising load increases with 116 

the displacement of the potentially unstable rock block. Among the different types of 117 

passive rock anchors, fully-grouted rock bolts which rely on a binder that fills the 118 

annulus between the element and the borehole wall (Bawden, 2011) are normally used 119 

in practice and are able to support tensile, compressive, shear, and bending loads 120 

(Ghadimi et al. 2015). 121 

 122 

Fig. 1 Sketch of a passive rock bolt. 123 

As a result of the rock bolt deformation, a normal and a shear force act on the 124 

rock mass and restrain further deformation of the rock, transferring loads from the 125 

stable to the unstable rock mass (Nie et al. 2014). Rock bolts are used in both low and 126 

high in situ stress conditions (Li, 2017). In heavily jointed rocks, they create a 127 

‘reinforced arch’ around an underground opening, thereby providing stability to the 128 

cavity (Lang, 1961) as the bolt action increases due to an increase in axial shear forces 129 



8 

 

and bending moments in the bolt rod (e.g., ; Oreste, 2009; Oreste and Dias 2012; 130 

Ranjbarnia et al., 2014, 2016). Rock bolts improve the stiffness of rocks (Chappell, 131 

1989). The main factors affecting the shear strength of rock bolts are the materials 132 

they are made of, the size of the rod body, and the type of rock mass (Ferrero, 1995). 133 

Several analytical and numerical methods are found in the literature describing 134 

complex bolt-grout-rock interactions and suggesting improvements to bolt geometry, 135 

grout properties, or the interaction between the two (e.g., Blümel et al. 1997; Aziz and 136 

Jalalifar 2007; Osgoui and Oreste 2007; Das and Deb 2011; Aminaipour 2012; Oreste 137 

2013; Chen et al. 2015; Changxing et al. 2015; Chang et al. 2017). However, many of 138 

the methods found and described in the literature, with all their advantages and 139 

limitations, are too complex to use for conventional design analysis. In particular, the 140 

analysis of the behaviour of passive bolts used to stabilise a potentially unstable rock 141 

block that slides along one or more surfaces is complex. In this case, the passive bolts 142 

were initially unloaded and even a slight movement (sometimes imperceptible) could 143 

activate them, causing forces to develop along their axes and forces to be transferred 144 

to the block capable of stabilising it.  145 

This analysis can be done using numerical tools, but it requires rather long 146 

calculations and it is necessary to operate in a three-dimensional environment. An 147 

easier way to study the problem is to consider the bolt-rock interactions, both in the 148 

transverse and axial directions, using the Winkler spring approach (Oreste and 149 

Cravero, 2008; Oreste, 2009). In this way, the interaction phenomenon was studied in 150 

the elastic field and it was possible to quickly determine the stabilising forces of the 151 

bolt by evaluating the limits under the same operating conditions. Even this solution, 152 

however, requires a numerical solution to cope with the significant number of 153 

unknowns and the different boundary conditions that must be considered in order to 154 
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characterise the behaviour of the bolt. The analysis of the behaviour of passive bolts 155 

in a number of practical cases in which a bolt is needed to stabilise a block of 156 

potentially unstable rock and knowledge of the variability intervals of the parameters 157 

influencing the bolt-rock interaction allowed us to identify the critical points at which 158 

the bolt intersects with a lateral surface of the rock block.  159 

In addition, some simplified hypotheses on the behaviour of the bolt with respect 160 

to the transverse interaction with the surrounding rock have produced negligible errors 161 

and can significantly simplify the mathematical model. In this paper, we review the 162 

fundamental equations that govern bolt-rock interactions using according to the 163 

independent Winkler springs approach. The development of the mathematical model 164 

is explained in order to achieve the stabilisation forces that the bolts apply to prevent 165 

a potentially unstable block from sliding along one or more surfaces that separate it 166 

from stable rock. The fundamental parameters influencing these stabilisation forces 167 

are analysed in order to speed up the design of the operations needed to stabilise a 168 

rock block with the necessary safety factors. A practical application to a real case 169 

allowed us to delineate the process of determining the influencing parameters and 170 

