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In nuclear fusion systems, such as ITER, Superconducting Magnets (SMs) will be employed to magnetically confine 
the plasma. A Superconducting Magnet Cryogenic Cooling Circuit (SMCCC) must keep the SMs at cryogenic 
temperature to preserve their superconductive properties. Thus, a Loss-Of-Flow Accident (LOFA) in the SMCCC 
is to be avoided. In this work, a three-step methodology for the prompt identification of LOFA precursors (i.e., those 
component failures leading to a LOFA) is developed. First, accident scenarios are randomly generated by Monte 
Carlo sampling of the SMCCC components failures and the corresponding transient system response is simulated 
by a deterministic thermal-hydraulic code. In this phase, fast-running Proper Orthogonal Decomposition (POD)-
based Kriging metamodels, adaptively trained to mimic the behavior of the detailed long-running code, are 
employed to reduce the associated computational burden. Second, the scenarios generated are grouped by a Spectral 
Clustering (SC) embedding the Fuzzy C-Means (FCM), in order to characterize the principal patterns of system 
evolution towards abnormal conditions (e.g., a LOFA). Third, an On-line Supervised Spectral Clustering (OSSC) 
approach is developed to assign signals measured during plant operation to one of the prototypical clusters 
identified, which may reveal the corresponding LOFA precursors (in terms of combinations of failed SMCCC 
components). The devised method is applied to the simplified model of a cryogenic cooling circuit of a single 
module of the ITER Central Solenoid. Results show that the approach developed timely identifies 95% of LOFA 
events and approximately 80% of the corresponding precursors. 

Keywords: ITER Central Solenoid Magnet, Cryogenic Cooling Circuit, Loss-Of-Flow Accident, Precursors 
identification, Spectral Clustering, Adaptive Kriging meta-model

1. Introduction 

ITER will be the first facility to produce a net 
amount of energy by means of thermonuclear 
fusion reactions occurring in a magnetically 
confined plasma of Deuterium and Tritium 
(ITER (2019)). Magnetic confinement is 
realized by different Superconducting Magnets 
(SMs) (Bigot (2019)): one Central Solenoid 
(CS), eighteen Toroidal Field (TF) coils, six 
Poloidal Field (PF) coils and eighteen 
Correction Coils (CCs). Each of the six Central 
Solenoid Modules (CSMs), which compose the 
CS, must sustain high currents (~45kA), in 
order to generate high magnetic fields (several 
T) to confine the plasma. In these challenging 
conditions, ohmic heating must be eliminated 
by guaranteeing the magnets superconducting 
properties (Takahashi et al. (2006)). These 
properties are preserved thanks to the cooling 

provided by a Superconducting Magnet 
Cryogenic Cooling Circuit (SMCCC), which is 
in charge of the extraction of the heat from the 
CSMs with Supercritical Helium (SHe) at 4.5 K 
and 0.5-0.6 MPa and of its transfer to pools of 
saturated Liquid Helium (LHe) (Mitchell et al. 
(2008)). 

A Loss-Of-Flow Accident (LOFA) in the 
SMCCC is, thus, of major concern because it 
may impair the CS cooling capability. In this 
condition, the CS temperature and pressure may 
escalate rapidly due to the ohmic heating: if the 
temperature and the pressure exceed 150 K and 
25 MPa, respectively, the CS structural 
integrity and superconducting properties could 
be lost (Takahashi et al. (2006)).  

In this work, an automatic, three-step data-
driven approach is elaborated to timely 
recognize patterns of signals measured during 
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plant operation and to identify LOFA 
precursors (in terms of failed SMCCC 
components). First, a “database” of accident 
scenarios is built by repeated Monte Carlo 
Sampling (MCS) of the SMCCC components 
failures and the simulation of the corresponding 
transient system response by the deterministic 
thermal-hydraulic Cryogenic Circuit Conductor 
and Coil (4C) code (Savoldi et al. (2010)). In 
this phase, fast-running Proper Orthogonal 
Decomposition (POD)-based Kriging 
metamodels (Marrel et al. (2014)) are trained by 
the Adaptive Kriging – Monte Carlo Sampling 
(AK-MCS) algorithm to mimic the behavior of 
the detailed long-running code and reduce the 
associated computational burden (Turati et al. 
(2018); Grishchenko et al. (2019)). In the 
second step, a Spectral Clustering (SC) 
embedding the Fuzzy C-Means (FCM) is used 
to cluster the scenarios thereby generated 
according to a measure of similarity between 
them, in order to characterize the principal 
patterns of the system evolution towards 
abnormal conditions (e.g., a LOFA). This 
allows identifying the prototypical component 
failures (i.e., the precursors) leading the system 
to abnormal conditions. Thirdly, the 
information collected is employed in an On-line 
Supervised Spectral Clustering (OSSC) to 
promptly assign new developing scenarios 
(measured during plant operation) to the 
identified groups and reveal the corresponding 
LOFA precursors (Di Maio et al. (2016)). 

