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ABSTRACT The study of the influence of Parkinson’s Disease (PD) on vocal signals has received much
attention over the last decades. Increasing interest has been devoted to articulation and acoustic characteriza-
tion of different phonemes.Method: In this study we propose the analysis of the Transition Regions (TR) of
specific phonetic groups to model the loss of motor control and the difficulty to start/stop movements, typical
of PD patients. For this purpose, we extracted 60 features from pre-processed vocal signals and used them as
input to several machine learning models. We employed two data sets, containing samples from Italian native
speakers, for training and testing. The first dataset - 28 PD patients and 22 Healthy Control (HC) - included
recordings in optimal conditions, while in the second one - 26 PD patients and 18 HC - signals were
collected at home, using non-professional microphones. Results: We optimized two support vector machine
models for the application in controlled noise conditions and home environments, achieving 98%± 1.1 and
88%± 2.8 accuracy in 10-fold cross-validation, respectively. Conclusion: This study confirms the high
capability of the TRs to discriminate between PD patients and healthy controls, and the feasibility of
automatic PD assessment using voice recordings. Moreover, the promising performance of the implemented
model discloses the option of voice processing using low-cost devices and domestic recordings, possibly
self-managed by the patients themselves.

INDEX TERMS Italian native speakers, Parkinson’s disease, support vector machine, tele-health, unvoiced
consonants, voice analysis, classification, machine learning.

I. INTRODUCTION
Parkinson’s Disease (PD) is a chronic and progressive dis-
order affecting 1% of the over 60 population worldwide,
and it is expected to interests more than 9 million people
in industrialized nations by 2030 [1]. This neurodegenerative
condition alters the functions of the basal ganglia, and leads
to a progressive loss of dopaminergic neurons, especially
in the substantia nigra of the midbrain [2]. Patients with
Parkinson’s Disease (PDP)s manifest a broad spectrum of
clinical symptoms, including bradykinesia, rigidity, tremor at
rest, postural instability, sleep disorders, and speech impedi-
ment [3], [4]. This latter is receiving an increasing attention
in the scientific community, due to the enormous amount of
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clinical information embedded in the vocal signal, despite the
simple data collection modality. Indeed, the speech produc-
tion is accomplished through synergistic articulating move-
ments that shape the excitation source to convey the final
sound [5]. The excitation source is the fundamental element
of vocal production, and can be voiced, unvoiced, or amixture
of both [5]. In the first case, the sound is produced by forcing
air through the vocal folds, which vibrate and generate a
quasi-periodic signal. In the second case, there is no constric-
tion of the vocal folds, and the airflow arrives unaltered to
the articulating elements, where the final sound is created
by forcing air through teeth, lips, and tongue [6]. During
the speech production, the speaker merges these sounds to
form phonemes, words, and phrases through a continuous
alternation of voiced and unvoiced traits. This complex pro-
cess, besides achieving the main objective of transmitting
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information, incorporates a large amount of data of clinical
interest. These data can be extracted and input to Machine
Learning (ML) algorithms, implementing a useful tool to
support the clinical practice.

Although speech analysis finds applications in any pathol-
ogy that directly or indirectly affects the vocal apparatus, it is
particularly effective in PD, as almost 90% of the affected
population manifest alterations in speech production [7], [8].
Moreover, PD is known to have a prodromal phase during
which neuro-degeneration is already underway, but cardinal
symptoms have not manifested yet [9]. Speech impairment
is known to occur up to 10 years earlier than cardinal mani-
festations, thus it can contribute to the early diagnosis of the
disease [9], [10]. Speech impediments in PDPs are usually
gathered under the general term of hypokinetic dysarthria
and affect in different ways the three dimensions of speech
(i.e. phonation, articulation, and prosody) [11]. Most of the
research community tends to focus on phonation to assess the
patient’s ability to force air from the lungs to the vocal folds
and make them vibrate to produce sounds [2]. However, it is
well known that sustained vowels are an over-simplistic task,
which does not include fluctuations in vocal characteristics
such as voice onset, terminations, and breaks [12]. This over-
simplification is directly linked to a reduced discriminatory
capability: according to the comparison between phonatory
and articulation approaches described in [12], the use of
articulation features together with ML techniques maximizes
the performance of PD automatic detection models, with
accuracy ranging from 80% to 95%.

Besides phonation and articulation, impairments in the
prosody of PDPs have been observed as well. Prosody studies
mainly focus on speech rate, pause, intonation, and general
communication skills of people [2]. As a result, the vocal
signal analysis is performed at high level and the extracted
parameters can be influenced by the data collection modality.
Indeed, it is well known that anxiety and state of alert influ-
ence PD symptoms [13]. Hence, recordings performed in a
controlled environment may not yield a realistic representa-
tion of the actual vocal alterations of the patient, as experi-
enced in daily life. On the other hand, a detailed articulation
analysis can investigate more specific aspects, less prone
to variations due to the patient’s emotional state. In more
detail, features can be extracted from different types of sound
regions and can be related to the speed or acceleration of
articulation elements [12]. TRs between segments can be
employed to describe the patient’s ability to initiate and stop
movements; the impaired articulation of different phonemes
can be measured to investigate how the disease affects the
regions of the phonation apparatus.

