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TiO2 nanoparticles library (UV and non-UV
exposure)†
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Lutz Mädler, b,c Matteo Fasano, d Eliodoro Chiavazzo, d Pietro Asinari, d,e

Jaak Jänes,f Kaido Tämm, f Jaanus Burkf and Janeck J. Scott-Fordsmandg

Assessing the risks of nanomaterials/nanoparticles (NMs/NPs) under various environmental conditions

requires a more systematic approach, including the comparison of effects across many NMs with ident-

ified different but related characters/descriptors. Hence, there is an urgent need to provide coherent

(eco)toxicological datasets containing comprehensive toxicity information relating to a diverse spectra of

NPs characters. These datasets are test benches for developing holistic methodologies with broader

applicability. In the present study we assessed the effects of a custom design Fe-doped TiO2 NPs library,

using the soil invertebrate Enchytraeus crypticus (Oligochaeta), via a 5-day pulse via aqueous exposure

followed by a 21-days recovery period in soil (survival, reproduction assessment). Obviously, when testing

TiO2, realistic conditions should include UV exposure. The 11 Fe–TiO2 library contains NPs of size range

between 5–27 nm with varying %Fe (enabling the photoactivation of TiO2 at energy wavelengths in the

visible-light range). The NPs were each described by 122 descriptors, being a mixture of measured and

atomistic model descriptors. The data were explored using single and univariate statistical methods, com-

bined with machine learning and multiscale modelling techniques. An iterative pruning process was

adopted for identifying automatically the most significant descriptors. TiO2 NPs toxicity decreased when

combined with UV. Notably, the short-term water exposure induced lasting biological responses even

after longer-term recovery in clean exposure. The correspondence with Fe-content correlated with the

band-gap hence the reduction of UV oxidative stress. The inclusion of both measured and modelled

materials data benefitted the explanation of the results, when combined with machine learning.

1. Introduction

Ecotoxicological studies with nanomaterials (NMs)/nano-
particles (NPs) are still mostly focused on testing one or few
NMs at a time, with the few studies testing a range of materials
dealing almost exclusively with in vitro embedded cells.1–3

Obviously, this shows the need to explore a more systematic
approach where advanced toxicity measures are compared
across many NMs with highly identified characters/descrip-
tors. Attempts have been made to apply various Quantitative
Structure–Activity Relationship (QSAR) models to nanotoxicol-
ogy data, i.e., to relate a set of descriptors characterizing the
NMs/NPs with their measured biological effects (e.g. ref. 4–7).
Most of these studies deal with cells or unicellular organisms,
although some studies deal with higher organisms.8–13

Collectively, the trans-material studies that have been per-
formed confirm the logic that NMs specific characters indeed
are important for NM toxicity (e.g. ref. 14). The trans-material
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studies are mainly (with few exceptions) based on correlating
toxicity measures to a few commonly measurable descriptors,
i.e. size (TEM/DLS based), zeta potential (usually in pure
water), surface charge (few studies), and dissolution rate (for
specific metal based materials). However, there is a wealth of
other characters (or descriptors) available for the NM, i.e.
either from directly measurable (e.g. energy bands), from
simply calculable (e.g. particle number), or from more advance
atomistic modelling (e.g. atomic bond length) (e.g. ref. 6 and
15).

The novel descriptors can obviously enable a better expla-
nation of the biological effects, however they will also require
the use of more advanced data-analytical methods including
atomistic and multiscale modelling, possibly supported by
machine learning techniques to identify patterns otherwise
hidden (e.g. ref. 16–19). To study the integration of more
advanced NM descriptors with biological measures, the best
approach (i.e. balancing between material diversity and
explainable variation) would be to use materials that somehow
have similar but yet distinct traits. A custom designed NM
library offers this opportunity, to test the hypothesis relating
effects to particles characters’. Among this, the TiO2 NPs
library (containing pure and Fe doped NPs) is a candidate
which covers a wide spectrum of properties (e.g., size, crystal
structure, %Fe, band gap energy), while keeping others con-
stant. That is done by doping the TiO2 NPs with Fe, the band
gap energy decreases, which enables the photoactivation of the
TiO2 at wavelength close to the visible light range, thus allow-
ing a more effective use of TiO2 photocatalytic properties (i.e.,
under solar light). We here employ a library of such doped
TiO2 materials that have been extensively characterized. The
characterizations include crystal structure (XRD), specific
surface area (BET), transmission electron microscopic (TEM)
imaging, NPs band gap energy (UV-visible spectroscopy),
photo-oxidation capability (fluorimetric analysis) and reactive
oxygen species (ROS) generation, hydroxyl radical generation
(electron paramagnetic resonance (EPR)), hydrodynamic size
and zeta potential measurements (DLS). Further, a similar Fe
doped TiO2 NPs library was tested in vitro (mammalian cell
model, RAW 264.7 and leukemic HL60) and in unicellular
models.20–22 George et al.20 observed an increase in cyto-
toxicity, accompanied by increased mitochondrial superoxide
generation and decrease in mitochondrial membrane poten-
tial, under near-visible light, dependent on the increase in Fe
content (1 to 10%). Huang et al.22 showed that the effect was
dependent on %Fe increase under light (light emitting diodes
(LED) light). Yadav et al.21 investigated, at a fluorescent light
(with 10 times lower intensity in comparison to ref. 22), Fe–
TiO2 NPs, which enhanced photocatalytic inactivation of the
bacteria Escherichia coli and Staphylococcus aureus.21 As men-
tioned, similar studies in vivo whole organism are absent (i.e.
multicellular).

