POLITECNICO DI TORINO
Repository ISTITUZIONALE

Compressed Machine Learning-Based Inverse Model for the Design of Microwave Filters

Original

Compressed Machine Learning-Based Inverse Model for the Design of Microwave Filters / Sedaghat, Mostafa;
Trinchero, Riccardo; Canavero, Flavio. - ELETTRONICO. - (2021). ((Intervento presentato al convegno MTT-S
International Microwave Symposium (IMS) tenutosi a Atlanta, GA, USA nel 7-25 June 2021
[10.1109/IMS19712.2021.9574884].

Availability:
This version is available at: 11583/2932616 since: 2022-04-30T19:04:25Z

Publisher:
IEEE

Published
DOI:10.1109/IMS19712.2021.9574884

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

08 November 2022



TulA-4

Compressed Machine Learning-Based Inverse Model for the Design of
Microwave Filters

Mostafa Sedaghat', Riccardo Trinchero®, Flavio Canavero™

"Department of Electrical and Computer Engineering, Isfahan University of Technology
Isfahan 84156-83111, Iran
*EMC Group, Department of Electronics and Telecommunications, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

'mostafa.sedaghat@ec.iut.ac.ir, 2riccardo.trinchero@polito.it, *flavio.canavero @polito.it

Abstract— This paper presents an inverse model for the
optimization of the geometrical parameters of a parallel
coupled-line pass-band filter. Given the overall structure of the
filter, the least square support vector machine is combined with
the principal component analysis with the aim of constructing
an inverse model able to estimate the geometrical parameters of
the filter starting from a frequency-domain mask. Such model
is trained via a set of scattering parameters computed via a 2D
solver for few configurations of the filter geometrical parameters.
The feasibility and the accuracy of the proposed optimization
scheme is investigated by comparing its predictions with the
corresponding optimal configuration estimated via a commercial
tool.

Keywords — Optimization, machine learning, inverse model,
least-squares support vector machine, principal component
analysis.

I. INTRODUCTION

Due to their simple layout, broad-band behavior as well
as their capability of providing structures with matched
impedance, microstrip filters are widely used in microwave
applications. Starting from the given specifications and
selecting the filter type, the geometrical parameters of the
microstrip filter can be estimated from prototype filter design
and conventional formulas [1]. Such filter design can be further
improved through optimization, as an example, by relying on
the optimization algorithms available in most of the Electronic
Design Automatic (EDA) tools.

Conventional optimization algorithms iteratively look for
the optimal configurations of the system parameters by
running, at each iteration, a new simulation with the
computational model. However, especially for the case of a
multi-objective optimization, such conventional optimization
scheme can be rather expensive, since it may require many
iterations to converge.

This paper presents a different approach for the
optimization of a microwave filter based on an inverse
model. The underlying idea is to construct an inverse
model able to inexpensively estimate the filter geometry
starting directly from the desired shape of the filter
scattering parameters, without iterating. In this work, the
inverse model is constructed by combining the least-square
support-vector machine (LS-SVM) regression [2] with the
principal component analysis (PCA) [3] from a set of

Table 1. Preliminar design of the proposed microwave filter.

Wi 1.09099 mm | S1 0.977841 mm | L1 11.9815 mm
Ws  1.19140 mm | So 3.41580 mm Lo 11.8137 mm
W3  1.19177 mm | Sy 3.94654 mm L3z 11.8082 mm

training samples provided by the full-computational model
implemented within the software Advanced Design System
(ADS). The performance and the effectiveness of the proposed
approach are then evaluated by comparing the results of a
traditional optimization scheme available in ADS [4].

II. PROBLEM STATEMENT & CONVENTIONAL FILTER
OPTIMIZATION

Let us consider the design of a pass-band microstrip filter
with the specifications: center frequency Fr = 2400 MHz,
bandwidth BW = 100 MHz, insertion loss IL = —5 dB,
return loss RL = —14 dB, and out of band rejection —60 dB
at f = 2300 MHz. Without loss of generality, we will focus
on 6 stages symmetric coupled-line microstrip filter structure
inspired by [5]. The overall filter structure is characterized by 9
geometrical parameters, i.e., length L;, width W; and gap S,
for + = 1,...,3. An initial design of the above parameters
obtained via analytic formulas [1] is collected in Table 1.
The obtained values of the filter geometry are then used as
the initial guess for the gradient optimizer available in ADS
by considering a variation range of 50% for the width and
gap parameters (i.e., W;, S; with ¢ = 1,...,3) and 10% for
the lengths (L; with ¢ = 1,...,3) around their initial value
collected in Tab. 1.