However, the aspects that contribute to the strong dis-
criminatory potential of articulation analysis also lead
to high complexity. While the analysis of consonants
contains more information than vowels, the pronuncia-
tion of such phonemes varies depending on the lan-
guage being considered [12], [14]. In addition, a detailed
analysis of phonemes requires the use of more precise

measurements than a prosody study. Moreover, although
recent works [12], [15] investigated the importance of the
distinct phonemic groups for the automatic identification of
PD, a specific set of phonemes that is language-independent
and has a proven high correlation with the disease is not
available yet.

The physiological motivation behind the TRs analysis is
the effect of the lack of coordination, typical of PDPs, in the
use of the source glottal [16], [17]. Indeed, the direct visual-
ization of the vocal fold vibration by video laryngoscopy [11]
revealed incomplete glottis closure due to impaired vocal fold
abduction and bowing. Additionally, asymmetry in vocal fold
closure and arytenoid cartilage position and movement have
also been described. Themotor impairment deriving from this
alteration can manifest in various manners. An example is
the phenomenon of voicing leakage [17]: after the production
of a voiced sound, PDPs face difficulties in interrupting the
vocal fold movement; thereafter a partial vibration is per-
ceived in lieu of the regular phonation interruption. Another
consequence is the spirantization, a speech impediment that
occurs when, due to incomplete closure of the vocal folds,
air escapes during what should be a silent interval [18],
implying a perceivable distortion of unvoiced consonants.
For example, a /t/ spirantized by PDPs may sound more
like /s/ [18]. Thereafter, in this work we aim to assess the
effectiveness of an acoustic analysis based on the study of
TRs between unvoiced consonants and the adjacent voiced
segments, to investigate which phonemes of the Italian lan-
guage are mostly affected by hypokinetic dysarthria, and
which features are most suitable for characterizing them
employing both optimal and sub-optimal recordings. From an
engineering perspective, we believe that the detailed analysis
of these alterations can help differentiating PDPs and HCs.
Moreover, the investigation of the phonetic mis-articulation
can provide enormous support to speech therapists during the
development of a rehabilitation therapy tailored for a single
patient, as well as during the follow-up stage.

The remainder of this paper is organized as follows.
In section II we review automatic methodologies for PDPs
speech analysis. In section III we address the employed data
sets as well as the feature extraction and selection methods,
and the classification model. In section IV we describe the
classification performance and the analysis of our findings.
Finally, in sectionV we draw conclusions and propose future
improvements for the present model.

II. RELATED WORK
The automatic identification of PD through the analysis of
vocal recordings has gained increasing attention over the last
decades. Interest has been recently devoted to the articula-
tion approach and the acoustic characterization of different
phonemes. In this context, [19] investigated the properties
of fricatives produced by PDPs, as these consonants are
commonly mispronounced in patients with dysarthria [20].
The authors analyzed a corpus including 10 PDPs and
9 HCs repeating two English words (sigh and shy) ten times.
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The acoustic measures included duration, intensity, and four
spectral moments. In fact, PDPs’ speech is characterized by
reduced segments length, and this is particularly evident in
consonants. Intensity measures the difference between the
fricative and the following segment, hence the ability of
the patient to perform a complex sequencing of movements.
Finally, spectral moments evaluate the co-articulation, hence
the coordination between successive gestures. Despite the
absence of a classification step, statistical analysis denoted
the high potential of the features extracted. However, due
to the reduced size of the dataset, the results can only be
considered preliminary.

The relevance of nasal consonants in the automatic identi-
fication of PDPs was investigated in [21]. In this work, the
authors explored the reliability of features extracted from
the sustained voiced consonant /m/ of 40 Australian native
English speakers (18 PDPs and 22 HCs). The parameters
were fed into a Support Vector Machine (SVM) classifier
with Radial Basis Function (RBF) to differentiate PDPs and
HCs, achieving 93% classification accuracy in the Leave One
Out (LOO) Cross Validation (CV). Moreover, the Spearman
correlation analysis showed that the features extracted were
highly correlated to the Movement Disorder Society revised
version of the Unified Parkinson’s disease rating scale motor
score (MDS-UPDRS-III). However, the performance of the
algorithm is referred only to the LOO-CV, with no mention
of accuracy achievable on new, previously unseen samples.

The possibility of employing specific phonemes in the
early identification of PD has been investigated in [22], whose
authors developed a diadochokinesis-based system consid-
ering articulation features of occlusive consonants. They
extracted temporal and spectral parameters from the Voice
Onset Time (VOT) segments of the /ka/, /ta/, /pa/ syllables,
using a dataset composed of 27 Spanish PDPs and 27 age-
matched Spanish HCs. The occlusive consonant /k/ exhibited
the highest discrimination capability, reaching a classification
accuracy of 94.4% in the case of LOO-CV and 92.2% using
10-fold CV. Also in this work, no experiment has been per-
formed on an independent test set.