The remainder of the paper is organized as 
follows. In Section 2, a description of the 
SMCCC and of the thermo-hydraulic code 
employed to simulate its behavior is given. In 
Section 3, the method developed for LOFA 
precursors identification is presented. The 
approach is tested in Section 4, where the main 
results are shown. Finally, conclusions are 
drawn in Section 5. 

2. The Superconducting Magnet Cryogenic 
Cooling Circuit (SMCCC) 

Supercritical Helium (SHe) is circulated in the 
SMCCC to cool the six CSMs. Fig. 1 sketches 
a simplified scheme of the circuit, where only 
one CSM is connected to the cooling system. At 
nominal operational condition, the Centrifugal 
Pump (CP) guarantees a nominal flow �� �����	
�� in the two cryolines and a discharge 

pressure �� � ����	���; Liquid Helium (LHe) 
at saturated condition ����� � ���	�� is 
employed in the heat exchangers HX1 and HX2 
to remove the heat produced in the CP and in 
the CSM, respectively; the Control Valves 
(CV1 and CV2) are Normally Open (NO), 
whereas the two Safety Valves (SV1 and SV2) 
and the By-pass Valve (BV) are Normally 
Closed (NC); controllers C1 and C2 receive 
signals from flow meters and pressure sensors, 
respectively. 

 
Fig. 1 Simplified SMCCC 

In case of a LOFA, the coolant flow goes 
below 10% of the nominal value for more than 
the validation time ����� � �� both at the 
CSM inlet and the CSM outlet (Savoldi et al. 
(2018)) and: 
• C1 closes CV1 and CV2, opens BV 

preventing the CP damage and dumps the 
current inside the CSM in 30s: by doing so, 
the SHe flows only through the by-pass 
line, isolating the CSM and closing a loop 
on the CP to protect it from operation in 
surge condition. 

• C2 opens the two SVs with a PID controller 
when the pressure in the CSM goes beyond ��� � ��!	���, sending SHe in the 
Quench Tank (QT), at pressure �"# �����	��� and temperature �"# � ���	�, 
to avoid pressurizing above 25 MPa and to 
guarantee the integrity of the connections 
to the CSM during quench. 

The closed cooling circuit is simulated for a 
mission time $ ��� � �%�� with the 4C code 
(Savoldi et al. (2010)). 

For each i-th simulation, & � � variables '�(�$�	)
 � �*�* + * &, are monitored at time t: 
the pressure �-./*�0 at the inlet of the CSM �
 � ��, that must not exceed ��� � ��!	��� 
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to guarantee connections and headers integrity 
in the SMCCC; the hotspot temperature �1� in 
the CSM �
 � �) and the ratio 2�234  between 
the current flowing in the CSM conductors and 
the critical one	�
 � ��, that must not exceed 
the current sharing temperature �3� � 5��	� 
and �2�234��� � ���, respectively, in order to 
guarantee the superconducting properties of the 
CSM. 

Failures of CP, CV1, CV2, BV, SV1 and 
SV2 may reduce the cooling capability of the 
SMCCC and lead any of the limits for pCSM,in, 
Ths and I/Icr to be overcome. 

3. The proposed framework for LOFA 
precursors identification 

A method for the “on-line” characterization of 
accident scenarios developing in the SMCCC, 
based on the analysis of the & � � time-varying 
monitored signals �-./*�0, �1� and 2�234 , is here 
proposed in three steps. 

3.1 Step 1: Creation of a “database” of 
simulated accidental scenarios  

Each i-th accident scenario constituting the 
database is represented by a sequence of events, 
which is encoded by a vector of � � �� 
elements 6� � )	7-8* �-8*7-9:* �-9:*7-9;* 	�-9;* 	7<9* �<9* 	7.9:* �.9:* 	7.9;* �.9;, and 
generated by Monte Carlo Sampling (MCS): for 
each component, the magnitude (7) of the 
failure and the time (�) at which the failure 
occurs are listed. 