In the present study, we investigate the in vivo toxicity
across this Fe-doped TiO2 NPs library using 11 TiO2 materials.
Since band-gap is a prominent feature for these TiO2

materials, the effects of TiO2 NPs were assessed under UV and

non-UV (fluorescent) light. These materials were tested using
an important soil representative model worm species,
Enchytraeus crypticus (Oligochaeta),23,24 assessing survival and
reproductive output. Enchytraeids are the most important
organisms in many habitats, dominant both in biomass and
abundance,25 ranging between 102–105 individuals per m2.
The testing resulted in 22 in vivo concentration-response
experiments, leading to 44 population measures. In addition,
besides the material descriptors (also measured in this study)
we include both simply calculable and advanced atomistic
modelled material descriptors, reaching 122 NP related charac-
ters/descriptors for each NP.

2. Results
2.1. Materials characterisation

TEM results confirmed the indistinguishable crystalline mor-
phology of the pure and Fe-doped TiO2 particles in the range
of 9–20 nm, i.e., Fe is homogeneously distributed within the
crystalline TiO2 matrix. The highly crystalline nature of these
particles was also confirmed by HRTEM and XRD (Fig. 1, for
further details see ref. 20).

Fe doping of TiO2 has additional effects besides the antici-
pated band gap engineering: (1) the equivalent primary par-
ticle size (dBET) and the crystallite size (dXRD) decrease and
(2) the anatase to rutile ratio decreases with an increase in Fe
loading (0–10%), see Table 2. UV-visible spectra were recorded
for pure and Fe-doped TiO2 nanoparticles in order to demon-
strate the lowering of the band gap energy after Fe doping. The
band gap energy (Eg) values for undoped and Fe-doped TiO2

nanoparticles range from 3.3 to 2.8 eV (Table 2). DLS results
showed a decrease of agglomerate size with the increasing Fe
content (Table 2). The ζ-potential measurement showed an
increase in the negative surface charge in Fe-doped TiO2

(Table 2). This indicates that the electrostatic repulsive force
contributes to the reduction in the agglomeration size of Fe-
doped TiO2.

2.2. Materials modelling

The calculated 86 all-atom full-particle nanodescriptors
(Table S1†) describe the core and surface regions of the NPs.
These descriptors cover total number of atoms (both Ti and
Fe), NP size, surface area and volume of the particles, potential
energy of the atoms in various regions, coordination numbers,
lattice energies, length of force vectors and dipole moments.

2.3. Exposure characterization

The exposure characterisation via DLS (Table S1†) shows that
there is a high degree of agglomeration in the system, but it
was not possible to identify a clear relationship between the
particle descriptors and the hydrodynamic size distribution
(DLS measure).

The zeta potential showed that with increasing concen-
trations there was an increase in stability i.e. a lower zeta
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potential. There was generally lower zeta potential for non-UV
exposure samples than for UV exposed samples.

2.4. Biological measures (survival and reproduction)

The exposure in ISO water in controls had a survival >80%
(controls non-UV and UV). The pH of the test media was 6.7 ±
0.1 in all treatments, without significant change over the test
duration.

Survival was not affected during the 5 days of exposure in
ISO water for all treatments. For the subsequent 21 days in
clean LUFA 2.2 soil, survival and reproduction varied with
material and UV exposure (Fig. 2), from no apparent impact
(e.g. non-UV 4%FeTiO2_8 nm) to clear dose–response (e.g. non-
UV 6%FeTiO2_5 nm). When under UV exposure it showed
several cases where the impact was reduced with increasing
concentration.

2.4.1. Simple correlation approach. When extracting the
concentration-response information, it is possible to relate the
stable (i.e. concentration independent particle descriptors)

with the biological effect, i.e. this was done by calculating
EC50 from the curves. For instance, for non-UV, certain NMs
caused no effect (10%FeTiO2_5 nm, 8–4–2–1%FeTiO2),
whereas other caused concentration dependent mortality and
decreased reproduction (non-UV, 10%FeTiO2_10 nm [1000]
and 6%FeTiO2_5 nm). For UV exposed organisms, the clear
reproductive effect caused by UV alone (see concentration 0 in
the figures) was alleviated by increasing TiO2 concentration
(both for pure and Fe doped particles). By fixing the reproduc-
tive output at 1000 mg TiO2 L−1 as the 100% reproduction,
then the EC50-recovery with increasing concentration can be
calculated. Based on this it was observed that for exposure to
the TiO2 materials alone (non-UV), there was a negative linear
correlation between the zeta potential and the increase in
reproductive output (EC50 for Reproduction = −116 × zeta +
4303, R2 = 0.89, N = 5, if omitting the 2%FeTiO2; including the
2%FeTiO2 included was R2 = 0.56). This may be because
agglomeration is enhanced with UV, hence a more pronounced
effect of zeta (ζ).26

Fig. 1 (upper panel) High resolution images of pure TiO2, 4%Fe and 10%Fe doped TiO2. The images show highly crystalline nature of the particles
(middle panel): the spherical particle morphology of the differently sized TiO2 nanoparticles produced at different flame conditions (lower panel,
left): XRD patterns of pure and 10%Fe doped TiO2. The results show that the anatase to rutile ratio is reversed when TiO2 is doped with 10% of Fe
(lower panel, right): the evidence of clear particle size changes through variation in the flame spray parameters. The narrow patterns of the XRD
(blue curve) are an indication of larger particle size while the broad patterns (green) show that the particles are relatively small.
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2.4.2. Machine learning approach. The multi-step data
analysis method was used for identifying the descriptors for
the biological response of TiO2 materials out of the list of vari-
ables potentially involved in this mechanism. Both datasets
obtained by experiments with and without UV exposure were
analysed in parallel.