More recently, [17] analyzed the importance of distinct
phonemic groups to discriminate PDPs from HCs. Start-
ing from the assumption that different acoustic segments
have different relevance, the authors proposed a method
based on Perceptual Linear Prediction (PLP) features and
Gaussian Mixture Models (GMM)-Universal Background
Models (UBM) classifiers to investigate the importance of
different phonemes. To this end, 5 corpora including Span-
ish and Czech native speakers were employed. The cross
validation results reached an accuracy ranging from 85%
to 94%(11-fold CV), while cross-corpora trials yielded an
accuracy between 75% and 82%. The post-hoc analysis of
the results suggested that occlusives, vowels, and fricatives
are the most relevant acoustic segments in the considered
languages. However, as also stated by the authors themselves,
the Czech dataset is made up only of male speakers and
PDPs are in an early stage of the disease, which prevents

from considering the cross-language results exhaustive. In a
subsequent work [1], the authors introduced for the first
time the analysis of transition between specific phonemes
and evaluated their influence in the detection of PD. In this
experiment, they developed a model employing GMM-UBM
classifiers and PLP as features extracted from relevant articu-
lationmoments, such as bursts, transitions between vowel and
consonants, or the beginning and end of the glottal activity.
The achieved accuracy in the Czech dataset was 94±1%,
while the best cross-corpora accuracy was 82± 13%. In both
cases, the speech task was the Diadochokinetic (DDK) task.
Also, the analysis demonstrated the influence of the language
on the models performance.

In this context, the first objective of this work is to
assess the effectiveness of an acoustic analysis based on the
study of TRs between unvoiced consonants and the adjacent
voiced segments. The second objective is to investigate which
phonemes of the Italian language are mostly affected by
hypokinetic dysarthria and which features are the most suit-
able for characterizing them. This task will convey valuable
information about phonetic groups with the highest discrim-
inating capability. This could enhance the identification of a
reduced phonetically balanced speech task that can minimize
the effort required to the patients, and the extension of the set
of features used for the description of TR proposed in [1].

Finally, the study aims to assess whether it is possible to
rely on recordingsmade independently by PDPs in their home
environment without supervision, and whether it is possible
to extract information from such recordings. We believe that
the development of a system that requires aminimum effort to
the patient, easy to use, and low cost can help in the patient’s
follow-up at home and can be employed by neurologists to
monitor the progression of the disease. Such a system may
support the clinical practice in patients’ follow-up, whilemin-
imizing the bias in voice analysis due to the non-comfortable
setting (e.g. hospital environment).

III. MATERIALS AND METHODS
In this section, we describe the employed datasets as
well as the algorithms implemented for PDPs’ voice
classification.

First of all, we want to identify the most suitable features to
analyze TRs between unvoiced consonants and the adjacent
voiced segments in the Italian language, and test whether
different phonemes requires different features to be effec-
tively characterized (section I). To this end, after performing a
robust pre-processing, described in section III-B, we devoted
much effort to feature extraction and selection, in order to
identify a compact set of features able to quantify the pho-
netic mis-articulation. As an example of the abnormalities
investigated in this study, in Fig. 1 we present the vocal
signal, its spectrogram obtained employing the Praat default
parameters, and the phonetic transcription of the Italian word
sciare pronounced by a PDP and an age-matched HC. It can
be appreciated that the spectrogram region related to the
Italian unvoiced phoneme /

∫
/ is clearly altered in the PDP
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TABLE 1. List of phonemically balanced phrases employed in the present study. The original Italian sentence and the corresponding translation into the
English language is reported.

FIGURE 1. Vocal signal, spectrogram and phonetic transcription of the
Italian word sciare pronounced by a PD patient and an age-matched HC.

case. Figure 2 depicts a simple flowchart to provide a general
overview of the workflow.

A. DATASET DESCRIPTION
1) MAIN DATABASE
The main database employed for this study is a public cor-
pus [23] made up of 65 Italian native speakers, includ-
ing 15 young HCs (age 20.8± 2.65), 22 elderly HCs (age
67.09± 5.16) and 28 PDPs (age 67.21± 8.73). None of the
HC reported speech or language disorders, and all PDPs
received their usual anti-parkinsonian treatment. The Hoehn

and Yahr (H&Y) was < 4, except for three patients (one clas-
sified as stage 5 and two as stage 4). All the recordings were
performedwith professional microphones in a quiet echo-free
room. The participants were asked to execute a set of tasks,
including reading of a phonetically balanced text, execution
of the syllables /pa/ and /ta/, phonation of the vowels /a/,
/e/, /i/, /o/, /u/, reading of a list of phonetically balanced
words, and finally reading of a list of phonetically balanced
sentences. For this specific application, we employed a subset
of this dataset composed of the entire PD population and the
22 age-matched elderly controls. The task considered for the
model development was the reading of the list of sentences,
whose transcription and translation into the English language
is reported in Table 1

