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We present a three-dimensional metric affine theory of gravity whose field equations lead to a connection 
introduced by Schrödinger many decades ago. Although involving nonmetricity, the Schrödinger connection 
preserves the length of vectors under parallel transport, and appears thus to be more physical than the 
one proposed by Weyl. By considering solutions with constant scalar curvature, we obtain a self-duality 
relation for the nonmetricity vector which implies a Proca equation that may also be interpreted in terms 
of inhomogeneous Maxwell equations emerging from affine geometry.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In 1918, Weyl proposed a remarkable generalization of Rieman-
nian geometry (see e.g. [1–4]) with an additional symmetry in an 
attempt of geometrically unifying electromagnetism with gravity 
[5,6]. In this theory, both the direction and the length of vectors 
vary under parallel transport. The connection introduced by Weyl 
involves a nonmetricity tensor whose trace part is known as the 
Weyl vector. However, Weyl’s attempt to identify the trace part of 
the nonmetricity, associated with stretching and contraction, with 
the electromagnetic vector potential failed, due to observational in-
consistencies [7].

On the other hand, in a series of papers written in the 1940s 
and collected in [8], with the aim to construct a unified field 
theory, Schrödinger proposed a symmetric connection which, al-
though involving nonmetricity, preserves the length of vectors un-
der parallel transport. The Schrödinger connection has the form

�̂λ
μν = �̃λ

μν + gλρ Zρμν , (1)

where �̃λ
μν denotes the Levi-Civita connection and Zμνρ is a ten-

sor obeying

Zλμν = Zλνμ , Z(λμν) = 0 . (2)
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The generic decomposition of an affine connection �λ
μν is given 

by

�λ
μν = �̃λ

μν + Nλ
μν︸ ︷︷ ︸

distortion

, (3)

with

Nλ
μν = 1

2
gρλ

(
Q μνρ + Q νρμ − Q ρμν

)
︸ ︷︷ ︸

deflection

− gρλ
(
Tρμν + Tρνμ − Tμνρ

)
︸ ︷︷ ︸

contorsion

,

(4)

where Q λμν ≡ −∇λ gμν = −∂λ gμν + �ρ
μλ gρν + �ρ

νλgμρ and 
Tμν

λ = �λ[μν] are the nonmetricity and the torsion tensor respec-
tively [9]. In the case of vanishing torsion and N(λμν) = 0, the 
connection (3) reduces to

�λ
μν = �̃λ

μν − gλρ Q ρμν , (5)

with

Q (λμν) = 0 . (6)

One immediately sees that (5) coincides with the Schrödinger con-
nection (1) if we identify

Zλμν = −Q λμν . (7)
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Any connection respecting (6) preserves the length of (but in gen-
eral not the angle between) vectors under parallel transport [8,11]. 
Notice that, on the other hand, one could consider vanishing non-
metricity and then symmetrize the connection (3) in μ, ν to obtain

�λ
(μν) := �̌λ

(μν) = �̃λ
μν − 2gλρ Tρ(μν) . (8)

Then, �̌λ
(μν) coincides with (1) under the identification

Zλμν = −2Tλ(μν) . (9)

Comparing (7) with (9), we see that (1) can be written either in 
terms of torsion, in terms of nonmetricity fulfilling (6), or in terms 
of both of them.

The Schrödinger connection seems to have been overlooked in 
the successive literature, despite its relevant features and the fact 
that it appears to be more physical than the one proposed by 
Weyl. In this paper, we present a metric affine theory of grav-
ity in 2+1 spacetime dimensions whose field equations lead to a 
Schrödinger connection. Intriguingly, by considering solutions with 
constant scalar curvature, we obtain a self-duality relation [14] for 
the nonmetricity vector. This implies a Proca equation which may 
also be interpreted in terms of inhomogeneous Maxwell equations 
emerging from affine geometry, i.e., from a purely gravitational 
setup. In this scenario, gauge invariance follows from self-duality 
and we can properly dub the nonmetricity vector ‘photon’.