The ADS optimizer [4], has been run by considering
three different optimization “goals™ (i) [Se1| < 5dB in
the band pass; (i4) |S21] > 60dB @ 2300 MHz; (iii)
[S11] > 14dB in the band pass. The solver converges after
125 iterations in 3 min and 24 s. The scattering parameters
S11 and Se; for the optimized filter geometry shown in Fig. |
(dashed black line) demonstrate the capability of the ADS
optimizer of providing a filter design compliant with the design
specifications. However, it is important to point out that a high
number of iterations are required by the solver to converge to
the optimal configuration of the filter parameters. Moreover,
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such optimization algorithms are usually not “tunable”, i.e.,
if for some reason the design specifications change, the
optimization algorithm must be completely re-run.
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Figure 1. Frequency responses computed from the optimal filter design

computed by the ADS optimizer (dashed black line), the LS-SVM-based
inverse model (dotted blue line), and proposed inverse model combining
LS-SVM and PCA (solid red line).

III. INVERSE MODEL VIA LS-SVM REGRESSION AND
PCA COMPRESSION

Different from the conventional optimization, our goal
is to construct an inverse model x = M~'(y) able
to estimate the geometrical parameters of the filter x =
[S1, 82,83, Wi, Wa, Ws, Ly, Ly, L3]T € R"=9 starting from
the desired spectra of the scattering parameters S;; and
821 defined for ny = 1001 frequency points, such
that y = [Su|,[Sn|]" € R™w=2002 where |S;;| =
(1855 (f)l, - 155 (fua )] 3

According to above definitions, the inverse model M -1,
R2992 5 RY defines an inverse mapping between a space
with 2002 dimensions representing the absolute values of the
scattering parameters y and a 9-dimensional space collecting
the geometrical parameters x. The construction of such kind
of model is rather complex and challenging. First of all,
the extremely large dimensionality of the input space (i.e.,
n, = 2002) can lead to accuracy issue and to the infamous
curse-of-dimensionality. On the other hand, an inverse model
is generally ill-posed, in the sense that a given set of scattering
parameters might be generated by more than one combinations
of the filter geometry [6].

A. Inverse model via LS-SVM regression

Due to its simplicity and its capability of providing
compact non-parametric models, the LS-SVM regression will
be considered hereafter in this section to construct the
advocated inverse model. The multioutput dual formulation of
the LS-SVM allows approximating a set of L training samples
{(xi,yi)}£, via the following set of models:

L
o =M (y) =Y BiK (yi,y) +b, (1)
=1

fork=1...,n, =9, where K is the regression kernel, and j3;
and b are the regression coefficients and bias, respectively [2].

The above dual formulation of the LS-SVM regression
provides a non parametric model in which the number of
regression coefficients is independent from the dimensionality
of y. Also, the regularizer used by the LS-SVM regression [2]
allows to limit the detrimental effects introduced by the
considered ill-posed problem.

The 9 inverse models in (1) have been built by using
L = 200 training samples computed via a forward
model implemented in ADS. The configurations of the
geometrical parameters {x1,...,Xy} in the training set are
randomly generated via a latin hypercube sampling scheme
by considering a uniform variation of 50% for W;, S; and
10% for L; variables around the values specified in Tab. 1.
The above configurations are then used as input for a set of
parametric simulations in ADS to calculate the magnitude of
the scattering parameters S1; and So; used to get the training
samples {y1,...,yL}-

An ideal Chebyshev mask incorporating all the
specification provided in Sec. II, has been used as input
for the inverse models trained via the LS-SVM. Then, the
filter geometry predicted by the inverse models has been used
as input within an ADS simulation. The resulting scattering
parameters Si; and So; in Fig. I(dotted blue line) clearly
highlight the improved performances of the filter designed
with the ADS optimizer with respect to the one obtained
via the proposed inverse model. Such lack of accuracy is
attributed to the high dimensionality of the input space (i.e.,
n, = 2002) compared with the small number of training
samples (i.e., L = 200).