assessing the stabilisation forces as the diameter of the steel bar that constitutes the 171 

bolts varies. 172 

Mathematical development of the simplified approach 173 

Oreste and Cravero (2008) developed a mathematical procedure to calculate 174 

the stabilising forces applied by a passive bolt to a rock block and studied the effect of 175 

an axial displacement and a lateral displacement of the block with respect to the 176 

direction of the bolt axis. The direction of the displacement vector of the rock block 177 

was initially determined on the basis of the orientation of the sliding surface, in 178 

particular of the orientation of the line of intersection of the sliding surfaces. 179 
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Then the angle H, which is the angle of the block displacement vector with the 180 

direction of the axis of the passive bolts, was estimated (Oreste, 2009). In underground 181 

applications, the bolts are generally arranged horizontally and perpendicular to the 182 

cavity wall where there is a rock block which is potentially unstable due to sliding along 183 

one or more natural discontinuities present in the rock mass. 184 

The axial component, ��, and the transversal component, �
, of a generic 185 

displacement of the rock block, =, are obtained from the following equations, 186 

respectively: 187 

 �� = −= ∙ KLM�H� (1) 188 

 �
 = = ∙ MNO�H� (2) 189 

The effect of the axial component is to create a displacement of the block in the 190 

direction of the bolt axis, with respect to the stable rock present at its contour. The 191 

effect of the transversal component is to create a relative displacement of the block in 192 

the direction perpendicular to the axis of the bolt, with respect to the stable rock 193 

present at its contour (Fig. 2). 194 

 195 

Fig. 2 Schematic representation of the potentially unstable rock block and the 196 

passive bolt (not to scale). PQ and PR are the lengths of the bolt inside the 197 
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potentially unstable rock block (zone I) and in the stable rock (zone II), 198 

respectively, S is the angle of the block displacement vector with the direction 199 

of the axis of the passive bolts. 200 

From the analysis of the axial component of the displacement, ��, it is possible 201 

to obtain the trend of the axial force, �, along the bolt and the relative displacement 202 

'� of the steel bar with respect to the surrounding rock and the shear stresses, F, 203 

developing at the interface between the bolt and the rock. 204 

In more detail, the trend of the axial force � for the two areas in which the bolt 205 

is divided were obtained from the following expressions: 206 

Within the rock block (zone I): � = ������	
 ∙ ) ∙ T��,� ∙ UV! − ��,� ∙ UWV!X (3) 207 

In the stable rock (zone II): � = ������	
 ∙ ) ∙ T��,�� ∙ UV! − ��,�� ∙ UWV!X (4) 208 

Where: 209 

 ��,� = −=� ∙ T�W�YZ⋅[⋅\]X⋅�YZ⋅[⋅\^�⋅_�`�YZ⋅[⋅T\^a\]Xb  (5) 210 

 ��,� = =� ∙ T�W�YZ⋅[⋅\]X�⋅_�`�YZ⋅[⋅T\^a\]Xb (6) 211 

 ��,�� = =� ∙ T�`�YZ⋅[⋅\^X⋅�YZ⋅[⋅\]�⋅_�`�YZ⋅[⋅T\^a\]Xb  (7) 212 

 ��,�� = =� ∙ T�`�YZ⋅[⋅\^X�⋅_�`�YZ⋅[⋅T\^a\]Xb (8) 213 

�� and �� are the lengths of the bolt inside the potentially unstable rock block (zone I) 214 

and in the stable rock (zone II), respectively, and their sum is the total length of the 215 

bolt; ) is a parameter characterising the interaction in the axial direction between bolt 216 

and rock as:  217 

 ) = +,-⋅/0123�45�c12d (9) 218 

������	
 is the axial stiffness of the bolt, evaluated as: 219 
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 ������	
 = �
 ∙ ef9 ∙ Φ����g + ������� ∙ _f9 ∙ TΦ#�	�� − Φ����Xb (10) 220 

Where: 221 

Φ��� is the bar diameter; 222 

�
 is the steel elastic modulus; 223 

������� is the elastic modulus of the binder surrounding the steel bar in the hole; 224 