2. Schrödinger connection with selfdual nonmetricity vector

Before introducing our theory, let us recall the irreducible de-
composition of the nonmetricity tensor Q λμν under the Lorentz 
group, that reads in three dimensions

Q λμν = 2

5
Q λgμν − 1

5
Q̃ λ gμν + 3

5
gλ(ν Q̃ μ)

− 1

5
gλ(ν Q μ) + �λμν ,

(10)

where Q λ ≡ Q λμ
μ and Q̃ λ ≡ Q μ

μλ are nonmetricity vectors and 
�λμν is the traceless part of the nonmetricity.

We propose the action

S = 1

2κ2

∫
d3x

(√−g f (R) + 1

2μ
εμνρ Q ρ R̂νμ

)

+
∫

d3xεμνρζνσ Tρμ
σ ,

(11)

where κ denotes the gravitational coupling constant, f (R) is an 
arbitrary function of the scalar curvature R = gμν Rμν(�) (� is 
a general affine connection), R̂μν := Rλ

λμν = ∂[μ Q ν] denotes the 
homothetic curvature tensor, μ is a Chern-Simons coupling con-
stant, and ζνσ a Lagrange multiplier. In (11) we also introduced the 
Levi-Civita symbol εμνρ = √−gεμνρ , where εμνρ is the Levi-Civita 
tensor. The action (11) is manifestly diffeomorphism-invariant.

We work in the Palatini formalism, where the metric gμν and 
the connection �λ

μν are independent variables. From the variation 
of (11) with respect to ζμν , we get vanishing torsion,

Tρσ
ν = 0 . (12)

The variation w.r.t. gμν leads to

f ′(R)R(μν) − 1

2
f (R)gμν = 0 . (13)

Notice that the Chern-Simons term and the piece involving the La-
grange multiplier do not contribute to (13). The trace of (13) yields
2

f

2 f ′ = R

3
, (14)

which is identically satisfied if we choose

f (R) = C R3/2 , (15)

with C an arbitrary integration constant. With the choice (15), the 
action (11) becomes invariant under the conformal transformation 
(see also [11,12])

gμν �→ g′
μν = e2�gμν , �λ

μν �→ �′λ
μν = �λ

μν , (16)

where � is a scalar function. On the other hand, (14) can also be 
viewed as an algebraic equation for R admitting generically solu-
tions with constant scalar curvature [11],

R = ck . (17)

Plugging (14) into (13), the latter becomes

R(μν) − R

3
gμν = 0 . (18)

Observe that, together with (12), (18) would correspond to the 
Einstein-Weyl equations in three dimensions in the case in which 
one considers Weyl nonmetricity (see e.g. [12]). Varying (11)
w.r.t. �λ

μν and using (12), one gets

Pλ
μν + δλ

ν ∂μ f ′

f ′ − gμν ∂λ f ′

f ′

+ 2

μ f ′ ε
νρσ δλ

μ R̂ρσ + 2κ2

f ′ εμνρζρλ = 0 ,

(19)

where

Pλ
μν = −∇λ

(√−g gμν
)

√−g
+ ∇σ

(√−g gμσ
)
δν

λ√−g
(20)

is the Palatini tensor with vanishing torsion. Taking the λ, μ trace 
of (19) and contracting with the Levi-Civita tensor, we get

ζ[ρσ ] = 3

κ2μ
R̂ρσ . (21)

Plugging (21) into (19), using (10), and taking the λ, ν trace of the 
resulting equation, one finds

Q̃ μ − Q μ

2
+ ∂μ f ′

f ′ − 4

μ
εμρσ R̂ρσ = 0 . (22)

Then, with (21) and (22), the μ, ν trace of (19) yields

∂λ f ′

f ′ = 1

6
Q λ + 2

3μ f ′ ε
αρσ gαλ R̂ρσ . (23)

Inserting also (23) into (19) after use of (21) and (22), and taking 
different contractions with the Levi-Civita tensor, we obtain

ζ(λν) = 0 , (24)

and vanishing traceless part of the nonmetricity,

�λμν = 0 . (25)

Using (21) and (24), one gets

ζρσ = 3

κ2μ
R̂ρσ . (26)

With (22), (23), (25) and (26), (19) becomes

R̂ρσ δλ
[μεν]ρσ + R̂λρεμνρ = 0 , (27)
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Plugging (23) into (22), we find

