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The spreading dynamics of an epidemic and the collective behavioral pattern of the population over which
it spreads are deeply intertwined and the latter can critically shape the outcome of the former. Motivated by
this, we design a parsimonious game-theoretic behavioral–epidemic model, in which an interplay of realistic
factors shapes the co-evolution of individual decision-making and epidemics on a network. Although such a
co-evolution is deeply intertwined in the real-world, existing models schematize population behavior as instan-
taneously reactive, thus being unable to capture human behavior in the long term. Our model offers a unified
framework to model and predict complex emergent phenomena, including successful collective responses, pe-
riodic oscillations, and resurgent epidemic outbreaks. The framework also allows to assess the effectiveness of
different policy interventions on ensuring a collective response that successfully eradicates the outbreak. Two
case studies, inspired by real-world diseases, are presented to illustrate the potentialities of the proposed model.

INTRODUCTION

The collective adoption of appropriate behavior by a popu-
lation is crucial to respond to an epidemic, especially when
pharmaceutical interventions are absent or logistical chal-
lenges prevent their widespread deployment [1, 2]. How-
ever, classical mathematical epidemic models often consider
oversimplified behavioral response [3]. To fill in this gap,
awareness-based models have been proposed [4–12], in which
the epidemic process co-evolves with the spread of the aware-
ness of the outbreak. While these models have demon-
strated effectiveness in capturing the early-stage, immediate
behavioral response to an epidemic, they are limited because
they assume fully rational, purely instantaneous, and reactive
decision-making in the population. Such models therefore fail
to capture the very range of factors that affect real-world be-
havioral responses over the whole course of an epidemic, such
as social influence [13], perceived infection risk [14], accu-
mulating fatigue and socio-economic costs [15, 16], bounded
rationality in individuals’ decisions [17], and the impact of
government-mandated interventions [18, 19].

The world is not new to epidemics that evolve over long
time horizons of several months or even years, persisting un-
til effective drugs and vaccines are developed and then made
widely available [20], making purely reactive models of lim-
ited efficacy. This calls for a paradigm shift in mathemati-
cal modeling, from reactive and fully rational behavioral re-
sponses [4–7, 9, 10], to a long-term outlook where com-
plex behavioral dynamics arise at the individual-level and
co-evolve at the same time scale of the epidemic spreading.
Game-theoretic models have proved to be effective to repro-
duce similar complex decision-making mechanisms, thereby
capturing realistic behavioral responses in several fields [21].

Here, we propose a game-theoretic model that is specifi-
cally designed to account for long-term and bounded-rational
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decision-making, and show it is able to reproduce the com-
plex and concurrent evolution of behavioral response and epi-
demic spreading that is well-known and documented in the
real-world [1]. Several efforts have been proposed across sim-
ilar research avenues, although with different and narrower
angles. For example, imitation mechanisms [14, 16, 22, 23]
rely on a population-level modeling that can capture only lim-
ited features of such complex behavioral dynamics. Recently,
an individual-level imitation-driven mechanism that accounts
for the perceived risk of infection and immediate costs for
adopting protective behaviors has been proposed and ana-
lyzed, showing that it may generate sustained steady oscilla-
tions [24, 25]. Following a different approach, game-theoretic
modeling of vaccination adoption have been proposed [26–
32]. These models rely on a time-scale separation between
the epidemic spreading and the behavioral decision, which is
typically made just at the beginning of each epidemic season.
However, such a time-scale separation does not capture gen-
eral behavioral response.

Here, we adopt a network approach with individual granu-
larity [3] and a co-evolution of the two processes, at the same
time scale, under the impact of the entire range of factors dis-
cussed in the above (i.e., including perceived risk, immediate
costs, accumulating fatigue, social influence, and bounded ra-
tionality). Hence, our model is designed to be able to cap-
ture the individual-level responses and time-varying conta-
gion patterns, whose co-evolution collectively shapes the epi-
demic outbreak. Our approach enables the explicit and con-
current inclusion of the most salient factors that each indi-
vidual trades off when deciding their time-varying behav-
ioral response to an ongoing epidemic. The central contri-
bution of our work is the design of a unified and parsimonious
mathematical framework for the co-evolution of the decision-
making and the epidemic outbreak, which can be coupled with
any existing compartmental model [33], and thus it can be tai-
lored to study the key features of any real-world disease. As
we shall illustrate through some simple case studies, the pro-
posed framework is able to capture and reproduce complex
realistic behavioral response by the population, including suc-
cessful collective responses leading to the eradication of the
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FIG. 1: Schematic of the co-evolutionary paradigm.

disease, periodic oscillations, and weak responses leading to
the emergence of multiple epidemic waves.

