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Boundary Element Methods (BEMs) are efficient strategies to numerically solve electromagnetic radiation and 
scattering problems. Unfortunately, however, classical BEM formulations suffer from ill-conditioning when the 
frequency is low, or the discretization density is high. In the past, several remedies have been presented for these 
ill-conditioning problems including preconditioners based on Calderón identities, hierarchical bases, and current 
decompositions. While effective, these strategies however require ad-hoc procedures including mesh-refinements, 
new basis function definitions, and adapted fast methods that, if not implemented properly, can become 
computationally cumbersome. 
 
In this work we adopted a different and new approach: we leveraged a spectral equivalence that can be established 
between integral operators defined on manifolds linked by conformal or quasi-conformal mappings. Moreover, a 
fast and sparse operator algebra is available for spheres (or circles in 2D). Thus, we derived equivalent matrix 
products discretizing respectively: a sphere mapping, an inversion on the sphere of the original operator, and a 
mapping back on the initial manifold. The steps are equipped with appropriate fast algorithms. We finally show 
that this sequence represents a valid, optimal, and multiplicative preconditioner for the original operator. For 
fixing ideas, consider for example the single layer operator in 2D for which the matrix elements are computed as 
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(𝑘|𝒓ᇱ − 𝒓|) is the Green function (with 𝑘 the wavenumber and 𝐻଴
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(𝑥) the Hankel 

function of the second kind) and 𝜆௡ are the set of basis functions used to discretize the operator. Performing a 
change of variable, the same matrix elements can be computed using integrals on the circular boundary Γ௖ 
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the determinant of the Jacobian. Letting 𝜱൫𝒓′෩ ൯ be Lipschitz continuous it can be proved that the operator matrix 
𝑺𝝀,𝝀 is spectrally equivalent to the mapped operator matrix 𝑺෨ 𝝀,෩ 𝝀෨  for which the elements are computed as 
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where 𝜆ሚ௡ are a mapped version of the original basis functions. For operators computed on circular boundaries, 
parametrized with the angular variable 𝜃, and discretized with the exponentials basis functions 𝑒̃௠ = 𝑒ି୨௠ఏ  
(eigenfunctions of the Laplace-Beltrami operator on the circle in 2D, we would use spherical harmonics in 3D), 
the obtained moment matrix, is diagonal. Hence, we discretize directly the inverse of the operator relative to 𝑺෨ 𝝀,෩ 𝝀෨ ,  

getting the diagonal matrix 𝑺ି𝟏෪
𝒆෤,𝒆෤ , and by using Gram matrices to perform a change of basis we compute the 
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last matrix is spectrally equivalent to the inverse of the original operator matrix, that reads 𝑮𝝀,𝝀(𝑺𝝀,𝝀)ି𝟏𝑮𝝀,𝝀 ≍
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𝝀,෩ 𝝀෨ , thus 𝑷෩𝝀,෩ 𝝀෨  can be used to precondition 𝑺𝝀,𝝀, obtaining an operator free from dense-discretization breakdown. 

Numerical results confirm theoretical predictions with a condition number robust to mesh refinement (Figure 1). 

 
Figure 1. Left: condition numbers of 𝑺𝝀,𝝀 and 𝑷෩𝝀,෩ 𝝀෨ ൫𝑮𝝀,𝝀൯
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𝑺𝝀,𝝀. Right: spectra of  𝑷෩𝝀,෩ 𝝀෨  and 𝑮𝝀,𝝀 ൫𝑺𝝀,𝝀൯
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𝑮𝝀,𝝀. 