Starting from the initial amount of N = 113 variables (x1, x2,
…, x113), the data cleaning process reduced this number to N =
105 for both datasets. After that, the hierarchical clustering
algorithm identified the variables showing the highest simi-

larity in terms of Spearman’s correlation coefficient (see
Fig. S4 and S5† for the non-UV and UV case, respectively),
grouping them into clusters according to a pair-wise rationale.
This algorithm has highlighted the presence of 39 clusters of
similar (i.e., correlated) variables for the non-UV experiments,
while 40 for the UV ones. The clustering of variables operated
by the algorithm is both quantitatively and qualitatively
robust. From one side, the obtained high value of cophenetic
correlation coefficient (0.72 for the non-UV and 0.74 for the
UV case) and Spearman’s correlation coefficients between the

Fig. 2 Results in terms of survival and reproduction of Enchytraeus crypticus, after transfer to clean LUFA 2.2 soil for 21 days in a standard test.
Organisms were pre-exposed via ISO water to TiO2 nanomaterials: TiO2_5, _10, _12, _27 nm, 1–2–4–6–8%FeTiO2 and 10%Fe/TiO2_5, 10 nm, with
UV (yellow) and without UV (non-UV, white) radiation. Results are expressed as average ± standard error (n = 4).
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pairs of variables within each cluster (0.63 or above for both
non-UV and UV case, see Fig. S6 and S7,† respectively) are indi-
cators of good clustering accuracy. From the other side, the
clusters of variables listed in Tables S2 and S3† are also
reasonable from a qualitative perspective, for instance: cluster
#1 includes both the percent concentration of iron and tita-
nium, which are complementary between each other; cluster
#11 groups all the modelling variables related to the number
of Ti and O atoms in the core and shell of particles, which
clearly depend on the unit cell of crystal; cluster #14 groups
the computed lattice energy of particles normalized by their
radius, surface, or volume. Interestingly, the only different
clusters in the two datasets are due to the Polydispersity Index
(PDI) and average size of particle aggregates from DLS
measures, whose values appear to be correlated between each
other when solutions are not exposed to UV whereas they
become uncorrelated under UV light.

The representative variables nominated per each cluster are
listed in Tables S4 and S5.† Then, those variables (39 for the
non-UV and 40 for the UV case) have been pruned iteratively
following the algorithm depicted in Fig. 5b. Several rounds of
pruning were carried out, until one of the chosen stopping cri-
teria was met (see Fig. S8 and ESI Movies S1 and S2† for a

dynamic overview of the process). This was achieved at the 7th

round for the experiments without UV exposure and at the 6th

round for the experiments with UV exposure. The variables
remaining after the pruning process can be considered as sig-
nificant descriptors of the biological mechanism to the tested
TiO2 particles. Notice that the descriptors of the toxicological
responses for TiO2 particles have been analysed separately for
UV and non-UV exposure, since they can be governed by
different biological pathways (due to interaction between UV
and TiO2); however, multi-output model fitting27–32 could be
also used when more homogeneous mechanisms underlying
the toxicological response are present in the dataset analysed.
As reported in Fig. 3a, the four descriptors identified in case of
no exposure to UV are (sorted by per cent occurrence in the
best fitting functions found by the symbolic regressor): con-
centration; average size of particle aggregates from DLS
measures; highest peak intensity from DLS measures; normal
surface force vector of Ti atoms in the particle shell. The five
descriptors of biological response experiments under the UV
lights are listed instead in Fig. 3b, being: concentration;
normal surface force vector of Ti atoms in the whole particle;
zeta potential; normal surface force vector of Fe atoms in the
whole particle; surface area of the suspension. Notably, the

Fig. 3 Effect of descriptors on biological response. The process of variables pruning highlights the presence of (a) four descriptors of TiO2 biologi-
cal response without UV exposure, and (b) five under UV exposure. Their relative occurrence in the models fitted by the symbolic regressor is
reported in the upper panels of this figure. The lower panels depict the sensitivity of the biological response of TiO2 particles with these descriptors,
for both (c) no exposure to UV, and (d) exposure to UV. Here, the “sensitivity” quantifies the average relative impact within the identified fitting
models that a descriptor has on the biological response; whereas the “% positive response” describes the likelihood that increasing a descriptor will
increase the biological response (vice versa for “% negative response”). For instance, “% positive response = 70% for the x9 descriptor (not UV) means
that – considering the explored fitting functions and values of x9 between the minimum and maximum ones in the dataset – x9 is directly pro-
portional to the biological response 70% of the times (in the remaining 30% of cases, inverse or no proportionality is observed, instead).
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effect of chemical composition of particles on biological
response is better described by variables obtained from
numerical computations rather than experimental ones, thus
justifying the need for hybrid characterization/modelling data-
sets for describing biological mechanisms in a more compre-
hensive way.

As expected, Fig. 3a and b remark that the dose of particles
is a common descriptor in both experimental conditions.
Furthermore, the surface-to-volume of particles appears as an
important aspect in both cases, with the important difference
that the descriptors found for the non-UV case (i.e., average
size and highest peak intensity of particle aggregates by DLS
measure) are affected by the surrounding environment (e.g.,
pH, temperature, dissolved ions), while the one for the UV
case (i.e., surface area of dry particles by BET measure) is not.

The chemical composition of particles is also found to be
another important descriptor in both experimental conditions,
with only slight differences (normal surface force vector of Ti
atoms in the particle shell vs. normal surface force vectors of
Fe and Ti atoms in the whole particle). Instead, the zeta poten-
tial seems to affect the biological response only when UV light
irradiates particles.