MODEL

We consider a population V of n individuals. Each indi-
vidual i ∈ V is characterized by a two-dimensional variable
(xi(t), yi(t)), which models their social behavior and health
state at the discrete time t ∈ Z≥0, respectively. The so-
cial behavior of individual i is captured by the binary vari-
able xi(t) ∈ {0, 1}, which expresses whether i adopts self-
protective behaviors (xi(t) = 1), such as physical distanc-
ing [1], or discards this opportunity (xi(t) = 0). The health
state yi(t) takes values in a discrete set of compartments
A. For example, A = {S, I} is selected to model the
susceptible–infected–susceptible (SIS) epidemic process ex-
emplified in this work [33]. A global observable z(t) quan-
tifies the detectable prevalence of the epidemic at time t:
z(t) := 1

n |{i : yi(t) = I}|, where | · | denotes a set’s car-
dinality. The paradigm is amenable to extensions to capture
different levels of protection through the selection of a differ-
ent support for xi(t), while further compartments added to A
can capture additional features of the epidemic process [33].

The decision-making and disease spreading in the popu-
lation co-evolve, mutually influencing each other on a two-
layered network G = (V, EI , EC(t)) [34], as schematized in
Fig. 1. The set of undirected links EI defines the static influ-
ence layer, capturing social influence between individuals in
their decision-making processes. The contact layer is defined
through a time-varying set of undirected links EC(t), which
represent the physical contacts between pairs of individuals
that are the avenues for the transmission of the disease. The
temporal formation mechanism of the contact layer, illustrated
in Fig. 2a, is general and can be generated according to any
model of time-varying networks [35–40].

At each discrete time-step t, every individual i enacts a
decision-making process on the adoption of self-protective
behaviors, according to an evolutionary game-based mecha-
nism termed logit learning [41]. We define two payoff func-
tions π0

i (t) and π1
i (t), which represent a combination of socio-

psychological, economic, and personal benefits received by
individual i for enacting behaviors xi = 0 and xi = 1 at time
t, respectively. This individual then adopts self-protective be-

(a) (b)

FIG. 2: Illustration of the network model and the epidemic
progression. In (a), two time-steps in the two-layer network

representation. The upper layer (green) shows the static
influences, the lower layer (violet) time-varying physical

contacts. In (b), state transitions of the SIS (above) and SIR
models (below).

haviors with a probability equal to

P[xi(t+ 1) = 1] =
exp{βπ1

i (t)}
exp{βπ0

i (t)}+ exp{βπ1
i (t)}

; (1)

otherwise the individual will adopt xi(t + 1) = 0. The pa-
rameter β ∈ [0,∞) measures an individual’s rationality in
the decision-making process. We have assumed for simplicity
that β is homogeneous among all individuals, but this is eas-
ily generalizable to a heterogeneous βi distribution. Notice
that if β = 0, individuals make decisions uniformly at ran-
dom, while for β → ∞, individuals apply perfect rationality
to select the behavior with highest payoff. This best-response
behavior is myopic, i.e., individuals do not look forward in
time to optimize a sequence of decisions. Myopic behavior
is reasonable given the uncertain nature of a long-lasting epi-
demic.

Payoffs are defined as

π0
i (t) :=

1

di

∑
j:(i,j)∈EI

(
1− xj(t)

)
− u(t), (2a)

π1
i (t) :=

1

di

∑
j:(i,j)∈EI

xj(t) + r
(
z(t)

)
− fi(t), (2b)

where di := |{j : (i, j) ∈ EI}| is the degree of node i on the
influence layer, and contain the following four terms, directly
related to behavioral and social factors that shape the epidemic
dynamics.