2) ADDITIONAL DATASET
Data from the first dataset was recorded in optimal conditions
and this can be hardly reproduced in real-world scenarios.
Thus, we collected a second database registered under sub-
optimal conditions. We recorded data from 44 volunteers
(26 PDPs, age 71.7± 7.39 and 18 HCs, age 65.5± 8.42)
enrolled at A.O.U. Città della Salute e della Scienza di
Torino, Associazione Amici Parkinsoniani Piemonte Onlus
and Imperia Hospital. The inclusion criteria were: a clinical
diagnosis of idiopathic PD with vocal signs and symptoms;
nomajor cognitive impairment or other conditions preventing
the patient from correctly accomplishing the task.

The collection of this database was performed through a
web application that guided the users through the execution
of the same tasks encompassed in the main dataset.

The data collection has been conducted in accordance
with the Declaration of Helsinki and approved by the Ethics
Committee of the A.O.U Città della Salute e della Scienza di
Torino (approval number 00384/2020). Participants received
detailed information on the study purposes and execution,
and informed consent for observational study was obtained.
Demographic and clinical data were noted anonymously.

B. PRE-PROCESSING
This section describes the pre-processing steps carried out to
ease the extraction of specific information from vocal signals.
The entire analysis was performed through the software Praat
and applied to each sentence listed in Table 1.
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FIGURE 2. Work flow scheme.

TABLE 2. Overview of the set of features employed in the present work.

The recordings in the employed dataset were characterized
by various sampling rates; hence, they were firstly down-
sampled to 16 kHz to maintain similar spectral conditions.
Thereafter, a de-noising filter with Praat default hyperpa-
rameters was applied to each signal, and their amplitude
was normalized in the range [0, 1] to prevent the speaker-
microphone distance from affecting the model. It is worth
noticing that the visual and acoustic signal examination indi-
cated the absence either of initial or final silence regions,
hence no further preparatory steps were required. Then,
we employed the Praat software to detect voiced regions’
start and end-point, manually labelling each segment with the
corresponding transcription. To perform the analysis of the
TRs between unvoiced consonants and the adjacent voiced
segments, we manually detected the regions corresponding
to the transition between unvoiced consonants and a voiced
segment. The use of an automatic segmentation system
would have introduced a bias in the results. In fact, tools
for automatic segmentation are characterized by an intrin-
sic error, which becomes even more evident in the case of
PDPs, whose speech is affected by several alterations. Hence,
we automatically identified 160 ms long windows centred
on the edge of each chunk. According to [24], such window
size allows to perform an in-depth analysis of the transient
regions.

C. FEATURE EXTRACTION
In accordance to the main objectives of this work (section I),
the feature extraction procedure aims to identify a set of
features able to embody the vocal alterations characterizing
PDPs through the analysis of the transition from unvoiced
consonants to the contiguous voiced region. More in detail,
we extracted a set of parameters encompassing features
previously involved in phonetic analysis as well as novel
parameters which have the potential to describe the alter-
ation in the TR. Table 2 presents an overview of the fea-
tures used for the analysis. In the following, we provide a
detailed description of the features employed. Relative Spec-
tral - Perceptual Linear Prediction (RASTA-PLP) coefficients
have been widely applied in the phonemic analysis due to
their ability to provide information about acceleration and
velocity of the articulators during speech production [1].
In this work, after the pre-processing steps, we divided each
TR into 15ms with 50% overlap frame length [17]. Then
we evaluated 13 RASTA-PLP coefficients for each frame
together with their first and second derivative [25], grouped
them into one feature vector, and calculated four statistics
of these vectors (i.e. mean value, standard deviation, kurto-
sis, and skewness). As for the spectral moments, they have
been employed in several studies for the characterization
of dysarthric speech [19], [20]. We employed four spectral
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moments:mean spectral peak, which measures whether most
energy is concentrated in a small band or dispersed over a
wider range; spectral standard deviation, which is a measure
of deviation of the spectrum frequencies from the centre of
gravity; spectral skewness, which measures the shape of the
spectrum below the mean peak compared to the frequencies
above it; spectral kurtosis, which describes the weakness
of the energy distribution, with positive and negative values
suggesting well defined spectral peaks and a flat distribu-
tion [20].

To further characterize the spectral differences in the TR,
we introduced a novel parameter: the Energy Transition
Slope (ETS). Based on the assumption that PDPs hardly
perform rapid movements, we expect the energy contour in
the unvoiced/voiced switch to exhibit a more flattened curve
with respect to HCs. Hence, we evaluated the energy contour
in the TR through a first-order polynomial and employed the
slope of the obtained curve to embody this alteration.