"#�	� is the perimeter of the cross-section of the bolt; 225 

�< is the ratio between the shear stresses developing on the perimeter of the bolt (on 226 

the wall of the hole), �, and the relative axial displacements, '�. �< depends in general 227 

on the characteristics of the material surrounding the steel bar and on the elastic 228 

modulus of the rock; 229 

Φ#�	� is the diameter of the hole where the bolt is inserted as Φ#�	� = Φ��� + 2 ∙ &������; 230 

and 231 

&������ is the thickness of the binder annulus around the steel bar. 232 

The distance x, measured along the bolt axis, originates at the intersection point of the 233 

bolt with one of the block discontinuities (block surfaces). The shear stress, F, on the 234 

lateral surface of the bolt is given by the following equations: 235 

Within the rock block (zone I): F = −6< ∙ T��,� ∙ UV! + ��,� ∙ UWV!X (11) 236 

In the stable rock (zone II): F = −6< ∙ T��,�� ∙ UV! + ��,�� ∙ UWV!X . (12) 237 

By analysing the transverse component of the displacement �
, it is possible to 238 

obtain the trend of the shear force % along the bolt, the transverse displacement of the 239 

bolt � (in the direction perpendicular to its axis), and the bending moment �. 240 

It has been noted by an extensive parametric analysis adopting input 241 

parameters within ranges of variability typical of all possible cases which can be 242 

encountered in practice that it is possible to adopt a simplified approach referring to 243 
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the hypothesis of infinite bolt length in the two considered zones (zone I and zone II) 244 

making negligible errors (below 1%) (Oreste et al., 2020). 245 

In more detail, the trend of the shear force %, according to this simplified approach, 246 

was obtained from the following expression valid for both areas (zone I and II): 247 

 % = ������	
 ∙ 6j ∙ =
 ∙ UW,! ∙ TKLM�6k� − MNO�6k�X (13) 248 

In the same way, the trend of the moment � along the bolt is given by the following 249 

equation: 250 

 � = ������	
 ∙ 6� ∙ =
 ∙ UW,! ∙ MNO�6k� (14) 251 

Where: 252 

������	
 is the bending stiffness of the bolt, evaluated on the basis of the following 253 

equation: 254 

 ������	
 = �
 ∙ e fl9 ∙ Φ���9g + ������� ∙ _ fl9 TΦ#�	�9 − Φ���9Xb (15) 255 

and � is the parameter that characterises the interaction in the transverse direction 256 

between bolt and rock: 257 

 6 = + 7⋅m01239⋅�4:�c12d;
 (16) 258 

where � is the ratio between the normal pressure, �, which is applied on the perimeter 259 

of the bolt by the surrounding rock, and the transversal displacement, �, of the bolt. 260 

The critical point along the bolt is identified at the intersection with a potentially 261 

unstable rock block side surface (x = 0). At that point, the stress state inside the bar 262 

and on the bolt-rock interface is high. It is therefore useful to be able to evaluate the 263 

stress characteristics of the forces � and %, and the shear stress value F for x = 0, 264 

considering that �� (� for x=0) is zero: 265 

 �� = ������	
 ∙ ) ∙ T��,� − ��,�X (17) 266 

 %� = ������	
 ∙ 6j ∙ =
 (18) 267 
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 F�,� = −6< ∙ T��,� + ��,�X (19) 268 

 F�,�� = −6< ∙ T��,�� + ��,��X (20) 269 

From the previous equations it is possible to derive the safety factor of the bolt 270 

with respect to the tensile failure of the steel bar (�,���	�) and to the failure of the bolt-271 

rock interface due to the bolt sliding (�,	��): 272 

 �,���	� = nop32qnpq  (21) 273 

 �,	�� = r2psrt,uu (22) 274 

Where: 275 

E���	� is the yield stress of steel; 276 

F	�  is ultimate limit shear stress of the interface rock-bolt;  277 

F�,�� is the existing shear stress for x=0 (at the intersection with a lateral surface of the 278 

rock block) on the side of the portion of stable rock; this stress is greater than the 279 

analogous stress existing on the side of the potentially unstable rock block (F�,�); and 280 