Social influence. The first term in Eqs. (2a)–(2b), inspired
by network coordination games [42], captures the social in-
fluence of neighboring individuals and the individual’s desire
to coordinate with them on the behavioral response [13]. The
role of social influence should be understood by viewing the
first terms of Eq. (2a) and Eq. (2b) together; as more of the
neighbors of individual i ∈ V adopt self-protection or do not
adopt self-protection, then individual i also has more incen-
tive to adopt or not adopt, respectively. This ensures that in-
dividuals tend to conform and coordinate with one another;
coordination and conformity are prevalent factors for many
different human behaviors, including social norms and con-
ventions [43–45], diffusion of social innovation [46, 47], and
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also in individuals’ decisions concerning the behavioral re-
sponse to epidemics [13].

Policy interventions. The time-varying term u(t) ≥ 0
in Eq. (2a) represents the impact of nonpharmaceutical in-
terventions enforced by public authorities to discourage dan-
gerous behaviors, e.g., lockdowns, see [19] for more details.

Risk perception. The risk-perception function r(z) :
[0, 1] → R≥0 in Eq. (2b) is a monotonically nondecreasing
function of the detectable prevalence z, which models the pop-
ulation’s reaction to the spread of the disease. This function
is amenable to several generalizations, e.g., to capture imper-
fect or delayed information due to real-world testing logistics,
or heterogeneity of the function in the population. In its sim-
plest formulation (which is adopted in the case studies pre-
sented in this paper), it can be assumed to be a power function
r(z) = kzα, with k > 0 as a scaling factor and α > 0 that
determines the characteristics of the population. Specifically,
α ∈ (0, 1) models cautious populations, where a small initial
outbreak causes a large increase in the risk perception; α = 1
captures a population whose reaction grows linearly with the
epidemic prevalence observed; and α > 1 captures popula-
tions that underestimate the risk, and the epidemic prevalence
must be large before the risk perception plays an important
role in the decision-making process.

Cost of self-protective behavior. The negative impact of
adopting self-protections is captured in Eq. (2b) by the frus-
tration function

fi(t) = c+

t∑
s=1

γscxi(t− s), (3)

where c ≥ 0 quantifies the social, psychological, and eco-
nomic immediate cost per unit-time, e.g., related to the in-
ability to socialize, work from the office, enjoy public spaces,
etc., and γ ∈ [0, 1] is the accumulation factor [16, 48]. When
γ = 0, an individual accounts only for the immediate cost, and
as γ increases, the impact of all past decisions on the payoff
increases. This may reflect the accumulating nature of fatigue,
stress, and economic losses [15, 16, 48]. Thus, fi(t) ≥ 0 re-
flects accumulative costs for individual i up to time t. Note
that the function fi(t) could be extended by adding further
features of the frustration mechanism, including nonlineari-
ties.

To summarize, the payoff that an individual i ∈ V would
receive for not adopting self-protective behavior in Eq. (2a) is
equal to the difference of two terms. Besides the social in-
fluence term, the other term reduces the payoff to represent
the implementation of policies to disincentivize nonprotective
behaviors; the effectiveness of policies in shaping behaviors
has been extensively analyzed in the recent literature [18, 19].
The payoff for adopting self-protective behavior in Eq. (2b),
instead, is equal to the sum of two positive contributions, and
decreased by a third one. The first term accounts for the social
influence. The second term, associated with the risk percep-
tion, captures an increased incentive to adopt self-protective
behavior due to the endogenous fear of increased risk to in-
fection as the disease spreads (and conversely, a lower risk is

TABLE I: Notation.

n population size λ infection probability
EI influence layer edges µ recovery probability

EC(t) contact layer edges β rationality
Ni(t) infectious contacts of i u(t) policy interventions

σ efficacy of self-protections r(z) risk perception function
xi(t) behavior of i c immediate cost
yi(t) health state of i γ accumulation factor
z(t) detected prevalence fi(t) frustration function of i

perceived as the epidemic dwindles due to the growing op-
timism of returning to normal). This term has some analo-
gies to the mechanism of purely reactive awareness-based
models, but which do not consider the other factors detailed
above [4–12]. A similar implementation of this term is of-
ten present in the payoffs of imitation-based game-theoretic
models [14, 16, 22, 23, 25]. Finally, the last term reduces the
payoff to account for the immediate and accumulated social,
psychological, and economic costs associated with the adop-
tion of self-protective behavior [15, 48]. A similar term —
without the accumulation mechanism— has been considered
in some imitation-based models [25].