B. PCA Compression

A data compression strategy based on the PCA can be seen
as a promising approach to mitigate the above issue. PCA
allows to exploit and to remove the redundant information
from the scattering responses of the filter in the training set,
thus leading to a compressed approximation of the training
set with a lower dimensionality with respect to the original
data [7]. To this aim the complete dataset of the training
scattering responses {y;}~ ; are collected in the matrix Y =
[y1,...,yz] € R™*E The matrix Y is used within the
PCA algorithm to find out the smallest set of “principal
components”, approximating the training responses {y;}~ ,
as [3]: )

Ty
yic= p+ Z gn,iun» (2)

n=1

for ¢ =1,..., L. The PCA coefficients ¥, ; writes:

where p is the column-wise mean, and the principal

components {u,} '~ are the left singular vectors calculated

via singular value decomposition applied to the matrix Y.
According to (2) and (3), the training samples {y;}Z;

with y; € R™v can be approximated (with a tunable accuracy)
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via a compressed training set {y;}’,, in which y, =

[glai’ Ce -,gﬁy,i]T S Rﬁy, where ’;Ly < Ny

The number of PCA coefficients 7, must be carefully
tuned. It should be as small as possible, to reduce the
dimensionality of the samples y; used as input for the inverse
model in (1), but at the same time the compressed set of
training samples {y;}% , should provide as much information
as possible to avoid an ill-posed formulation of the inverse
model. A wise strategy is to use only the PCA coefficients
which provide the largest variability with respect to a variation
in the geometrical parameters of the filter. The above analysis
can be carried out numerically by looking at the variance of
the PCA coefficients, which writes:

L
1 -
o =T 2 (i = ), 4)
i=1
for n = 1,...,7,, where p, = %Zle Un.i is the mean

computed on the L realizations of the n-th PCA coefficient
available in the training set.

Figure 2 shows the normalized variances in (4) for the
first 20 PCA coefficients. As expected, the blue bars show
that the low order coefficients (4 < 7, < 10) are able of
explaining most of the variability on the scattering parameters
introduced by a variation on the geometrical parameters.
Figure 1(solid red line) shows the optimized results computed
via the proposed inverse model with 7, = 4, again starting
from an ideal Chebyshev mask incorporating all the filter
specifications. The results highlight the capability of the
proposed inverse model of providing an accurate estimation
of the optimal filter geometry. The obtained results are
very similar to the ones provided by the ADS optimizer
after 125 iterations. However, after the training phase, the
proposed inverse model is able to directly estimate the optimal
configuration of the filter parameters in less than 1s, without
requiring any iteration.
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Figure 2. Normalized variances (blue bars) of the first 20 PCA coefficients
(ny = 20) in compressed training set.

It is important to remark that the obtained inverse model
is tunable and can be suitably adopted to optimize the filter
geometry for a generic set of filter specifications, just by
changing the desired mask. To this aim, its performances have
been assessed by using two new specifications: (i) Fo =
2300MHz and BW = 30MHz and (ii) Fe = 2550 MHz
and BW = 50MHz. Two new masks, generated according

to the above specifications, have been used as input for the
inverse model with 7n,, = 4. Obviously, the model tunability is
limited to the range of x used during the model training. The
scattering parameters obtained from the optimal parameters
predicted via the inverse model are shown in Fig. 3. The results
clearly highlight the capability of the proposed inverse model
of optimizing structures for different specifications.
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Figure 3. Tunability assessment of proposed inverse model with 72, = 4 (see
text for additional details).

IV. CONCLUSIONS

This paper presented an efficient methodology for the
optimization of the geometry of microwave filters based on
an inverse model approach. The inverse model is constructed
by combining the LS-SVM regression with the PCA. Such
model is able to directly design the filter starting from the
desired frequency-domain mask, without using computational
expensive iterative optimization algorithms. The feasibility
and the accuracy of the proposed optimization scheme have
been investigated by comparing its predictions with the
corresponding ones computed via a commercial solver.
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