E�� is the ideal stress which takes into account the simultaneous presence of an axial 281 

and a shear stress in the section of the steel bar as expressed by: 282 

 E�� = +e vt5c^wg� + 3 ∙ e yt∙zc^wmc^w∙:c^wg�
 (23) 283 

Where: 284 

���� is the area of the section of the steel bar constituting the bolt (���� = { ∙ mc^wZ9 ); 285 

$��� is the static moment of the half section of the bar with respect to the barycentric 286 

axis $��� = ��� ∙ Φ���j ; 287 

���� is the moment of inertia of the steel bar constituting the bolt, ���� = { ∙ mc^w;l9 ; 288 

By setting the values of the safety factors equal to the minimum values 289 

considered admissible for the two failure mechanisms considered (�,���	�|�,�� ,���	� 290 
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and �,	�� = �,�� ,	��) and by substituting, it is possible to obtain the following 291 

equations of the maximum forces %� and ��. Referring to the failure of the steel bar at 292 

the point of intersection with the block surface (x=0): 293 

 %�, �! = vop32q}~,^qs,op32q ∙ �
�� ����c12d∙[����c12d∙���Z∙�T�a3YZ[\^X∙e�Y3YZ[\]g��a3YZ[T\^a\]X� �Z∙ �d^�Z���`�;�

 (24) 294 

 ��, �! = vop32q}~,^qs,op32q ∙ �
��`�;� ∙�����c12d∙������c12d∙[ �Z∙� ��a3YZ[T\^a\]X�T�a3YZ[\^X∙e�Y3YZ[\]g�Z∙
��Z���

 (25) 295 

Where: 296 

����	� is the force causing bar failure under a tensile stress ����	� = E���	� ∙ ����. 297 

Referring to the failure of the bolt-rock interface at the point of intersection with 298 

the surface of the block (x = 0), with reference to the side on the stable rock, where 299 

shear stress F is higher: 300 

 %�, �! = 2 ∙ v~2p]}~,^qs,~2p] ∙ _�4:�c12d∙,��45�c12d∙V b ∙ � e�`�YZ[T\^a\]Xg��`�YZ[\^�∙T�`�YZ[\]X� ∙ �V ∙ &�O�H� (26) 301 

 ��, �! = v~2p]}~,^qs,~2p] ∙ �V ∙ �T�W�YZ[\]XT�`�YZ[\]X� (27) 302 

Where:  303 

�	�� is the force which causes the bolt-rock interface to fail for a unit bolt length �	�� =304 

F	� ∙ { ∙ Φ#�	�. 305 

The forces shown above represent the maximum forces that can be reached 306 

when the safety factors of the bolt, in the two failure mechanisms considered, reach 307 

the minimum allowable values. In practice, they are the maximum forces that can be 308 

achieved with the movement of the rock block, while keeping the bolt in safe operating 309 

condition. Verification against the two failure mechanisms must take place 310 
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simultaneously, and therefore, it was necessary to consider the minimum value 311 

between the two pairs of forces: 312 

 %�, �! = �NO � vop32q}~,^qs,op32q ∙ �+ �Z∙�Zd^�Z���`�;�  ;  v~2p]}~,^qs,~2p] ∙ �∙
������∙�∙V � (28) 313 

 ��, �! = �NO � vop32q}~,^qs,op32q ∙ �+�`�;� ∙d^�Z����Z∙�Z  ;  v~2p]}~,^qs,~2p] ∙ �V� (29) 314 