Concurrently with the behavioral decision, at each time-
step t, every individual i that does not adopt self-protections
and is susceptible (i.e., xi(t) = 0 and yi(t) = S) may become
infected upon contact with an infected individual j : yj(t) =
I , with a per-contact infection probability λ ∈ [0, 1]. We in-
troduce a parameter σ ∈ [0, 1] that represents the effectiveness
of self-protective behavior in preventing contagion, and we as-
sume that the adoption of self-protection, xi(t) = 1, does not
affect the individual’s probability of transmitting the disease.
Hence, considering an SIS epidemic model (see Fig. 2b), the
contagion probability for individual i ∈ V evolves in time as

P[yi(t+ 1) = I|yi(t) = S] =

= (1− σxi(t))
(

1− (1− λ)Ni(t)
)
,

(4)

where

Ni(t) := |{j ∈ V : (i, j) ∈ EC(t), yj(t) = I}| (5)

is the number of infectious physical contacts of node i at time
t. Note that the model can be extended to account for mutual
protection by adding an additional parameter and expanding
the term Ni(t), depending on the behavior of the neighbors.
Besides the contagion, at each time-step t, every infected in-
dividual i recovers with probability µ ∈ (0, 1], becoming sus-
ceptible again to the disease, i.e.,

P[yi(t+ 1) = S | yi(t) = I] = µ. (6)

Table I summarizes the notation.

RESULTS

In the following, we opt for modeling the contact layer
EC(t) by means of a discrete-time activity-driven network
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(a) r = 3
√
z (b) r = 3z (c) r = 3z2 (d) r = 3z, no social influence

(e) r = 3
√
z (f) r = 3z (g) r = 3z2 (h) r = 3z, no social influence

FIG. 3: Simulations of the SIS model. In (a)–(d), we show the time-evolution of the epidemic prevalence z(t) (red) and the
fraction of adopters of self-protections 〈x(t)〉 := 1

n

∑
i∈V xi(t) (intensity of the blue bands). In (e)–(h), we show the

corresponding trajectories on the phase-space. Panels refer to different risk perceptions r(z), as detailed in the sub-captions.

(ADN) [36], which has found successful application in mathe-
matical epidemiology [49]. In ADNs, each individual i ∈ V is
characterized by a constant parameter ai ∈ [0, 1], called activ-
ity, which quantifies their probability to be “active” and thus
generate a fixed number m ≥ 1 of undirected links with other
individuals selected uniformly at random from the population,
for each discrete-time step t. Similar to its original formula-
tion, we choose m to be constant and equal for all individu-
als. These contacts are added to the link set EC(t), contribute
to the epidemic process, and are then removed before the
next discrete time instant and the next activation of individ-
uals. Despite their simplicity, which enables rigorous analyt-
ical treatment and fast numerical simulations [36, 39], ADNs
can capture important features of complexity that characterize
real-world networks, including their temporal and heteroge-
neous nature, and further features can be incorporated in an
analytically-tractable manner [50–53].

Epidemic threshold

For large populations and fully connected influence lay-
ers, we compute the epidemic threshold via a mean-field ap-
proach [54]. In the absence of cumulative frustration (γ = 0),
which is a reasonable assumption in the early stages of an out-
break, and assuming constant policy interventions u(t) = ū,
the outbreak is quickly eradicated if

λ

µ
<

eβ(1−ū) + (1− β)e−βc

m(〈a〉+
√
〈a2〉)(eβ(1−ū) + (1− β − σ)e−βc)

, (7)

where 〈a〉 := 1
n

∑
i∈V ai and 〈a2〉 := 1

n

∑
i∈V a

2
i are the

mean and second moment of the activity distribution, respec-
tively (the derivation of Eq. (7) is reported in Appendix A).
Note that, when the cost for adopting self-protections grows

large, c → ∞, the threshold in Eq. (7) tends to the same
threshold expression as that of a standard SIS model on
ADNs, which is λ/µ < (m(〈a〉+

√
〈a2〉))−1 [36].