Mel Frequency Cepstral Coefficients (MFCC)s mimic the
efficient filtering capability of the human ear and have been
widely applied to speaker identification and biomedical voice
assessments [8], [26]. Although they do not admit a clear
physical interpretation, they can detect subtle changes in
the motion of the articulators (tongue, lips) [26] and can
provide pivotal information on the impairment in the TR.
As for the RASTA-PLP coefficients, after the pre-processing
steps, we divided each TR into 15ms with 50% overlap
length frame length; hence we evaluated 13 MFCCs for each
frame together with their first and second derivative [22],
[25], grouped them into one feature vector, and calculated
four statistics for each array. Moreover, to further describe
abnormalities in the unvoiced/voiced switch, we introduced
the Detrended fluctuation analysis (DFA), which is usu-
ally employed to quantify the degree of stochastic self-
similarity in the turbulent noise [8]. Indeed, due to the lack
of control and coordination in the vocal fold, we expect
the TRs to present turbulent disturbances and, consequently,
an increased value of the DFA coefficient [27]. Finally,
we employed the intensity difference and the duration ratio
to measure the differences between the first region of the
analyzed segment (i.e. the unvoiced consonant) and the subse-
quent voiced area. According to [19], the intensity difference
between average values of the unvoiced consonant and the
following vocal nucleus can reflect the reduced phonetic
contrast, often described as blurred speech. As for dura-
tion ratio, it measures the ratio between the lengths of the
unvoiced consonant and the adjacent voiced tract to quan-
tify the reduced unvoiced consonant duration, which usually
characterizes PDPs.

Since the gender of the speaker has a non-negligible
influence on some speech characteristics, before perform-
ing feature selection, we combined vocal parameters with
a covariate indicating whether the sample belongs to a
male or a female subject, in order to pursue a feature
selection procedure that takes into account gender-specific
differences.

Given that different features exhibit different ranges,
we applied the z-score normalization to the whole feature
set, consisting in removing the mean value and dividing
by the standard deviation. This, besides being a general
good practice, is particularly important if Euclidean distances
have to be computed in subsequent analysis (e.g. similarity
measures).

D. FEATURE SELECTION
Feature selection was employed to decrease the dimension-
ality of the input variables, reduce the computational cost
of the model, and boost the performance of the prediction.
We addressed the Boruta feature selection approach due to
its successful applications in various domains [8]. The algo-
rithm is a wrapper method based on a Random Forest (RF)
classification algorithm, which aims to find all important
variables by comparing the relevance of the real features to
that of the random probes [28]. The chief assumption under
Boruta’s algorithm is that adding randomness to the system
and analysing its impact on the model can highlight the most
significant features [28]. For each input variable the algorithm
creates a shadow attribute, which is obtained by shuffling
the values of the original attribute across objects. Then, the
RF classifier is trained with this extended set of features,
the classification phase is performed, and the relevance of
each attribute is computed. The importance of a shadow
attribute can be non-zero only due to random fluctuations.
Thus the relevance of shadow attributes is used as a reference
to identify the smallest subset of relevant features [28].

E. CLASSIFICATION
We implemented a model for the automatic binary classifica-
tion between PDPs and HCs, devoting much attention to the
importance of distinct phonetic groups and the influence of
different recording conditions. In Experiment 1, we employed
only samples belonging to the first database and we tested
the model performance in optimal conditions, emulating the
outpatient environment, when it is more likely to have profes-
sional equipment available. In Experiment 2, we introduced
the additional database to test the suitability of voice data
recorded in sub-optimal conditions, with low-cost equipment
and in the absence of external supervision such as in the home
environment.

In Experiment 1, in order to avoid weak generalization
capability of the model, we randomly split the database into
two subsets: 80% to be used during the training/validation
phase and 20% to be used as the test set. The two sub-groups
were chosen in such a way as to guarantee speaker indepen-
dence (i.e., all sentences of the same speaker are either in
training or in test set, but not split between the two). It is
worth noting that we implemented feature selection, model
selection and model optimization on the training/validation
set, while the remaining 20% of subjects was employed only
during the testing phase, without any further optimization.

A similar procedure was applied in Experiment 2. We ran-
domly split both themain and the additional database into two
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FIGURE 3. Schematic of the training/testing set creation procedure in
Experiment 1 and Experiment 2.

subsets: 80% to be used during the training/validation phase
and 20% to be used as the test set. Wemerged the two training
groups into a single set, used to train the model with signals
recorded both in controlled and domestic environment. Then,
we also merged the two testing groups to carry out the testing
phase on a collection of samples reflecting the characteris-
tics of the training set. Given the limited numerosity of the
second corpus, this procedure was preferred to using the non-
supervised database only, so as to guarantee technically sound
results. Indeed, although it provides only preliminary results
on the possibility of using samples collected in unsupervised
conditions, a comparison with Experiment 1 can provide piv-
otal information on the influence of the recording modality.

In Figure 3 we present a schematic of the training/testing
set creation in Experiment 1 and Experiment 2. Also in this
case, feature selection, model selection, and model optimiza-
tion were performed on the training/validation set.