The magnitude (7) is assumed as follows: 
• The magnitude of the CP can be a value 

between 0 and 4. If the component is not 
failed, 7-8 � �. Instead, 7-8	values equal 
to 1, 2, 3 or 4 correspond to a reduction of 
the mass flow rate of 75%, 50%, 25% or 
0% of the nominal value, respectively, due 
to a decrease of its rotational speed. 

• The magnitude of NO valves (CV1 and 
CV2) can assume a value between 0 and 3. 
If the component works correctly, 7 � �. 
Instead, if 7 is equal to 1, 2 or 3, the valve 
remains stuck opened, partially closed with 
a reduction of the flow section area of 50% 
or completely closed, respectively. 

• For the magnitude of NC valves (BV, SV1 
and SV2) there are four possible values, 
too. If the component is not failed, 7 � �. 

Otherwise, if 7 is equal to 1, 2 or 3, the 
valve remains stuck closed, partially 
opened with the flow section area at 50% 
of the one completely opened or 
completely opened, respectively. 

The failure time (�) is a discrete value 
between 0s and 1800s (the discretization step is 
chosen equal to 0.01s). If the component works 
correctly, � is null. 

Once the vector 6�  is sampled, it is fed as 
input to the 4C code, which delivers the three 
critical variables '�(�$�	)
 � �*�*�, and the 
mass flow rates, �-./*�0�$� and �-./*=>��$�, at 
the inlet and the outlet of the CSM, 
respectively. When �-./*�0�$� ? �����	
��		and �-./*=>��$� ? �����	
�� for more than 
the validation time (���� � �), a LOFA takes 
place and is detected by controller C1 (Savoldi 
et al. (2018)): the LOFA detection time is 
indicated as $@ABC*-:*�.  

Notice that each simulation of the system 
transient behavior by the 4C code requires on 
average two days on an Intel Core i3-7100 
3.9GHz 3MB Cache. Thus, in this phase fast-
running Proper Orthogonal Decomposition 
(POD)-based Kriging metamodels (Marrel et al. 
(2014)) are trained to mimic the behavior of the 
detailed long-running 4C code and to reduce the 
computational burden associated to the creation 
of the accident scenario “database”. 

3.1.1 Proper Orthogonal Decomposition 
(POD)-based Kriging metamodels 

First, a training set of D(4�E transients is 
generated by the Adaptive Kriging - Monte 
Carlo Sampling (AK-MCS) algorithm (Turati 
et al. (2018)). The aim of AK-MCS is to 
preferably include in the training set 
“interesting” scenarios lying in proximity of 
system failure configurations (i.e., LOFA 
conditions). Such scenarios are characterized 
by values of the critical variables close to (or 
exceeding) the system safety thresholds F�14 � 
[G�14: * 	G�14; * G�14H ]	�	[��� � ��!	���* �3� �5��	�* �2�234��� � ���]. This criterion is used 
to adaptively and intelligently drive the 
simulations towards “severe” scenarios and 
system conditions, without wasting 
computational time in the exploration of safe 
(not interesting) areas of the system state-space. 
Further details about the AK-MCS algorithm 
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are not reported here for brevity: the interested 
reader is referred to the cited references. 

 
The resulting training set (enriched around 

the system failure region) is employed to 
construct POD-based kriging metamodels. In 
all generality, a POD - truncated at the I(-th 
basis - applied to the generic i-th training 
scenario (J � �*+ * D(4�E� is (Marrel et al. 
(2014)): 

'�(�$� � K ��1( �6L� M N1(�$�OP
1Q: * ��� 

where N1(�$� (depending only on time $� is the 
orthogonal basis function of the k-th variable 
for the h-th base, and ��1( �6�� (depending only 
on the input configuration 6�) is its coefficient. 
Thanks to the orthogonality property, each 
coefficient ��1( �6�� �J � �*+ * D(4�ER 	S ��*+ * I(�	can be easily expressed as:  

��1( �6�� � T '�(�$� M N1(�$� M U$�Q	�VWXX
�Q�� � ��� 

In order to exploit this strategy for the fast 
simulation of new transients, the following 
procedure is carried out for each k-th critical 
output variable '(�$�	�
 � �*�*��: 

Step 1) Matrix YZ()D(4�E* [,, containing the 
value '��( of the k-th variable of the i-th training 
scenario at the l-th time step, is built using the D(4�E training scenarios (obtained by the AK-
MCS simulations). 