The threshold in Eq. (7) offers insight into the role of hu-
man behavior in the early stages of an epidemic outbreak by
establishing conditions under which the disease is immedi-
ately eradicated. However, the key novelty of the proposed
paradigm lies in the possibility to investigate the interplay be-
tween human behavior and epidemic spreading in the long
term, when the epidemic actually spreads (i.e., above the epi-
demic threshold). In this scenario, such a complex inter-
play may give rise to several interesting and realistic phe-
nomena, such as periodic oscillations and multiple waves,
the emergence of endemic diseases, and even behavioral re-
sponses leading to the successful eradication of the outbreak.
In the following, we execute a numerical study to elucidate
such phenomena [55]. Specifically, we combine our co-
evolutionary model with the classical SIS and susceptible–
infected–recovered (SIR) models, parametrized to reproduce
real-world diseases. The SIS model is used to illustrate the
large variety of phenomena that the paradigm can reproduce,
and to discuss the key role of social influence into determining
a collective response, confirming recent empirical evidence
from the social psychology literature [13]. The SIR model
is utilized to show that our model can reproduce real-world
epidemic patterns, and to discuss the design of policy inter-
ventions. In all the simulations, we fix n = 20, 000 indi-
viduals (20 of them initially infected, selected uniformly at
random). The influence layer is modeled through a Watts–
Strogatz small-world network [56] with average degree 8
and rewiring probability 1/8. The contact layer is generated
through an ADN with power-law distributed activities ai with
a negative exponent −2.09, as in [57], and lower cutoff at
amin = 0.1.
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SIS model

We simulate an SIS model calibrated on gonorrhea [58]
(see Appendix B and Table II), by fixing an immediate cost
of c = 0.3 with no accumulation γ = 0 and assuming that
no policy interventions are enacted (u(t) = 0, ∀t ≥ 0). In
Figs. 3a–3c, we consider three scenarios with progressively
less cautious populations (r(z) = 3

√
z, r(z) = 3z, and

r(z) = 3z2, respectively, see Appendix B). We observe that
this shift in risk perception causes not only a quantitative shift
in the epidemic dynamics, similar to most awareness-based
models [6, 7], but more importantly, qualitatively changes
the salient phenomena. In fact, the phenomena spans from
a prompt and sustained collective response that leads to fast
eradication of the disease (in Fig. 3e, the trajectory rapidly
reaches the disease-free manifold z = 0), to periodic oscilla-
tions both in the epidemic prevalence and in the behavioral
response (Figs. 3b and 3f), and finally to a partial behav-
ioral response, resulting in the emergence of a meta-stable
endemic equilibrium (Figs. 3c and 3g). The periodic oscil-
lations are similar to that observed in several existing works,
such as [24, 25].

In the scenario depicted above, the risk perception func-
tion determines a critical prevalence z∗ = min{z : r(z) >
1 + c}, such that z(t) > z∗ implies that the payoff for
adopting self-protections is larger than for not adopting them
(π1
i (t) > π0

i (t)), for any individual, irrespective of the be-
havior of others. With r(z) = 3

√
z, the critical prevalence is

z∗ ≈ 18%. However, as can be observed in Fig. 3e, social
influence causes individuals to rapidly and widely adopt self-
protective behaviors at a much earlier prevalence of z ≈ 6%,
highlighting the key role played by social influence toward fa-
cilitating the emergence of collective behavioral patterns and,
in this instance, helping in the fast eradication of the disease.

We further investigate the role of social influence by sim-
ulating the model in its absence (i.e., removing the first term
in Eqs. (2a)–(2b), as detailed in Appendix C). Our findings
support the intuition that social influence is key to ensure col-
lective population responses, which are in turn crucial for the
successful eradication of the disease (Fig. 3a) and the emer-
gence of periodic oscillations (Fig. 3b). In fact, in the absence
of social influence, the system shows a less rich range of be-
haviors, whereby a partial behavioral response always leads to
the convergence to an endemic equilibrium (Figs. 3d and 3h
are obtained with the parameters of Fig. 3b without social
influence. However, interestingly, social influence can also
cause collective rejection of self-protective behaviors, and this
results in a higher peak disease prevalence with respect to the
scenario without social influence. Simulations corresponding
to Figs. 3a and 3c are reported in Appendix C (Fig. 5).