Where: 315 

 @ = _ �45�c12d∙V�4:�c12d∙,�b (30) 316 

 ? = �T�`�YZ[\^X∙T�W�YZ[\]Xe�`�YZ[T\^a\]Xg � (31) 317 

 C = �T�`�YZ[\^X∙T�`�YZ[\]Xe�`�YZ[T\^a\]Xg � (32) 318 

 B = �T�W�YZ[\]XT�`�YZ[\]X� (33) 319 

 320 

The forces obtained are of interest because they are the maximum values of 321 

axial and shear forces that can be achieved along the bolt (in particular at the point of 322 

intersection of the bolt with a lateral surface of the block). They also represent the 323 

stabilising forces that the single bolt applies to the potentially unstable rock block in 324 

the direction of the bolt axis (��, �!) and in the transverse direction (perpendicular to 325 

the bolt axis). This plane includes the block displacement vector (i.e., the intersection 326 

line of the sliding surfaces) and the bolt axis (%�, �!). 327 

Analysis of the stabilising forces of the passive bolt  328 

The stabilisation forces were evaluated starting from the limit forces ����	� and 329 

�	�� (which caused the two failure mechanisms described above) and the respective 330 



17 

 

minimum safety factors considered acceptable. It is also necessary to know the angle 331 

that the displacement vector of the block forms with the axis of the bolt (H) and the 332 

stiffness parameters @ and ). Other parameters that link the stiffness parameters to 333 

the geometric ones (�� and ��) are necessary for the calculation of ?, C, and B. 334 

Figures 3 through 9 show graphs of the dimensionless parameters @, ?, C, and 335 

B with changing stiffness value ) for different bar diameters Φ���, ��, and �� and for 336 

the stiffness parameter �. The values of bolt length and diameter adopted in the 337 

mathematical model are assumed on the basis of values available in the literature 338 

(e.g., Bawden, 2011; DSI, 2015). 339 

The graphs were obtained considering &������ equal to 10 mm, �
��	 equal to 340 

210 GPa, and ������� equal to 25 GPa. From the analysis of the figures, it is possible 341 

to detect how for ) > 5, the parameters ? and C can be set equal to 1; and the 342 

parameter B can be set equal to 1 for ) > 2. In all other cases, it is necessary to 343 

calculate the values through equations 30–33) or by using the graphs in Figures 3–6; 344 

then to proceed with the evaluation of the maximum forces %�, �! and ��, �! 345 

mobilisable by each bolt (eq. 28 and 29). If ) > 5, then equations 28 and 29 simplify 346 

as follows: 347 

 %�, �! = �NO � vop32q}~,^qs,op32q ∙ G ;  v~2p]}~,^qs,~2p] ∙ �V� (34) 348 

 ��, �! = �NO � vop32q}~,^qs,op32q ∙ D ;  v~2p]}~,^qs,~2p] ∙ �V� (35) 349 

Where: 350 

 G = �+ �Zd^�Z���`�;�  (36) 351 

 A = �∙
������  (37) 352 
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 D = �+�`�;� ∙d^�Z����Z  (38) 353 

For these cases, the length values �� and �� do not longer influence the values 354 

of the stabilising forces. The path of G, A, and D as functions of @ and the angle H are 355 

shown in Figures 7–9. The obtained forces (%�, �! and ��, �!) can then be included 356 

in the analyses for the block stability and therefore, to design the bolting intervention 357 

necessary to achieve stabilisation of the block. 358 

All the parameters mentioned in equations 30–33 and 36–38 are dimensionless and 359 

are only useful to better understand the evolution of the coefficients %�, �! and ��, �! 360 

by varying some fundamental parameters in the rock-bolt interaction. The only 361 

parameter that has an important physical meaning is @ (eq. 30), which is the ratio 362 

between the product of the stiffness parameters referred to the axial interaction divided 363 

by the product of the stiffness parameters referred to the transverse interaction 364 

between bolt and rock. 365 
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 366 

Fig. 3 Trend of the parameter � by changing � for different values of �. A) Bar 367 

diameter 20 mm; B) Bar diameter 28 mm; C) Bar diameter 36 mm. 368 

 369 
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 370 

Fig. 4 Trend of the parameter � by changing � for different values of PQ (bolt 371 

section in the potentially unstable rock block) and PR (bolt section in stable 372 

rock). 373 

  374 

 375 

Fig. 5 Trend of parameter   by changing � for different values of PQ (bolt section 376 

in the potentially unstable rock block) and PR (bolt section in stable rock). The 377 

line with PQ=1.5 m and PR=2.5 m overlaps the line with PQ=2.5 m and PR=1.5 m. 378 
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 379 