Step 2) Singular Value Decomposition 
(SVD) is used as a discretized version of POD 
to decompose YZ(: 

YZ( � \]( M ]̂( M _](	* ��� 
where \]()D(4�E* D(4�E, and _]()[* [, are 
matrixes that contain in their columns left-
singular vectors and right-singular vectors, 
respectively, and ]̂()D(4�E* [, is a diagonal 
matrix containing the nonnegative ^1(  singular 
values in decreasing order. 

Step 3) The singular values ^1( 	�S ��*+ * D(4�E� are employed to identify the best 
number I( of bases to use: 

1̀( � a b̂(1bQ:
a ^1(cPdWe1Q:

* ��� 

where 1̀( indicates the percentage of the 
variability of the real D(4�E transients that is 
“explained” by the POD decomposition 
truncated at h-th basis. In this work, I( is the 
number of (ordered) basis for which 1̀( reaches 
a value of 0.99 (i.e., for which the POD 
decomposition “retains” the 99% of the total 
variability of the real transients). Matrix _]()[* I(, is then truncated at the I(-th 
column: its generic element N�1(  corresponds to 
the value of the h-th orthogonal basis N1(�$� at 
l-th time step for output k. 

Step 4) Matrix fg()D(4�E* I(, containing the 
coefficients ��1(  is calculated as:  

fg( � YZ( M _](#* ��� 
with _](#)I(* [, the transposal of _](. Eq. (5) is 
just a discretized form of Eq. (2). 

Step 5) For each h-th base and k-th critical 
variable a Kriging metamodel hh1( is built. 
The training set is constituted by the system 
configurations 6i � j6:*6;* + *6cPdWek 
(inputs) and the corresponding basis 
coefficients l1( � j�:1( * �;1( * + * �cPdWe1( k 
(outputs). In this way, for a new generic input 
configuration 6, Kriging metamodel hh1( is 
trained to predict the coefficients of the 
corresponding POD decomposition as �m1(�6� � hh1(�6�. 

Step 6) The time-varying output 'b(�$�* 
corresponding to a new generic (sampled) j-th 
system configuration 6b, is then approximated 
at the l-th time step �n � �*+ * [� by resorting 
to a discretized version of Eq. (1):  

'ob�( � K�m1(p6bq M
OP

1Q:
N�1( 	* �%� 

where 'ob�(  is the estimate of 'b�( , resulting from 
the metamodel-based POD. 

The same procedure is also adopted to 
approximate � �r*b�$�, i.e., the maximum 
between the helium mass flow rates at the inlet 
and outlet of the CSM, (see Eq. (7)), which is 
here employed in the estimation of $@ABC*-:*b 
(i.e., of the time when a LOFA occurs and is 
detected by C1) for the j-th scenario:  

� �r�$� � stu v�-./*�0�$�* �-./*=>��$�w � �5� 
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The approximation of � �r*b�$� by POD-
based Kriging metamodels for a generic j-th 
scenario at l-th time step is indicated as �x �r*�b. 
Then, $y@ABC*-:*b (i.e., the POD metamodel-
based approximation of $@ABC*-:*b) is the time 
where �x �r*�b ? �����	
�� for more than the 
validation time ���� � � (thus, mimiking the 
operation of the controller C1).  

Thus, by resorting to multiple Kriging 
metamodels replacing the 4C code, the 
computational time per simulation is sharply 
reduced and a very large number D8Az 
(typically, D8Az { D(4�E) of new scenarios can 
be simulated and included in the “database”. 

3.2 Step 2: Identification of prototypical 
transients and components failure modes 

From the previous step a database is available 
constituted by D(4�E and D8Az scenarios. 
Relying on Spectral Clustering (SC), the D|��� � D(4�E } D8Az  transients are classified 
in ~ clusters (Von Luxburg (2007)) (Section 
3.2.1). Then, each c-th cluster is post-processed 
to extract its main features, in terms of 
prototypical time evolutions towards failure 
and of the corresponding component failures 
(i.e., the accident precursors) (Section 3.2.2). 