Taking advantage of having many different phonemes pro-
nounced by the same subjects, we created the classifier input
by merging into a single vector the features extracted from all
the examined segments. Then, we compared the performance
of 7 classifiers and optimized the one characterized by the
highest accuracy. We tested classical approaches such as
Naive Bayes (NB), k-Nearest Neighbor (KNN), SVM and
RF, as well as ensemble methods such as Adaptive Boost-
ing (ADA), Gradient Boosting (GB), and Bagging ensem-
ble (BAG) classifiers. Given the random splitting procedure
intrinsic in the validation process, we performed each experi-
ment 20 times on 20 randomly extracted subsets, and consid-
ered the average accuracy as a suitable metric for comparison
among classifiers.

After selecting the best classifier and optimizing its hyper-
parameters, we evaluated accuracy, f1 score, precision, and
recall as an average of 20 iterations, to further assess the
stability of the final model.

IV. RESULTS AND DISCUSSION
In this section, we present and discuss the results of the
current study. We focus on the examination of the individual
phonemes and the features extracted to verify if there are
sounds of the Italian language more suitable for differenti-
ating between PDPs and HCs, and if distinct sounds require
different features to be described. Then, we report the classifi-
cation results between PDPs andHCs and assess the influence
of the recording conditions on the model.

A. PHONETIC GROUPS EXAMINATION
The segmentation of the ten sentences spoken by each sub-
ject identified 32 unique phonetic groups that included an
unvoiced/voiced switch. Some of these sounds were pro-
nouncedmultiple times in different sentences, thus the overall
dataset consisted of a totality of 43 phonetic groups. Among
these, 28 were correctly pronounced by all the individuals
(i.e. no syllables missing or no word mispronounced); sub-
sequent investigations focused on this subgroup. Based on
the examination of the unvoiced consonant pronounced in the
phonetic groups, it is possible to identify 13 dental occlusives,
5 velar occlusives, 4 labial occlusives, 2 alveolar sibilants,
1 palatal sibilant, 2 alveolar affricates, and 1 labio-dental
fricative. Therefore, although there is unevenness between
classes, it is possible to consider the employed dataset repre-
sentative of the unvoiced consonants of the Italian language
(i.e. dental occlusives, velar occlusives, labial occlusives,
alveolar sibilants, palatal sibilant, alveolar affricates, palatal
affricates, and labio-dental fricative).

In this section, we applied the feature selection described in
section III-D to each phonetic group. Then, we calculated the
Pearson correlation coefficient between the selected features
and the class of membership, to identify the sounds and
attributes with the highest discriminating capability. In Fig. 4
we report a schematic of the coefficients having a p value
< 0.001. Fig. 4a puts into evidence the high potential of
the TR between unvoiced consonants and the adjacent sound
tract. Indeed, in Experiment 1, 28 phonetic segments exhibit
at least two features with correlation to the membership
class between 0.52 and 0.85 (absolute values). Among these,
the DFA coefficient derived from the transition between the
occlusive /p/ and the vowel /e/ and the fifth MFCC derived
from the TR between the sibilant /

∫
/ and the vowel /i/ show

the highest correlation with the class (r = 0.85, p < 0.001).
On the other hand, in Experiment 2 (Fig. 4b), although

we can appreciate a general reduction of the performance
(0.37 < | r | < 0.62), the results still reveal numerous features
highly correlated to the membership class. Among these,
the DFA derived from the transition between the occlusive
consonant /t/ and the vowel /a/ shows the highest correlation
with the class (r = 0.62, p < 0.001).
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FIGURE 4. Pearson correlation coefficient of the most relevant features
and phonemes. Only those values associated with a p-value < 0.001 are
reported.

As for the specific types of features selected, the analysis
puts into evidence that DFA, MFCC2, MFCC3, MFCC5,
intensity ratio, and spectral mean exhibit a high correlation
with the class for many of the selected phonetic groups when
considering only signals recorded in optimal noise condi-
tions. The introduction of samples belonging to the second
dataset leads to a general reduction in the number of sig-
nificant features. Indeed, Fig. 4a exhibits some differences
with respect to Fig. 4b. In particular, it is worth noticing that
the RASTA-PLP coefficients are the most selected features,

FIGURE 5. Distribution of the features selected among phonetic groups -
Experiment 1.

FIGURE 6. Distribution of the features selected among phonetic groups -
Experiment 2.

suggesting an improved capability to capture differences
between PDPs and HCs, even in the presence of sub-optimal
quality records.

In a second section of our analysis, we investigated which
sounds are the most representative of the language impair-
ment, studying the features selected based on the phonetic
group to which they refer.

Fig. 5 reports the results of the analysis conducted for
Experiment 1. In particular, Fig. 5a shows the number of fea-
tures selected in absolute value, whereas Fig. 5b takes into
account the unevenness number of phonetic groups in the
employed data sets, and represents the number of features
selected in relation to the number of total segments belonging
to each phonetic group.