In Fig. 3c (non-UV) and 3d (UV), we report also the “sensi-
tivity” and “% positive response” of descriptors on the biologi-
cal response: the former quantifies the average relative impact
within the identified fitting functions that a descriptor has on
biological responses; the latter describes the likelihood that
increasing a descriptor will increase the biological response as
well. Again, the observed direct proportionality between con-
centration and biological response agrees with typical results
in the literature. However, here the dose of particles has the
highest sensitivity on biological response only for experiments
without UV, while other descriptors seem to have a bigger
impact in case of UV exposition. In this latter case, the
response is more sensitive to chemical composition of par-
ticles, instead. Other interesting evidence from Fig. 3c and d
are the inverse proportionality between the descriptors related
to the surface-to-volume and chemical composition of par-
ticles and the biological response, and the direct proportional-
ity between the zeta potential and biological response (UV
case).

Finally, considering only the last extended fitting by the
symbolic regressor, Fig. 4a shows that the best correlation
between the descriptors and the biological response for non-
UV exposure achieves a remarkable R2 = 0.82 with the following
function:

y ¼ða0 þ x9 � x11Þ=ða1 þ x11Þ þ ða2 � x11 þ a3 � x102 � a4Þ
=ða5 þ x9 � x11 þ a6 � x102 � a7 � x10Þ � x9 � x36 � a8 � x10

ð1Þ

being a0 = 7.60476 × 10−1, a1 = 5.06773 × 10−1, a2 = 7.49708 ×
10−3, a3 = 7.06041 × 10−3, a4 = 6.58828 × 10−3, a5 = 1.54750 ×
10−2, a6 = a7 = 4.68459 × 10−2, a8 = 6.60635 × 10−1 the best-fit
coefficients, y the target biological response from experiments
and xi the considered descriptors (see Table S4†). Instead, the

best compromise (i.e., elbow of Pareto front) between model
complexity and accuracy for TiO2 particles not exposed to UV
shown in Fig. 4b obtains R2 = 0.67 with the following simpler
expression:

y ¼ b0 þ b1 � x9 þ b2=ðx10 � b3 � x9Þ � x9 � x36 � b4 � x11 � b5

� x10

ð2Þ
being b0 = 9.42000 × 10−1, b1 = 4.14696 × 10−1, b2 = 1.03536 ×
10−2, b3 = 3.14177 × 10−1, b4 = 3.69600 × 10−1 and b5 = 4.57710
× 10−1. Even better accuracy has been noticed while fitting the
biological response of TiO2 particles exposed to UV, since the
best correlation in Fig. 4c shows a remarkable a R2 = 0.94 with
the following correlation:

y ¼ c0 þ ðc1 þ c2 � x9 þ c3 � x135Þ=ðx6 þ x35 þ x6 � x37 þ x35 � x37
þ c4 � x9 � x35 � x37 � x35 � x132Þ � c5 � x35

ð3Þ
being c0 = 9.80620 × 10−2, c1 = 1.62718 × 10−1, c2 = c4 = 6.66604
× 10−1, c3 = 4.95643 × 10−1, c5 = 1.62718 × 10−1 and xi the con-
sidered descriptors (see Table S5†). Also here the best compro-
mise between model complexity and accuracy for TiO2 par-
ticles exposed to UV shown in Fig. 4d obtains a lower R2 = 0.89
but a simpler expression:

y ¼ ðd0 þ d1 � x9 þ x134Þ=ðx35 þ x37 þ x6 � x13Þ ð4Þ
being d0 = 8.97434 × 10−2 and d1 = 5.78572 × 10−1.

3. Discussion

The study shows that the biological response of TiO2 depends
on the Fe doping when under UV light exposure, even though
the organisms recovered after a longer-term period in clean
soil without UV. We saw a clear advantage of including both
measured and modelled materials related descriptors when
performing extensive (90 in vivo exposure concentrations (460
replicates) of 26 days) ecotoxicological experiments with nano-
materials, as both contributed to describe the results.
However, including a high number (113 descriptors in this
case) of material descriptors generates a high number of
linked data, which requires a structured multi-step data
analytical approach, e.g. through machine learning as done
here. This results in a pruning process, hence the selected
descriptors represent other correlated descriptors which also
explain the observed biological responses. Notably, the effect
of chemical composition of particles on biological response
was better described by variables obtained from numerical
computations rather than experimental ones, thus justifying
the need for hybrid characterization/modelling datasets for
describing biological mechanisms in a more comprehensive
way.

For nanomaterials the primary core size has commonly
been observed as important for toxicity.33,34 However, this was
not the case here but instead the hydrodynamic diameter cor-
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related with biological impact (the primary size did not corre-
late with hydrodynamic size) which is in line with previous
studies by Roohi et al.35 who also showed that smaller hydro-
dynamic size related to higher bio-distribution. The zeta
potential had a significant impact under UV exposure, which
is supported by Wang et al.26 who showed UV-induced increase
of the zeta potential. It is worth noticing that Wang et al.26

observed a pH reduction when UV-radiating water containing
humic acid, hence such a pH change if severe would also
affect an organism in our experiment. We did not observe a
pH change, and we had no added organic material during the
UV exposure, so this is unlikely.

For the actual nanoparticles, the normal surface force
vector of Ti/Fe atoms in the shell (modelled data) correlated
with the biological impact. This descriptor reflects the stability
of TiO2 on NP surface, with more positive value (difference
from zero) indicating higher biological response. This surface
stability was especially important under UV exposure, where a
negative biological response was associated with this descrip-
tor. This relationship with the surface vectors could be

explained through a link to oxidative stress, as a correlation
between the surface vector and the band gap was observed,
similar to the large number of oxide materials investigated
in vitro and in vivo.36 Band-gap correlates with oxidative
stress.20 Total particle surface area also correlated with the UV-
exposure, also in agreement with the band-gap correlation
under UV exposure.