SIR model

We further elucidate the potentialities of our behavioral
paradigm by combining it with an SIR model (see Fig. 2a).
In the SIR model, the removed (R) health state is added to A
to represent immunized individuals after recovery (or death),

and the system is governed by Eq. (4) and P[yi(t + 1) =
R | yi(t) = I] = µ. The model is calibrated on the 1918–
19 Spanish flu [59, 61] (see Appendix B and Table II). In
particular, we set a risk perception function that increases
slowly, r = 3z2 (associated with the initial suppression of
news about the flu [62]), and policy interventions are set to
mimic historical lockdowns (u(t) = 0.5 when 1% of the pop-
ulation is infected, and held constant for Ta = 28 days [60]).
For airborne diseases like Spanish flu, self-protective behav-
iors entail physical distancing and closures of economic activ-
ities, which often yield an accumulation of psychological dis-
tress and economic losses [15, 48, 63]. Accordingly, we set
c = 0.1 and γ = 0.9 (see Appendix B). Figure 4a shows that
our paradigm is able to qualitatively reproduce the historical
epidemic pattern, which witnessed a resurgent pandemic with
three waves that includes a massive second wave [59, 60].

We utilize this example to discuss the design of policy in-
terventions. First, from Fig. 4b, we observe that mild policy
interventions, even if indefinite in duration (u(t) = 0.4, ∀t ≥
0), may not be sufficient to ensure a timely and collective
response, resulting in a massive outbreak that reaches more
than 60% of the population. Next, we consider two scenar-
ios with severe but shorter policy interventions, followed by a
linear phased reduction (Figs. 4c and 4d); in the first scenario,
the policy is less severe (u(t) = 0.7 vs. u(t) = 1.2 for 21
days), but the reduction period is longer (42 vs. 7 days) [64].
Comparing the two scenarios, we conclude that, provided that
the initial policy interventions are sufficiently severe to ensure
collective adoption of self-protections (thus avoiding the sce-
nario shown in Fig. 4b), the successful eradication of the dis-
ease depends primarily on a sufficiently long phased reduction
period. This avoids the multiple waves and subsequent lock-
downs that would increase both the death toll and the total
social-economic cost. The latter point is consistent with re-
cent observations on the duration of policy interventions and
their gradual uplifting during the COVID-19 pandemic [65];
however, there are far more epidemic complexities and real-
world challenges to consider for COVID-19. Consistent with
the SIS results, the SIR outcomes underline the key role of so-
cial influence, which may act as a double-edged sword, pro-
viding either a driving force or a retarding force for the col-
lective adoption of self-protections, depending on whether the
intervention policies are sufficiently strong.

These simulations illustrate the predictive power of our
paradigm, once a proper parametrization and model have been
extrapolated from empirical data. In fact, existing approaches
typically estimate how infection parameters, associated with
the disease dynamics, are explicitly changed due to policy in-
terventions [19]. Generally, this is a difficult task that does
not explicitly account for the complexity of human behav-
ior. In contrast, our paradigm leaves the disease dynamics
untouched, and allows policy interventions to only influence
the decision-making process that determines the behavioral
responses, which, in turn, shape the epidemic evolution.
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(a) Historical parameters (b) Constant mild policy

(c) Long phase reduction (d) Short phase reduction

FIG. 4: Simulations of the SIR model. Temporal evolution of the epidemic prevalence z(t) (red), recovered
R(t) := 1

n |{i : yi(t) = R}| (orange), and fraction of adopters of self-protections 〈x(t)〉 (intensity of the blue vertical bars) with
(a) historical parameters of the 1918–19 Spanish flu pandemic [59, 60]; (b) a mild and constant intervention; (c) a severe
intervention with a long phased reduction period; and (d) a very severe intervention with a short phased reduction period.

CONCLUSION

In summary, we proposed a novel and unified individual-
level modeling paradigm that captures the co-evolution of dis-
ease spreading and collective decision-making at the same
time scale. Our framework encapsulates a wide range of
time-varying factors that are crucial in decision-making dur-
ing epidemics, from the initial outbreak to its complete erad-
ication, including government interventions, risk perception,
bounded rationality, and social influence. The framework de-
couples the roles of these factors —which collectively shape
the behavioral response to an epidemic outbreak— in an
intuitive way, enabling their estimation from epidemiologi-
cal [66], socio-demographic [61], communication [67], and
mobility data [68], coupled with empirical studies on social
influence [13], population adherence to NPIs [69, 70], risk
perception [71], socio-economic impact of NPIs and emer-
gence of distress [15, 48].