In line with previous studies [2], the most serious pronun-
ciation impairments occur in the occlusive consonants due
to the movement necessary to produce such sounds. Indeed,
unlike other consonants where there is no complete closure
of the vocal trait, the sound of the occlusive consonants
is produced when the air coming from the lungs meets an
obstacle created by a sudden change of position of the artic-
ulators. The inability to produce fine and rapid movements
makes it difficult for PDPs to produce these sounds. As far
as concerns the place of articulation, the velar occlusive
consonants, produced by withdrawing the tongue towards the
soft palate, seem to have the highest discriminating power in
Italian native speakers. Fig. 6 shows the results of the same
analysis conducted for Experiment 2.

Although also in this case the features related to occlusive
consonants are often selected, an important role is played by
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TABLE 3. Classification accuracy comparison among 7 classifiers employing a 10-fold CV. Experiment 1.

the parameters related to fricative labiodental that, in the cur-
rent database, are represented by the syllable /fa/. However,
additional analysis employing a larger dataset with a balanced
distribution among phonetic groups is required to validate
these findings.

B. CLASSIFICATION RESULTS
In this section, we present the results of the binary classi-
fication between PDPs and HCs by mean of the procedure
described in section III. In Table 3 we report the comparison
of the classification accuracy on the 7 models tested.

The values refer to a 10-fold CV and are averaged over
20 iterations. As can be appreciated, the best results were
achieved using the SVM classifier, which yields an accuracy
of 98%± 1.2. It is worth noting that this latter classifier,
besides achieving the highest accuracy, is also characterized
by the lowest standard deviation, which is indicative of good
stability of the model. Once identified the best classifier,
we run a grid-search hyper-parameter optimization procedure
within the training set, based on the mis-classification error
minimization in 10-fold CV.

We tuned the C parameter in [10, 100, 1000] and gamma
in [0.1, 0.001, 0.0001]. Moreover we investigated the per-
formance achieved employing a linear, polynomial, and RBF
kernels. The best configuration turned out to be an SVMwith
C = 10, gamma = 0.001, kernel = RBF. The results of the
optimized SVM on the validation and test sets are reported in
Table 4. As can be noticed from the analysis of the reported
results, the performance does not impair when moving from
validation data to completely new samples contained in the
test set. This denotes the absence of over-fitting and a good
generalization capability of the selected model.

Also, the phonetic groups employed and the types of
features selected are reported in Table 4. As for the pho-
netic groups, the results trace the analysis conducted in
section IV-A on the single phonemes and remark the impor-
tance of occlusive consonants as well as palatal sibilants.

Although there is no work in the state of art that lends itself
to a fair comparison due to the different employed corpora,
languages, andmethods, the performance analysis of themost
similar study employing TRs [1] revealed the high potential
of the presented algorithm. In fact, as discussed in section II,
in this latter work the authors achieved 94%± 1 accuracy
(AUC = 0.99, Sens = 0.9, Spec = 1) in a 11-fold CV
and 82%± 13 (AUC = 0.95, Sens = 1, Spec = 0.57)
in the cross corpora experiments employing a GMM-UBM

TABLE 4. Performance of the optimized SVM model. Results are
expressed as an average over 20 iterations. Experiment 1.

classifier, PLP as features and the DDK speech task. More-
over, the accuracy reported when considering the same task
considered in this work (i.e. text dependent utterance) is
89%± 7 (AUC = 0.93, Sens = 0.91, Spec = 0.91) in a
11-fold CV.

As far as concerns the classification performance obtained
in Experiment 2, Table 5 reports the comparison of the clas-
sification accuracy on the 7 tested models. The values refer
to a 10-fold CV and are averaged over 20 iterations. As can
be noticed, the best results were achieved using an SVM
classifier, which yields an accuracy of 87%± 2.5.

Again, once identified the best classifier, we run a grid-
search hyper-parameters optimization procedure within the
training set, based on the mis-classification error minimiza-
tion in 10-fold CV. In more detail, we tuned the C parameter
in [10, 100, 1000] and gamma in [0.1, 0.001, 0.0001]. More-
over we investigated the performance achieved employing a
linear, polynomial, and RBF kernels. The best configuration
turned out to be an SVMwith C= 100, gamma= 0.001, ker-
nel = RBF. The results of the optimized model are reported
in Table 6.

As for the phonetic groups, the results remark the impor-
tance of occlusive and sibilants consonants. Furthermore,
although features selected in Experiment 1 were mostly
selected also in Experiment 2, in this latter case the set of
attributes is larger, and includes RASTA-PLP coefficients and
the derivatives of both RASTA-PLP and MFCC. Also in this
second case, the performance remains stable when moving
from validation to the test set, although the standard deviation
slightly increases in the latter case. In figure 7 we report the
ROC curve of the final model averaged over 20 iterations. A
comparison between the two Experiments reveals that the set
of features selected in Experiment 2 is a super-set of those
selected in Experiment 1.