3.2.1 Spectral Clustering (SC) embedding 
the Fuzzy C-Means (FCM) 

SC lets D|��� objects (i.e., the transients of the 
database) to be classified in ~ clusters through 
a similarity measure between them. Each 
similarity is here calculated using the three 
critical variables '�(�$�	)
 � �*�*�, of [ 
duration and collected in a similarity matrix �] , 
from which the Normalized Laplacian matrix [Z��  is calculated. Features needed to classify 

the D|��� object are extracted from [Z��  and 
fed to the FCM code (Baraldi et al. (2015)). The 
algorithm produces two matrices: i) matrix �g[~* ~] containing in each c-th row the 
eigenspace coordinates of the center of the c-th 
cluster; ii) a matrix h] [~*D|���] whose generic 
element is the �3� membership degree of the i-
th transient of the database with respect to the 
c-th cluster: a transient belongs to a given 
cluster, if the corresponding membership 
exceeds a certain limit (��� � ��5�. 

3.2.2 Post-processing of the clusters to 
identify the LOFA occurrence times and the 
component failure modes 

The D|���*3 ? D|��� scenarios belonging to 
each c-th cluster are post-processed to evaluate 
the following quantities: �@ABC*���� (8), 
representing the probability that a LOFA is 
occurred at the l-th time step in a system 
configuration belonging to cluster c; and �BC�@*������ (9), representing the probability 
that component e is failed at the l-th time step, 
given that a LOFA has occurred due to a system 
configuration of cluster c. 

�@ABC*���� �
� a ��$@ABC*-:*��)$=* $=�:,)c����*��Q: D|���*3 �!� 

�BC�@*������ �
� a ����*��)$=* $=�:, �  7�*� � ��c����*��Q: D|���*3 ��� 
����									���� � � �					��	�	J	�t���	�					��	�	��	����		� 										 ���� 
Here, )$=* $=�:, is the time interval (bin) 
including the l-th time step; ���� (Eq. (10)) is 
an indicator function used to count the events of 
interest during that interval, i.e., the number of 
LOFA occurrences in Eq. (8) and the number of 
e-th component failures (7� � �) in Eq. (9). 
Notice that the length of the o-th interval (bin) )$=* $=�:, is here selected equal to 300s, as a 
satisfactory compromise between analysis 
detail and statistical robustness: such intervals 
should be small enough to provide a fine 
description of the time evolution of the 
probabilities, but large enough to include a 
statistically meaningful number of samples. 

3.3 Step 3: On-line Supervised Spectral 
Clustering (OSSC) for timely LOFA 
precursors identification 

An On-line Supervised Spectral Clustering 
(OSSC) method is trained with the available D|��� scenarios to timely identify LOFA 
precursors during the development of a new j-
th accident scenario, different from the training 
ones. The j-th scenario, characterized by the 
monitored variables 'b(�$�	�
 � �* �* + * & ���, is compared to those of the created database '�(�$� (J � �* �* + * D|���) at each l-th time: 
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Step 1) The k-th trajectory 'b(�$�	is recorded 
every �$ � ���� time step from 0s to 3600s, 
obtaining values 'b�(  (n � �*�*+ * [� at each l-th 
time step. Thus, [ � �%���� points for each k-
th variable are stored. 

Step 2) The value 'b�(	�n � �*�* + * [R 
 ��*+ * D(� is normalized in the interval [0.2, 0.8] 
and saved as '0*b�( . 

Step 3) The Euclidean pointwise distance ��*b� between the j-th new scenario and the i-th 
training scenario (J � �*�* + * D|���� at the l-th 
time step (n � �*�* + * [� is evaluated as:  

��*b� � KK�'0*b ( ¡ '0*� ( �
�

 Q:

¢

(Q:
� ���� 

Step 4) The similarity indices £�*b� are 
calculated at each l-th time step as £�*b� ��¤BM¥¦*§W¨ , with © � ��5 M ��¤ª (Di Maio et al. 
(2016)). The higher £�*b� , the higher the 
similarity between the j-th test scenario and the 
i-th training scenario until the l-th time step. 

Step 5) The similarity indices £�*b� are fed to 
the FCM to obtain membership		��*3b �� ��*+ * ~�, which measures the “degree” of 
confidence with which the j-th scenario at the l-
th time step “belongs” to the c-th cluster. 