There was an inverse proportionality between the descrip-
tors related to the surface-to-volume and chemical compo-
sition of particles and the biological response, and a direct
proportionality between the zeta potential and biological
response (UV exposure).

UV pre-exposure alone caused a high effect on organisms’
reproduction (i.e. significant decrease in reproduction com-
pared to non-UV controls), but without mortality (both during
pre and post–exposure period). The explanation for this is
probably that the organisms are thin (diameter 200–300 µm
(ref. 37)) and transparent, hence the UV could have caused det-
rimental effects on gametes e.g. through ROS production,
while the adult as a whole would not die immediately.38 A pre-

Fig. 4 Best model correlations with the identified descriptors: experimental observations vs. model predictions (values are normalized by min–max
approach, each dot represent one tested configuration). (a) Fitting performance of the most complex, most accurate function for TiO2 particles not
exposed to UV (see eqn (1)). (b) Fitting performance of the best compromise (i.e., elbow of Pareto front) between model complexity and accuracy for
TiO2 particles not exposed to UV (see eqn (2)). (c) Fitting performance of the most complex, most accurate function for TiO2 particles exposed to UV
(see eqn (3)). (d) Fitting performance of the best compromise (i.e., elbow of Pareto front) between model complexity and accuracy for TiO2 particles
exposed to UV (see eqn (4)). The definitions of the reported variables x1, …, x39 are reported in the Tables S4 (no exposure to UV) and S5 (exposure to
UV).†
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vious study using similar exposure design39 to UV-B showed
also a reproduction inhibition in E. crypticus. Hence, both
UV-A and UV-B radiation cause an impact to enchytraeids.

The atoms on the TiO2 terminating crystal surface experi-
ence certain forces (differences in surface energy when Ti or O
are terminating element). Such difference may cause variation
in the surface energies, which are significantly influenced by
two forces: normal force perpendicular to shear force (acting
tangentially over an area). The UV application to the TiO2

nanoparticles forces atomic displacement along a certain
Müller direction [1 0 1] which may bring collective changes in
the sample.40 The number of atomic displacement of Ti in Fe
doped TiO2 also varies due to different surface termination
(some Fe atoms might also be on the surface), which in turn
reflects the biological outcome. The combination TiO2 NPs
and UV seemed to have an antagonistic or protective role
against the UV effects, in particular with increasing concen-
trations, i.e. reduction in UV effect with increasing TiO2 con-
centration. Since the degree of protection decreased with
hydrodynamic size, one explanation could be that the higher
agglomeration rate caused a deposition in the bottom of the
vessel, hence less dispersed in the water column resulting in
less UV absorption in the water column. The higher the TiO2

concentration the more will be absorbed in the water column,
with the flattening out of the curves between 10–100 mg L−1

for some materials because 10 mg L−1 was simply a high
enough concentration to induce total protection (probably
close to total UV absorption). We also observed in the stereo-
microscope (see Fig. S9†) that TiO2 NPs attach to the organ-
isms’ dermis and this can reduce the direct UV exposure of the
organisms. The binding at the organisms’ surface is most
likely also zeta potential related, but we could not verify this
since we could not quantify the attached NPs.

For non-UV treatments, TiO2 induced an effect response
pattern for two exposures – 6% Fe doped and the 10 nm TiO2,
for the remaining there was little change with increasing con-
centration. So even though agglomeration must have also
occurred here, as was in the UV treatment, it did not seem to
relate to possible effects. Higher effect of lower concentrations
of NMs has been reported before e.g. for Ag and Ni41–43 and
this highlights the importance to adapt the dose–response
paradigm for NMs. Yadav et al.21 studied the antibacterial

activity of Fe doped and pure TiO2 NPs under fluorescent light
and showed that increase in Fe (from 1 to 3%) increased the
mortality rates of the bacteria Escherichia coli and
Staphylococcus aureus. The differences in the crystal structure
of the TiO2 NPs tested (100% anatase in ref. 21 versus a combi-
nation of anatase and rutile in our study) must account for the
observed differences, this of course besides the test organisms
(unicellular bacteria versus a multicellular oligochaeta) and
modes of action.

4. Conclusions

Doping of TiO2 with Fe changed the biological response of
organisms especially under UV exposure. Notably, the short-
term water exposure induced lasting biological responses even
after longer-term recovery in clean exposure. The correspon-
dence with Fe-content correlated with the band-gap hence the
reduction of UV oxidative stress. When performing a high
number of extensive in vivo test across materials, the inclusion
of both measured and modelled materials data benefitted the
explanation of the results, when combined with machine
learning. This inclusion may produce large datasets with the
opportunity of embedding different features of materials but,
in order to dig out a significant explanation, systematic
pruning is essential for identifying automatically the most sig-
nificant descriptors and consequently the key phenomena.

5. Experimental
5.1. Material synthesis

The different sizes and respective iron doped TiO2 nano-
particle libraries were obtained using versatile flame spray
pyrolysis adapting controlled precursor chemistry and solvent
combinations (see Table 1).