Therefore, we can assume that this enlarged feature
ensemble is able to effectively capture vocal alterations in
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TABLE 5. Classification accuracy comparison among 7 classifiers employing a 10-fold CV. Experiment 2.

TABLE 6. Performance of the optimized SVM model. Results are
expressed as an average over 20 iterations. Experiment 2.

FIGURE 7. ROC curve expressed as an average over 20 iterations.
Experiment 2.

sub-optimal recordings. It is also worth noticing that the
inclusion of non-supervised recordings leads to substantial
changes to the model encompassing both the features and the
hyperparameters selected. This suggests that the algorithm
is able to efficiently adapt to the input data. Hence, one can
expect that, if the model is trained on a larger dataset, it can
lead to optimal performance regardless of the sub-optimal
recording conditions.

V. CONCLUSION AND FUTURE WORK
In this study, we investigated the impact of PD on
unvoiced/voiced transitions and the discriminatory capacity
of different phonemes in the Italian language. To this aim,
we employed features already involved in similar analysis in
conjunction with novel parameters.

This work has confirmed the possibility of a speech-based
PD classification model and the effectiveness of the TR
analysis. Furthermore, the investigation of the discriminatory
capability of various Italian phonemes confirmed that the

most critical pronunciation problems occur in occlusive con-
sonants. As far as concerns the place of articulation, the velar
occlusive consonants, produced by withdrawing the tongue
towards the soft palate, seem to have the highest discriminant
power in Italian native speakers.

Although these results can provide a powerful tool for
the analysis of Italian PD speakers, the heterogeneity of the
used dataset requires further investigations to validate these
preliminary findings. Moreover, despite we are aware that
the need for a manual segmentation represents a limit for the
work, in this stage of our research we wanted to avoid to bias
the results using an automatic segmentation tool. Actually,
such tools are affected by an intrinsic source of error, even
more evident in the case of PDPs, whose speech is severely
impaired. Once the effectiveness of using transition zones is
fully validated, we plan to address an automatic segmentation
tool to ease the segmentation procedure and extend the results
to broader corpora and languages. Furthermore, we plan to
extend the model developed in this paper to other languages,
in order to perform comparisons and identify similarities and
differences.

As for the types of features employed, our results suggest
the high potential of the DFA coefficient, which, to the best
of our knowledge, has never been applied to the TR analysis.

Finally, this work discloses the possibility of voice pro-
cessing employing recordings collected both in optimal and
sub-optimal conditions. Indeed, we performed the collection
of an additional database through a web application that
guided the users through the execution of the same tasks
encompassed in the main dataset. If properly validated, this
data collection technique would enable a frequent monitoring
of the disease. The recordings could be performed in a com-
fortable environment, so obtaining voice samples that reflect
more closely the actual condition of the patient. This study
is part of an ongoing project to develop a lightweight system
that can be employed for the home monitoring of patients.

However, the small numerosity of the two corpora and
the slight difference in the average age of the two groups in
the second dataset prevents from considering these results as
exhaustive; hence we plan to perform further validation with
a much larger cohort of subjects

Besides collecting more speech data from PDPs, we also
plan to employ clinical information as the H&Y stage and
UPDRS-Part II/Part III scores, and to perform data acquisi-
tion several times on the same patients, both under and not
under dopaminergic therapy, to verify whether the analysis
of the TR applies to these fields also.
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Specifically, the evidence from this study suggests the fea-
sibility of a tool that may be employed for home monitoring
of motor fluctuations in PDPs, as well as for early PD diag-
nosis decision support. On the other hand, given the reduced
size of the dataset employed, our methods and results require
further validation with a much larger cohort of subjects.

At last, this is part of a more large PD monitoring
study [29], which we plan to implement in a sort of electronic
diary of PDPs, including motor symptoms and postural con-
trol monitoring, as well as sleep quality assessment.

ACKNOWLEDGMENT
The authors would like to thank the Associazione Amici
Parkinsoniani Piemonte Onlus and the Imperia Hospital
(Neurology Department) for their contribution to the data
collection procedure.

ACRONYMS
ADA Adaptive Boosting
AUC Area Under the Curve
BAG Bagging ensemble
CV Cross Validation
DDK Diadochokinetic
DFA Detrended fluctuation analysis
ETS Energy Transition Slope
GB Gradient Boosting
GMM Gaussian Mixture Models
H&Y Hoehn and Yahr
HC Healthy Control
KNN k-Nearest Neighbor
LOO Leave One Out
MDS Movement Disorder Society
MFCC Mel Frequency Cepstral Coefficients
ML Machine Learning
NB Naive Bayes
PD Parkinson’s Disease
PDP Patients with Parkinson’s Disease
PLP Perceptual Linear Prediction
RASTA-PLP Relative Spectral - Perceptual Linear

Prediction
RBF Radial Basis Function
RF Random Forest
ROC Receiving Operator Curve
SVM Support Vector Machine
TR Transition Regions
UBM Universal Background Models
UPDRS Unified Parkinson’s Disease Rating Scale
VOT Voice Onset Time
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