Step 6) The pointwise difference �4��*�*3b  
between ��*3b�� � �*�* + * ~� and ��*3�	(i.e., 
the membership to the c-th cluster at l-th time 
respect of a scenario at nominal conditions with 
no failures) is calculated. In this way, the 
background contribution of a standard scenario 
is removed from the trend of the membership of 
the j-th test transient to cluster c. 

Step 7) Calculate «4��*�*3b	�� � �*�* + * ~�, 
i.e., a discrete estimator of the derivative of the 
membership ��*3b  at the l-th time: 

«4��*�*3b �
� ¬			�																																									J	n � �	�4��*�*3b ¡ �4��*��¤:�*3b®$ 		J	n � � �		 ���� 

Step 8) LOFA precursors are identified as 
follows: 

Step 8a) Each «4��*�*3b	)� � �*+ * ~, is 
compared to a limit threshold «�� *@ABC*�. In 
extreme synthesis, if at least two values of «4��*�*3b, namely «:�� � stu3 p«4��*�*3bq and «;0| �

stu3¯3°X�p«4��*�*3bq, overcome the threshold 

«�� *@ABC*� at time l, then indicator �@ABC*�*b is 
assigned a value (different from zero) as:  

�@ABC*�*b � �@ABC*�p�:��*�q } �@ABC*�p�;0|*�qa �@ABC*����-3 � ����
Notice that Eq. (13) indicates the probability 

that a LOFA has happened at time l, due to a 
system configuration of either cluster �:��*� or �;0|*�. Finally, if �@ABC*�*b (13) exceeds a limit 
threshold �@ABC*�� , the algorithm identifies the 
LOFA precursors (see step 9b. below); 
otherwise, no precursor is identified.  

Notice that thresholds «�� *@ABC*� and �@ABC*��  are properly determined and tuned 
from the training data, in order to minimize the 
sum of false positives (i.e., not occurred failure 
events wrongly identified as occurred) and false 
negatives (i.e., occurred events not identified) 
encountered in the LOFA identification process 
on the training scenarios. Further algorithmic 
details are not reported here for brevity. 

Step 8b) Quantities -�*�*b��� and �-�*���� are 
calculated by Eq. (14) and Eq. (15), 
respectively, for each c-th cluster. The former 
assumes a value equal to �@ABC*���� [see Eq. 
(8)], only if the corresponding membership �4��*�*3b overcomes the threshold value ��� *BC�@*� (see Eq. (17) below); otherwise, it is 
set to 0. The latter indicates the degree with 
which cluster c is “responsible” for the failure 
(i.e., the probability that a system configuration 
of cluster c is responsible for the LOFA): in 
fact, Eq. (15) represents a “re-normalization” of 
Eq. (8), conditional to the fact that a LOFA has 
occurred and has been identified. 

	-�*�*b��� �
� ±		�@ABC*����			��		�4��*�*3b ² ��� *BC�@��		�																				��		�4��*�*3b ³ ��� *BC�@�� ����

 

�-�*���� � -�*�*b���a -�*�*b���-Qª3 ���� 
Then, �BC�@*�*b��� is computed with Eq. (16) 

(Theorem of Total Probability) for each e-th 
component: it represents the unconditional 
probability that in the j-th test scenario 
component e is failed at time l.  
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�BC�@*�*b��� �
�K �BC�@*������ M �-�*�*b���-Qª

3 ��%� 
Finally, if �BC�@*�*b��� overcomes the 

threshold �BC�@*�� ���, then the e-th component 
is considered failed (i.e., it is identified as a 
precursor). 

Notice that the trend of ��� *BC�@�� and the 
values of each �BC�@*�� ��� are determined from 
the D|��� training scenarios, too. In particular, ��� *BC�@*� is calculated as  

��� *BC�@�� � ´ M �n�1	$J7��� ��5� 
It is worth mentioning that ��� *BC�@*� is 

assumed to be linearly dependent on time, 
because ��b (11) increases from $ � � to $ �$ ��� � �%�� and it is used to calculate �4��*�*3b. ´ is the value that maximises the 
number of training scenarios whose 
components failures are correctly identified as 
LOFA precursors, minimizing at the same time 
the time delay between components failures and 
the time of precursors identification. Instead, 
for each e-th component, �BC�@*�� ��� is set to 
minimize the sum between false positive and 
false negatives, related to the identification of 
the e-th component as precursor over the D|��� 
training scenarios. 