 380 

Fig. 6 Trend of the parameter B for PQ=0.5 m (bolt section in the potentially 381 

unstable rock block) and different values of PR (bolt section in stable rock). 382 

 383 

 384 

Fig. 7 Trend of the parameter ¡ by varying � for different values of angle S. 385 
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 386 

Fig. 8 Trend of the parameter ¢ by varying � for different values of angle S. 387 

 388 

 389 

Fig. 9 Trend of the parameter £ by varying � for different values of angle S. 390 

Application of the theoretical equations to a real case 391 

Based on the theoretical model discussed above, the importance of the stiffness 392 

parameters of the bolt-rock interaction () and �) on the behaviour of passive bolts is 393 

evident (see eq. 9 and 16). These parameters, which have the inverse dimension of 394 

length, depend respectively on the axial ������	
 (eq. 10) and bending stiffness 395 
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������	
 (eq. 15) of the bolt and on the parameters � and �<. The parameter � 396 

represents the ratio between the normal contact pressure, �, on the external surface 397 

of the bolt and the lateral displacement, �, of the bolt in the direction perpendicular to 398 

its axis (� = � ∙ �). On the other hand, �< represents the ratio between the shear stress 399 

� developing on the lateral surface of the bolt and the bolt-rock relative displacement 400 

'� in the axial direction (� = �< ∙ '�). The parameters � and �< can be obtained from 401 

specific in situ tests on bolts of reduced length (even the diameter may be different 402 

from what is intended to be used for the stabilisation of the block). More specifically, � 403 

can be obtained from lateral shear tests by applying a force perpendicular to the axis 404 

of the bolt in correspondence to its head (%
�
), while �< is obtained from pull-out tests 405 

of the bolt with the application of a tensile axial force at the bolt head (�
�
). 406 

The stabilising force equations ��, �! and %�, �! (eq. 28 and 29) have been 407 

applied to the case of a potentially unstable rock block in a limestone formation (mean 408 

intact UCS values were about 140 MPa) present near a municipal road in Northern 409 

Piedmont (Northern Italy). The block had a planar sliding surface with an inclination of 410 

35° with respect to the horizontal plane. The cement was CEM I 52.5 R with a 411 

water/cement ratio, w/c, 0.45, which is typical of anchors in rock (e.g., Littlejohn and 412 

Bruce, 1977). The grout was cured for 28 days prior to testing. Transverse load tests 413 

and pull-out tests were performed. 414 

The transverse load test (a non-destructive test) was carried out first, until a 415 

force compatible with the elastic behaviour of the bolt and its interface with the 416 

surrounding rock was reached. In the transverse load test (Fig. 10), a concrete ballast 417 

was connected to the bolt head through a rope. A dynamometric device applied stress 418 

on the rope and thus applied the test force (%
�
) to the bolt head. The force was 419 

increased in equal intervals until the maximum test force was reached. For each value 420 
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of the applied force, the displacement of the head =
,
�
 was measured in the same 421 

direction as the force through high precision strain gauges. It was possible to plot a 422 

diagram of %
�
 vs. =
,
�
, which identified a straight line that best approximated the 423 

experimental points, and to evaluate the angular coefficient which represents the ratio 424 

%
�
/=
,
�
. This ratio is useful for estimating the stiffness parameter � (eq. 39) and the 425 

stiffness parameter � (eq. 16). In the specific case examined, the transverse load test 426 

reached the maximum force of 0.75 tons with four successive load steps of equal 427 

value; the final displacement was 0.4 mm. The angular coefficient of the interpolated 428 

straight line was found to be approximately 18.4 MN/m. It was taken as the %
�
/=
,
�
 429 