R̂ρσ = μ f ′

20
εμνλgρμgσν

(
Q λ − 3Q̃ λ

)
, (28)

which, used in (23), leads to

∂λ f ′

f ′ = 1

10

(
Q λ + 2Q̃ λ

)
. (29)

Notice also that, exploiting (28), (26) becomes

ζρσ = 3 f ′

20κ2
εμνλgρμgσν

(
Q λ − 3Q̃ λ

)
. (30)

Finally, using (28) we can see that (27) is identically satisfied.
Summarizing, one has

Q λμν = 2

5
Q λgμν − 1

5
Q̃ λ gμν + 3

5
gλ(ν Q̃ μ) − 1

5
gλ(ν Q μ) , (31)

together with (12), (18), (28) and (29). The final form of the con-
nection, obtained by plugging (12) and (31) into (4), results to be

�λ
μν = �̃λ

μν − 3

10
gμν Q λ + 2

5
δ(μ

λ Q ν)

+ 2

5
gμν Q̃ λ − 1

5
δ(μ

λ Q̃ ν) .

(32)

Observe that with the choice (15) (with C = 1), (28) and (29)
would lead to the generalized monopole equation

� (d� + h�) = dh , (33)

where the one-form h and the function � are respectively defined 
by hλ = −Q λ/6 and � = 3μ

√
R/8, together with

∂μ ln R = 1

5

(
Q μ + 2Q̃ μ

)
. (34)

Actually, (33) represents a special case of the generalized monopole 
equation [12]. If � were constant (which can always be achieved 
by a Weyl rescaling (16), under which � �→ e−��), (33) would 
boil down to dh = �h�, which is the self-duality condition [14] in 
three dimensions. We can thus regard (33) as a conformally invari-
ant generalization of the three-dimensional self-duality condition. 
We will further elaborate on this point in the sequel. Notice that, 
in that case, (34) would yield

Q̃ μ = −1

2
Q μ . (35)

Setting � constant above has the same effects as considering 
the solutions (17) (we discard the trivial case R = 0). Then, f (R)

is constant and we can write

f ′(R) = C0 , (36)

where C0 is an arbitrary constant. Thus one has ∂λ f ′ = 0, and (29)
leads to (35), so that we are left with just one independent non-
metricity vector. Using (17), (18) becomes

R(μν) = ck

3
gμν . (37)

Then, inserting (36) and (35) into (30) and (28), one obtains

ζρσ = 3C0

8κ2
ερστ Q τ , (38)

R̂ρσ = C0μ

8
ερστ Q τ . (39)

Note that (39) can be dualized as
3

− C0μ

4
Q α = εαρσ ∂ρ Q σ , (40)

which implies

∇̃μ Q μ = 0 , (41)

where ∇̃ denotes the Levi-Civita covariant derivative. Using (35), 
the nonmetricity tensor (31) becomes

Q λμν = 1

2
Q λgμν − 1

4
Q μgλν − 1

4
Q ν gλμ , (42)

and, in particular, we have

Q (λμν) = 0 . (43)

Consequently, (32) boils down to

�λ
μν = �̃λ

μν − 1

2
gμν Q λ + 1

2
δ(ν

λ Q μ) = �̃λ
μν − gλρ Q ρμν . (44)

(44) corresponds thus to a Schrödinger connection (1) with (7)
and nonmetricity given by (42). Moreover, (40) implies that in the 
present case the nonmetricity vector Q μ is selfdual [14].

2.1. Self-duality in three dimensions and inhomogeneous Maxwell 
equations

In what follows, we discuss some interesting consequences of 
our theory arising from the self-duality relation (40).

Let us first recall that the authors of [14] showed that for space-
time dimension n = 4k −1, k = 1, 2, 3, . . ., one may take the ‘square 
root’ of the Proca equation for a massive antisymmetric tensor 
field. The result is a selfdual field; (40) corresponds to the case 
k = 1 and can be rewritten as

Q μ = 1

2M
εμνρFνρ , (45)

where M = −C0μ/4 is interpreted as a mass parameter that de-
pends, in particular, on the Chern-Simons coupling μ, and we 
defined the field strength

Fμν = 2∇̃[μ Q ν] = 2∂[μ Q ν] = 2R̂μν . (46)

The dual form of (45) reads

Fαβ = Mεμβα Q μ . (47)

One shews that (45) implies (41), together with the covariant Proca 
equation

∇̃μFμν − M2 Q ν = 0 . (48)

Notice that, using (47), (48) can also be written in the form

∂μFμν − 1

2
gαβ∂μgαβFμν − M2 Q ν = 0 . (49)

Thus, the vector Q μ could be interpreted as a massive photon 
gauge field.