4. Results 

4.1 Step 1: Creation of a “database” of 
simulated accidental scenarios  

The AK-MCS procedure has been iterated to 
produce a set of D(4�E � ��� scenarios, used to 
train the POD-based Kriging metamodels 
(Section 3.1). These have allowed simulating D8Az � 5�� new time-varying transients with 
a sharp reduction in the computational burden 
with respect to the 4C code (from an average of 
two days to about 1.1s per simulation). The 
resulting (new) database is thus constituted by D|��� � !�� scenarios.  

4.2 Step 2: Identification of prototypical 
transients and components failure modes 

The D|��� � !�� scenarios have been grouped 
into ~ = 9 clusters by SC embedding FCM 
(Section 3.2). Each cluster is characterized by 
different values of �@ABC*���� (8) and of 

�BC�@*������ (9), sketched in Figs. 2 and 3, 
respectively, with reference to cluster c = 4 only 
for illustration purposes. 

According to Fig. 2, for system 
configurations belonging to cluster c = 4 the 
probability of LOFA is significant (i.e., around 
30-50%) in time interval [0s, 900s], whereas it 
is negligible in [900s, 1800s]. 

The conditional failure probability �BC�@*������ (9) of each component e for cluster 
c = 4 as a function of time l is reported in Fig. 
3, as an example. It clearly shows some relevant 
information: if a LOFA occurs in a system 
configuration of cluster 4, it will be due with 
high probability to an “early” failure (i.e., 
within [0,600s]) of either CP or CV1 or CV2 or 
BV (or combination of such components). 

 
Fig. 2 Probability of the LOFA occurrence in time µ¶·¸¹*º�»� (8) for cluster c = 4 

 
Fig. 3 Conditional probability of failure µ̧ ¹¼¶*º���»� (9) of 
each component e for cluster c=4, as a function of time l 

4.3 Step 3: OSSC for timely LOFA 
precursors identification 

In Tab. 1, the results of the application of the 
LOFA precursors identification algorithm on D���� � �! new test scenarios (different from 
the training ones) are summarized. 

 

� �
�
��
��	





Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference 2310

Table 1 LOFA identification results on ½¾¿À¾ � �! 
scenarios 

Scenarios with LOFA 32 

LOFA predicted in advance 24 

LOFA not predicted in advance 8 

Scenarios with NO LOFA 6 

Correct identification NO LOFA 4 

False positive LOFA 2 

It can be seen that in general, a LOFA is 
predicted in advance in most scenarios, with a 
negligible number of “false positives” in 
scenarios without a LOFA: globally, the 
elaborated method recognized 95% of the 
LOFA events and it is able to predict them in 
advance in the 75% of the cases. In Tab. 2 the 
results of precursors identification are reported. 

Table 2 Results of the precursor identification approach for 
the 32 test scenarios with LOFA 

Correct 
precursor ID 

False 
NEG. 

Correct ID of 
normal operation 

False  
POS. 

CP 21 2 2 7 
CV1 16 0 2 14 

CV2 13 2 9 8 
BV 14 2 3 13 
SV1 1 1 25 5 

SV2 2 2 20 8 

About 80% of the precursors are identified 
correctly by the OSSC algorithm, despite the 
relatively large number of false positives (i.e., 
56%) for components CP, CV1 and BV: this 
however does not endanger the SMCCC, 
because conservatively overestimating the 
number of failed components (and, thus, the 
risk associated to the system). On the other side, 
it reduces its availability (due, e.g., to 
unnecessary inspections following the 
precursors identification). 

5. Conclusions 

A computational framework for LOFA 
precursors identification in a superconducting 
magnet cryogenic cooling circuit has been 
developed. The approach has been tested on �! 
accidental scenarios to verify its robustness. 
Results have shown that 95% of the scenarios 
are correctly classified as “safe” or “faulty” and 
80% of LOFA precursors are correctly 
identified. In this light, the proposed method 

may be employed to guide prioritization 
actions for inspection and maintenance of the 
SMCCC components. Also, notice that thanks 
to the use of metamodels, these satisfactory 
results have been obtained at the expense of 
very few (i.e., around 120) runs of the detailed, 
long-running simulation code. 
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