(eq. 39), from which the value of the stiffness parameter, �, in the transverse 430 

interaction bolt-rock was estimated. The ratio between the applied force and the 431 

measured lateral displacement allowed us to obtain the parameter � from the following 432 

equation: 433 

 � = √9�m0123,d3~d∙ ¥�4:�c12d,d3~d� ∙ � yd3~d¦d,d3~d�;�
 (39) 434 

Where: 435 

=
,
�
 is the lateral bolt head displacement due to the application of a lateral shear 436 

force, %
�
; 437 

Φ#�	�,
�
 is the diameter of the tested bolt; and 438 

������	
,
�
 is the bending stiffness of the tested bolt. 439 
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 440 

Fig. 10 Sketch of the transverse load test for the evaluation of the stiffness 441 

parameters § and � (not to scale). 442 

After the lateral test, a strain-controlled pull-out test was performed to obtain 443 

the relation �,
�
 - =�,
�
, applying a 0.3 mm/sec pull rate. The test continued until the 444 

bolt was removed (i.e., failure of the bolt-rock interface) to evaluate the limit shear 445 

stress, F	� , on the lateral surface of the bolt: 446 

 F	� = v~2p],d3~df∙m0123,d3~d∙¨d3~d (40) 447 

Where: 448 

�	��,
�
 is the force which causes the bolt-rock interface of the test bolt to fail (i.e. bolt 449 

slips away). 450 

By carrying out bolt pull-out tests, it was possible to evaluate �< as a function of the 451 

ratio between the applied axial force and the measured axial displacement (Oreste 452 

and Cravero, 2008): 453 

 6< = �
/0123,d3~d∙�45�c12d,d3~d∙
��#Z�©�-⋅ª0123,d3~d����c12d,d3~d ∙«d3~d� ∙ � vd3~d¦�,d3~d��

 (41) 454 

Where: 455 
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�
�
 is the length of the tested bolt; 456 

=�,
�
 is the bolt head axial displacement due to the application of the axial force, �
�
; 457 

"#�	�,
�
 is the perimeter of the tested bolt; and 458 

������	
,
�
 is the axial stiffness of the tested bolt. 459 

Given the form of the equation, a numerical solution was then carried out.  460 

Experimental tests on a test bolt of 0.75 m length with a bar of 24 mm diameter 461 

and a thickness of the cementitious binder, &������, equal to 10 mm provided the 462 

following values: 463 

 average lateral displacement =
,
�
 of about 0.4 mm in the presence of a lateral 464 

force %
�
 of 0.75 tons; 465 

 average axial displacement =�,
�
 of about 0.1 mm in the presence of an axial 466 

force �
�
 of 1 ton; and 467 

 a pull-out force �	��,
�
 of 22 tons. 468 

From the tests carried out it was possible to obtain the parameters � (8.9 469 

MPa/mm), 6< (1.18 MPa/mm), and F	�  (2.08 MPa). From these values, the remaining 470 

parameters necessary for the calculations were obtained for the different diameters of 471 

the steel bar, assuming �� = 1.5 m (bolt length inside the block) and �� = 2.5 m 472 

(anchoring length in the stable rock): 473 

Φ���=20 mm: ) =1.5966; � =11.7975; @ =12.31; ? =1.00797; C =1.008655; B =0.99932; 474 

Φ���=24 mm: ) =1.3954; � =10.6492; @ =12.71; ? =1.01424; C =1.016135; B = 0.99813; 475 

Φ���=28 mm: ) =1.2492; � =9.6936; @ =12.93; ? =1.02154; C =1.025507; B =0.99613; 476 

Φ���=32 mm: ) =1.1377; � =8.8935; @ =13.02; ? =1.02933; C =1.036320; B =0.99325; 477 

Φ���=36 mm: ) =1.0494; � =8.2178; @ =13.05; ? =1.03720; C =1.048177; B =0.98953. 478 

 479 
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Finally, using equations 28 and 29, with ����	� = 400 MPa and �,�� ,���	� = 480 

�,�� ,	�� = 1.25, we obtained the trend of stabilising forces shown in Fig. 11A and 481 