Furthermore, (48) corresponds to an inhomogeneous electro-
magnetic wave equation which follows from the inhomogeneous 
Maxwell equations. In this context, we find that Q μ results to be 
massless and source of itself. In order to see this explicitly, let us 
consider the following wave equation, implied by (48) and (41):(
�− M2

)
Q μ = 0 , (50)

where � ≡ ∇̃α∇̃α . On the other hand, the inhomogeneous electro-
magnetic wave equation for Q μ in the gauge (41) reads
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�Q μ = μ0 Jμ ⇔ �Q μ = ∇̃ρFρμ , (51)

where μ0 is the vacuum permeability and Jμ the current. Now 
plug (46) and (47) into (50) to find

�Q μ = M

2
εμρσFρσ = ∇̃ρ

(
Mεμρσ Q σ

) = ∇̃ρFρμ . (52)

We see that (52) coincides with (51), and we can also write

Jμ ≡ 1

μ0
∇̃ρFρμ = M

2μ0
εμρσFρσ = M2

μ0
Q μ . (53)

The source current Jμ is covariantly conserved, ∇̃μ Jμ = 0. Never-
theless, by this last equation we cannot directly define a globally 
conserved charge, since we need a local conservation law to do 
this. On the other hand, considering (49), we deduce that the total 
current (source current plus self-current)

jμ = Jμ + 1

2μ0
gαβ∂ρ gαβFμρ (54)

is locally conserved, ∂μ jμ = 0.
Concluding, (48), which involves a massive photon, can also be 

interpreted as the inhomogeneous Maxwell equations, with corre-
sponding wave equation, where the photon is source of itself, due 
to the self-duality relation (40). Gauge invariance of the connec-
tion and of the inhomogeneous Maxwell equations follows from 
self-duality.

We observe that in this new model the metric has no degree of 
freedom (we recall that in three spacetime dimensions the Weyl 
tensor vanishes identically). On the other hand, the non-metricity 
vector Q μ has one dynamical degree of freedom. This is due to 
the condition ∂μ Q μ = 0, implied by the Proca equation (48), so 
that only two of the three components of Q μ are independent, 
and the self-duality relation (40), for which, at the end, only one 
mode is propagated (cf. [14] for details on this counting).

3. Discussion

We presented a three-dimensional metric affine theory of grav-
ity whose field equations lead, considering the particular solu-
tion with constant scalar curvature, to a connection introduced 
by Schrödinger in the 1940s. Although involving nonmetricity, the 
latter preserves the length of vectors under parallel transport. Fur-
thermore, we obtained a self-duality relation for the nonmetricity 
vector Q μ leading to a Proca equation which may also be in-
terpreted as inhomogeneous Maxwell equation. Gauge invariance 
follows from self-duality and we can conclude that, in our frame-
work, the inhomogeneous Maxwell equations emerge from affine 
geometry, i.e., from a purely gravitational setup.

Let us mention that similar results were obtained in [12]
(where the authors presented for the first time an action principle 
for the Einstein-Weyl equations in three dimensions), where the 
Weyl vector is self-dual. We also remark that the Chern-Simons 
and Lagrange multiplier terms in (11) break the projective invari-
ance of the connection, which allows for consistent matter cou-
plings (cf. the discussion in [12]).

The model and the results presented in this paper not only 
appear to be relevant under geometrical and physical perspec-
tives but they also aim to highlight some peculiar and intriguing 
features of the Schrödinger connection that have been somewhat 
overlooked in the past literature. Future developments could con-
sist in studying possible applications of our results in the classifi-
cation of supersymmetric near-horizon geometries along the lines 
of [15,16], and in the phenomenology related to dark matter and 
dark energy. It remains to be seen if our model can be extended 
to higher dimensions.
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