The TiO2 based particles were obtained by using metalor-
ganic precursor such as titanium-(IV) isopropoxide (Strem
Chemical, 99.9% pure) with (for doping) and without (for pure
and differently sized TiO2) Fe–naphthenate (12% Fe by metal,
Strem, 99.9% pure). For the synthesis of doped particles, tita-
nium(IV) isopropoxide (50 mL) was separately mixed with

Table 1 Precursor solvent combinations and flame parameters used for designing Fe doped TiO2 nanoparticle library

Ti–isopropoxide in xylene (mL)
(0.5 M by Ti)

Fe–napthenate in xylene (mL)
(0.5 M by Fe)

Precursor flow rate
(mL min−1)

CH4 + O2
(L min−1)

Dispersion O2
(L min−1) Nanoparticles

50 0 5 1.5 + 3.2 5.0 Pure TiO2
50 0.43 5 1.5 + 3.2 5.0 1%Fe/TiO2
50 0.86 5 1.5 + 3.2 5.0 2%Fe/TiO2
50 1.72 5 1.5 + 3.2 5.0 4%Fe/TiO2
50 2.58 5 1.5 + 3.2 5.0 6%Fe/TiO2
50 3.44 5 1.5 + 3.2 5.0 8%Fe/TiO2
50 4.3 5 1.5 + 3.2 5.0 10%Fe/TiO2
50 — 4 1.5 + 3.2 7 5 nm TiO2
50 — 5 1.5 + 3.2 5 10 nm TiO2
50 — 7 1.5 + 3.2 3 27 nm TiO2
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0.6–6.5 mL of Fe–naphthenate (0.5 M by metal) for 1–10 wt%
of Fe-doped TiO2 nanoparticles. All the precursors were
diluted with xylene (99.95%, Strem) to keep the metal to 0.5
M.

Combustion of the dispersed droplets is initiated by the co-
delivery of CH4 and O2 (1.5 L min−1, 3.2 L min−1) to form a
flame.44–46 The flame parameters shown in the Table 1 for the
Fe doped particles gives rise to the primary particle size of
∼10 nm. For the synthesis of particles with different sizes, the
flame and spray parameters were varied. The parameters for
obtaining various TiO2 based primary particle sizes are
explained as follows: (1) for the preparation of standard par-
ticles (∼10 nm), the liquid precursor was delivered at the rate
of 5 mL min−1 to the flame nozzle and was atomized using
5 min−1 O2 at a constant pressure drop of 1.5 bar at the nozzle
tip; (2) for synthesizing 5 nm NPs, the precursor was fed in the
flame through the nozzle at the rate of 4 mL min−1 with
oxygen flow rate of 7 L min−1; (3) precursor and O2 flow rates
with 7 mL min−1 and 3 L min−1, respectively was used to
obtain 27 nm particles. The constant premixed gas flow (CH4 =
1.5 L min−1 + O2 = 3.2 L min−1) and pressure drop of 1.5 bar at
the nozzle tip was maintained for all the experiments during
spray combustion. The particles were formed by reaction,
nucleation, surface growth, coagulation, and coalescence in
the flame environment.47,48 The particles were collected from
the 257 mm glass filter placed above the flame at a distance of
60 cm.

5.2. Materials characterisation – measurements

The NPs tested were fully characterized (Table 2) as also
described in George et al.20 X-ray diffraction (XRD) measure-
ments were done using a PANalytical X’Pert MPD PRO diffract-
ing system, and the determination of the average crystallite
sizes (dXRD) was achieved by the line-broadening analysis.
Specific surface areas were determined by nitrogen adsorp-
tion–desorption measurements (BET), carried out at 77 K
using a NOVA system. The primary particle size was derived
using the equation dBET = 6/ρSA, where dBET, ρ, and SA are
defined as the average diameter of a spherical particle, theore-
tical density, and the measured specific surface area. High
resolution transmission electron microscopy images (HRTEM)

were obtained with a FEI Titan 80/300 microscope. The NPs
samples were dispersed in absolute ethanol and ultrasonified
for 1 h, and then applied on a TEM grid and let to evaporate
before imaging. The band gap energy of the NPs was deter-
mined by UV-visible measurements using a SHIMADZU UV-vis
2101 PC spectrophotometer in reflection mode. The UV absor-
bance spectra were used to evaluate the band gap of TiO2 and
Fe-doped TiO2 nanoparticles by plotting [F(Rα) × hν]1/2 against
hν, where hν is the energy of the incident photon and F(Rα) is
the reflection in Kubelka–Munk function. The linear part of
the curve was extrapolated to zero reflectance and the band
gap energy was derived. Particle size distribution (by dynamic
light scattering – DLS) and ζ-potential of the nanoparticles in
water (5 mg L−1) were assessed using a ZetaSizer Nano
(Malvern Instruments, Westborough, MA) in the backscatter-
ing mode.

The particles were also characterized in the media, this in
all exposure concentrations and both under UV and non-UV
treatment. This characterization included DLS, zeta, etc.
(please see Table S1†). This characterization was performed in
the aquatic exposure and not in the soil media, that was tech-
nically impossible or – for the part that was possible (i.e. fol-
lowing extraction) – highly uncertain.

5.3. Material characterisation – modelling

The particles were characterized by atomistic modelling, as
described by Tämm et al.15 and Burk et al.,6 generating 86 NP
descriptors for each material. The calculations were carried
out using Lennard–Jones potential49,50 version of the conju-
gate gradient approach. The core and shell region is deter-
mined by Kneedle method,51 where it is assumed that shell
region starts, where the change in the corresponding value is
the highest. Thus, the descriptors of the core atoms are quite
similar to the ones that could be obtained for perfect crystal
structure. The calculated descriptors included core/shell distri-
bution of atoms, coordination distances, lattice energies, etc.
(see Table S1†).