11B. 482 

 483 

 484 

Fig. 11 Trend of the axial stabilisation force (¬,®Q¯) (A) and of the transverse 485 

stabilisation force °,®Q¯ (B) as the diameter of the steel bar varies for the case 486 

study. 487 

Knowing the stabilising forces that each bolt is able to offer to the potentially 488 

unstable rock block, it is possible to design the bolting system (number and diameter 489 

of the bolts) needed to achieve the desired safety factor with regard to the block sliding. 490 

Conclusions 491 
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The analysis of the behaviour of a passive bolt used to stabilise a potentially unstable 492 

rock block from sliding along one or more surfaces is complex and requires three-493 

dimensional numerical modelling in the presence of specific interfaces that represent 494 

the discontinuity surfaces that isolate the block and the contact surfaces of the bolt 495 

from the surrounding rock. Using the Winkler springs approach to simulate the bolt-496 

rock interaction in the transverse and axial directions, a numerical solution was created 497 

in order to manage the numerous unknowns in the problem. 498 

Thanks to the identification of specific critical points during the operation of 499 

passive bolts (at the point of intersection with the lateral surface of the block) and to 500 

the knowledge of the variability of intervals typical of the influential parameters that 501 

characterise the bolt-rock interaction, it was possible to develop a mathematical model 502 

to obtain the two stabilising forces that the bolt applies to the potentially unstable block. 503 

This model was based on some simplified hypotheses that produce a negligible error 504 

thanks to an extensive parametric analysis that considers intervals of variability typical 505 

of the parameters influencing the problem. These stabilisation forces are, in fact, the 506 

forces that must be considered as the static contribution of the bolt to reach conditions 507 

stable enough to be deemed acceptable for the potentially unstable block. One force 508 

was directed in the axial direction of the bolt; the other in a direction perpendicular to 509 

the axis of the bolt and lying in the plane which included the axis of the bolt and the 510 

displacement vector of the rock block.  511 

The equations obtained allowed us to quickly evaluate the extent of the 512 

stabilising forces as a function of the diameter of the steel bar and therefore made it 513 

possible to correctly design the bolting operation by defining the bolt diameter and the 514 

number of bolts needed to stabilise the block of rock. An example from a real case 515 
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allowed us to apply the equations obtained and chart the trend of the stabilisation 516 

forces as the diameter of the bar constituting the bolt changed. 517 
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FIGURE CAPTION 594 

Fig. 1 Sketch of a passive rock bolt. 595 

Fig. 2 Schematic representation of the potentially unstable rock block and the passive 596 

bolt (not to scale). �� and �� are the lengths of the bolt inside the potentially unstable 597 

rock block (zone I) and in the stable rock (zone II), respectively, H is the angle of the 598 

block displacement vector with the direction of the axis of the passive bolts. 599 

Fig. 3 Trend of the parameter @ by changing ) for different values of �. A) Bar diameter 600 

20 mm; B) Bar diameter 28 mm; C) Bar diameter 36 mm. 601 

Fig. 4 Trend of the parameter ? by changing ) for different values of �� (bolt section 602 

in the potentially unstable rock block) and �� (bolt section in stable rock). 603 

Fig. 5 Trend of parameter C by changing ) for different values of �� (bolt section in 604 

the potentially unstable rock block) and �� (bolt section in stable rock). The line with 605 

��=1.5 m and ��=2.5 m overlaps the line with ��=2.5 m and ��=1.5 m. 606 

Fig. 6 Trend of the parameter B for ��=0.5 m (bolt section in the potentially unstable 607 

rock block) and different values of �� (bolt section in stable rock). 608 

Fig. 7 Trend of the parameter G by varying @ for different values of angle H. 609 

Fig. 8 Trend of the parameter A by varying @ for different values of angle H. 610 

Fig. 9 Trend of the parameter ± by varying @ for different values of angle H. 611 

Fig. 10 Sketch of the transverse load test for the evaluation of the stiffness parameters 612 

� and � (not to scale). 613 

Fig. 11 Trend of the axial stabilisation force (��, �!) (A) and of the transverse 614 

stabilisation force %�, �! (B) as the diameter of the steel bar varies for the case study. 615 