5.4. Biological test species

The test species Enchytraeus crypticus, Westheide and Graefe,37

was used. Individuals were cultured in Petri dishes containing

Table 2 Summary of the basic characteristics of the tested TiO2 materials, as custom made and fully characterised.20 TEM: transmission electron
microscopy; BET: Brunauer, Emmett and Teller, SA: surface area, E: energy, UV: ultra-violet

TiO2 materials TEM size (nm) Crystal structure (%) BET (nm) SA (m2 g−1) Band gap Eg (eV) UV absorbance (wavelength)

TiO2_12 nm 12 86% anatase–14% rutile 10.5 145 3.3 360
1%FeTiO2_11 nm 11 81% anatase–19% rutile 9 157 3.2 382
2%FeTiO2_10 nm 10 69% anatase–31% rutile 7.6 160 3.15 380
4%FeTiO2_8 nm 8 44% anatase–56% rutile 7.5 161 3.1 390
6%FeTiO2_5 nm 5 31% anatase–69% rutile 7 163 3.0 412
8%FeTiO2_5 nm 5 19% anatase–81% rutile 6 167 2.9 425
10%FeTiO2_5 nm 5 14% anatase–86% rutile 6.1 165 2.8 440
10%FeTiO2_10 nm 5 14% anatase–86% rutile 10 122 2.8 440
TiO2_10 nm 10 87% anatase–13% rutile 10 112 3.3 375
TiO2_5 nm 5 86% anatase–14% rutile 5 275 3.2 388
TiO2_27 nm 27 70% anatase–30% rutile 27 54 3.3 440
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agar medium, consisting of a sterilized mixture of four
different salt solutions (2 mM CaCl2·2H2O, 1 mM MgSO4,
0.08 mM KCl, and 0.75 mM NaHCO3) and a Bacti-Agar
medium (Agar No. 1, Oxoid, Lancashire, UK). The cultures
were kept under controlled conditions, at 19 ± 1 °C and photo-
period 16 : 8 h light : dark. Organisms were fed on ground and
autoclaved oats twice a week.

5.5. Test media

The exposure to the test materials was performed in reconsti-
tuted ISO test water52 containing: 2 mM of CaCl2·2H2O,
0.5 mM of MgSO4·7H2O, 0.77 mM of NaHCO3 and 0.077 mM
of KCl in ultra-pure water.

The post-exposure (clean media) was done in the natural
soil LUFA 2.2 (Speyer, Germany). The main characteristics can
be described as follows: pH (0.01 M CaCl2, ratio 1 : 5 w/v) = 5.5,
organic matter = 1.77 meq per 100 g, CEC (cation exchange
capacity) = 10.1%, WHC (water holding capacity) = 41.8% grain
size distribution of 7.3% clay, 13.8% silt, and 78.9% sand. For
the test, the soil was moistened with distilled water up to 50%
of its WHC.

5.6. Experimental procedures

5.6.1. Spiking procedure. The 11 TiO2 NPs (Table 2) were
tested, and the stock suspensions were prepared as 5 g L−1 in
ultra-pure water and sonicated for 20 minutes (80% pulse on
time, 50 W, 45 kJ; Branson Sonifier 250) in an ice bath. After
the sonication step, the stock suspensions were diluted in ISO
water (test media) to 1000 mg L−1 and then serially diluted (in
same media, ISO water) to 100, 10 and 1 mg L−1 being then
added into the well plates (replicates). The test started within
24 hours.

The various treatments will be further referred to as
NM_size nm_[concentration (mg L−1)] + UV, e.g. 1%
FeTiO2_11 nm_[10] + UV.

5.6.2. UV exposure procedure. Exposure to TiO2 materials
was also done under simultaneous UV(A) radiation. UV was
provided by a UVP XX-15L Longwave UV lamp (UVP LLC, CA,
USA) peak emission at 365 nm, during 60 min on a daily basis.
The daily intensity of UV radiation (280–400 nm) was 4426 ±
409 mW m−2, corresponding to an average daily dose of
15 934 J m−2. The emission spectra of the UV lamp used is
shown on ESI, Fig. S1.† The wavelengths emitted by this lamp
cover the wavelengths absorbed by the NPs (Table 2) and
respective excitation as intended.

5.6.3. Biological measures (survival and reproduction).
Survival was accessed daily, over a 5 days exposure period to
the TiO2 materials, in ISO water as described in ref. 39 based
in Römbke and Knacker.53 In short, 5 adults with similar size
and developed clitellum were selected and exposed in 24 well
plates (each well corresponds to a replicate) containing non-
spiked (controls) or spiked ISO water. The test ran at 20 ± 1 °C
and 16 : 8 hours of photoperiod, and was performed under two
different scenarios: (1) standard laboratory illumination (fluo-
rescent lamp, emission spectra on ESI, Fig. S2†) and (2) UV
radiation, with ten replicates per condition.

After the 5-day pulse exposure to TiO2 (UV and no UV), the
surviving adults were transferred to a clean post-exposure
period in LUFA 2.2 soil. The procedure followed the ERT guide-
line24 (i.e. 21 days exposure) where the surviving organisms
from each test condition were pooled in groups of 10 and
introduced on test vessels with soil. Four replicates per pre-
exposure condition were performed. The test ran under the
same conditions. At the end of the test, the organisms were
fixed with ethanol and stained with Bengal rose (1% in
ethanol). After 24 h, the soil samples were sieved through
meshes with a decreasing pore size (1.6, 0.5, and 0.3 mm) to
separate the enchytraeids from most of the soil and facilitate
counting. Adult and juvenile organisms were counted using a
stereo microscope and survival and reproduction were
assessed.

5.7. Data analysis

Simple, significant differences between the control and each
treatment were investigated based on Analysis of Variance
(ANOVA) with Dunnett’s test for multiple comparisons (p <
0.05) (using Sigma Plot, 11.0). Effect concentrations (ECx) were
calculated, for survival and reproduction (21 days’ post-
exposure), modelling data to logistic or threshold sigmoid 2
parameter regression models (for details see Table S6†) (using
Toxicity Relationship Analysis Program (TRAP 1.30)).

Exploratory approaches previously employed in the litera-
ture include various forms of regression analysis, principal
component analysis, and machine learning techniques (SAS
Enterprise Guide 7.13 2016, IML studio 14.2 SAS 2013–2014).
Here a novel multi-step method for identifying the descriptors
for the biological response to TiO2 materials has been devel-
oped and used for both non-UV and UV exposure tests.54

Starting from the initial amount of N = 113 variables (equi-
valent to “descriptors”) (x1, x2, …, x113) available from both
computational and experimental characterization of TiO2

materials, our data analysis protocol aims at progressively
prune the redundant or less significant variables for the bio-
logical response (y) observed in the experiments, thus even-
tually highlighting a limited yet important set of descriptors.55

The complexity of the biological and chemical processes
involved in the biological mechanism and the numerous vari-
ables initially available may lead to overfitting.56 Hence, the
employed data analysis protocol was developed over four suc-
cessive steps (schematically depicted in Fig. 5a) and make use
of statistical and machine learning approaches: (i) pre-process
data; (ii) remove correlated variables; (iii) identify the descrip-
tors out of the variable set by means of an iterative pruning
process; (iv) correlate the descriptors with biological response.

As previously described, the biological response to TiO2 par-
ticles has been assessed in vivo, with and without UV exposure,
yielding 44 biological data points. Such TiO2 particles have
been experimentally characterized, thus obtaining the values
of several variables describing the dose (i.e., concentration),
material (e.g., size, chemical composition, etc.) and surround-
ing environment (e.g., zeta potential) during tests. This list has
then been enriched with variables computed by numerical
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modelling. Hence, two 44 × 114 data matrices are available at
the starting point: 44 experimental results, including with and
without UV exposure, each one described by 113 variables
(dose, material, environment, and modelling ones) and 1 bio-
logical response. First, the initial datasets were cleaned, by
removing variables with missing data and keeping only the
average value of variables, not their standard deviation.

Second, redundant variables have been identified and clus-
tered together, to achieve a shorter list of variables with low
degree of correlation. To this purpose, the hierarchical cluster-
ing algorithm has been employed,57 considering the
Spearman’s correlation coefficient as the metric to quantify
the similarity between each pair of variables. Following this
criterion, pairs of similar variables have been linked hierarchi-
cally and grouped into clusters with pair-wise similarity until
the stopping criteria is met (i.e., inconsistency coefficient
equal to 0.8, which corresponds to roughly 1-sigma confidence
level). Finally, a representative variable per each cluster is
nominated, with preference to variables typically considered in
the toxicity literature (although, for our purposes, any of the
variable in the cluster is equivalent to the other).

Third, the uncorrelated N1 variables obtained after the clus-
tering step were pruned iteratively to eventually sort the most
significant descriptors of the biological response. As illustrated
in Fig. 5b, a symbolic regression algorithm is used at each i-th
pruning step to identify the most accurate and compact func-
tions ( f ) relating the available variables (x1, x2, …, xNi) with the
biological response (y), namely y = f (x1, x2, …, xNi). These f
functions are provided by the symbolic regressor as a Pareto
front, where their complexity is compared with the resulting
fitting accuracy (e.g., see Fig. S3a and S3b†). Clearly, the fitting
equation with the highest complexity tends to be the most
accurate one, while the elbow of Pareto front can be con-
sidered as the best compromise between fitting accuracy and
equation complexity. Then, the Ni variables are ranked based
on their occurrence in the suitable f functions lying on the

Pareto front: only the best ranked 40% of variables are kept,
while the remaining ones pruned. This process is repeated
until one of the chosen stopping criteria is met, either a 10%
decrease in the coefficient of determination (R2) or a 20%
increase in the Mean Squared Error (MSE) between the best
fitted functions in two successive pruning steps. In detail, the
symbolic regression algorithm implemented in the Eureqa
software has been used.58 To mitigate the risk of relaxing the
solution towards a local minimum, different parametrizations
of the minimization algorithm have been employed and fitting
results averaged. In detail, two sets of building blocks for the
explored fitting equations (rational polynomial functions;
rational polynomial, exponential/logarithmic and square root
functions) and three target error metrics (maximize R2; mini-
mize absolute error; maximize a hybrid correlation/error
index) have been considered, thus leading to six different rep-
etitions of the fitting procedure per each pruning step. The
symbolic regression has been iterated until a stable solution is
observed, typically after 2–50 million generations (e.g., see
Fig. S3c and S3d†). To ease the convergence of the minimiz-
ation algorithm, the processed data have been preliminary nor-
malized via a min–max approach per each independent/depen-
dent variable.

Only variables that survived to the pruning process are
finally assumed as the relevant descriptors for the biological
response to the tested TiO2 materials. The iterations of the
symbolic regressor are continued up to about 100 million to
refine the accuracy of the minimization process while consid-
ering only these descriptors as variables. Based on this last
fitting procedure, the sensitivity between each descriptor and
the biological response is assessed for both UV and non-UV
exposure. For the sake of completeness, we have also per-
formed a final fitting by means of other different supervised
machine learning algorithms (based on neural networks,
decision trees, elastic net regularization or ridge regression,
among others). The gradient boosted greedy trees regressor

Fig. 5 Overview of the data analysis protocol. (a) Variables available to predict the biological response to the tested TiO2 materials in the different
steps of data analysis. The indicated number of variables per each step refer to the non-UV exposure, but similar results have been obtained also for
the UV one. (b) Algorithm adopted for pruning the initial variables (numerosity: N1) down to the limited list of relevant descriptors for the biological
response to TiO2 materials.
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with least-squares loss achieves the highest coefficient of deter-
mination R2 = 0.52 among the tested algorithms (non-UV
exposure dataset), being anyway worse than the fitting by the
symbolic regression algorithm proposed in our work (R2 =
0.82).
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