Our methodology is specifically designed to be a parsimo-
nious paradigm, adaptable to different epidemic progression
models [3, 33] and temporal network interactions [35, 37, 38,
40, 51]. Its simple formulation allows to perform fast simu-
lations, scalable to large-scale systems. Complex real-world
phenomena are reproduced within our unified framework —
including periodic oscillations, multiple epidemic waves, and
prompt collective response by the population leading to the
fast eradication of the disease triggered by endogenous risk

perception or exogenous policy interventions. In particular,
the paradigm allows to investigate the impact of different pol-
icy interventions on the collective behaviors and, in turn, on
mitigating the spread.

Due to its flexibility, further features of the behavioral re-
sponse can be directly incorporated in the paradigm, including
mutual protection, delays in the behavioral response, and bi-
ased risk perceptions due to imperfect information on the epi-
demic prevalence. Finally, the combination of the proposed
paradigm with more complex and realistic epidemic progres-
sion models (e.g., those tailored to COVID-19 [72, 73]) is key
to further investigating the features captured by our model.
This may allow our paradigm to be utilized to predict the be-
havioral response to real-world epidemic outbreaks and, thus,
help public health authorities design effective interventions.
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Appendix A: Derivation of Eq. (7)

In the absence of cumulative frustration and for a fully
mixed influence layer, we observe that Eq. (1) has the same
expression for all the individuals. In fact, if we define x̄(z)
as the probability that a generic node adopts self-protective
behaviors when the epidemic prevalence is equal to z, then,
according to the strong law of large numbers, π0

i (t) = 1 −
x̄(z) − u(t) = 1 − x̄(z) − ū (since the control is assumed
to be constant) and π1

i (t) = x̄(z) + r(z) − c, which are
independent of i. In a mean-field approach [54], we define
θ(t) = 1

n

∑
i:yi(t)=I

ai as the average activity of infected
nodes and zi(t) = P[yi(t) = I]. Due to the strong law of
large numbers, in the limit of large-scale systems n → ∞,
z(t) = 1

n

∑n
i=1 zi(t) and θ(t) = 1

n

∑n
i=1 aizi(t). Hence,

from the mean-field evolution of zi(t), given by

zi(t+ 1) = zi(t)− µzi(t) +mλ(1− zi(t))(1− x̄(z(t)))·
·aizi(t) + (1− zi(t))(1− x̄(z(t)))λmθ(t),

(A1)
we determine the following system of difference equations for
the epidemic prevalence and the average activity of infected
individuals, linearized about the disease-free equilibrium (z =
0, θ = 0):

z(t+ 1) = z(t)− µz(t) +mλ〈a〉z(t)(1− σx̄(0))
+mλ(1− σx̄(0))θ(t)

θ(t+ 1) = θ(t)− µθ(t) +mλ〈a2〉z(t)(1− σx̄(0))
+mλ〈a〉(1− σx̄(0))θ(t) ,

(A2)
where 〈a〉 and 〈a2〉 are the average and second moment of the
activity distribution, respectively.

From standard theory on the stability of discrete-time linear
time-invariant systems [74], the origin is stable if

λ

µ
<

1

m(〈a〉+
√
〈a2〉)(1− σx̄(0))

. (A3)

In fully-mixed influence layers, the probability for an in-
dividual to adopt self-protective behaviors x̄(z) can be de-
rived by substituting πi(0) = 1 − x̄(z) − ū and πi(1) =
x̄(z) + r(z)− c into Eq. (1), obtaining the equilibrium equa-
tion:

x̄ =
eβ(x̄−c+r(z))

eβ(x̄−c+r(z)) + eβ(1−x̄−ū)
. (A4)

Even though it is not possible to derive a closed-form solu-
tion, we observe that at the inception of the epidemic out-
break, xi(0) = 0 for all individuals and, for sufficiently small
values of ū (i.e., ū � 1 + c), in the early stages it is verified
that π0

i (t) > π1
i (t). Hence, if the rationality β is sufficiently

large, the equilibrium x̄ is close to 0 and can be approximated

by Taylor-expanding the right-hand side of the equation, ob-
taining

x̄(z) ≈ eβ(−c+r(z))

eβ(1−ū) + (1− β)eβ(−c+r(z)) , (A5)

which can be evaluated for z = 0 and inserted into Eq. (A3),
obtaining Eq. (7).

Appendix B: Parameters used in the simulations

Epidemic parameters

The SIS is calibrated on gonorrhea, which is a sexually
transmitted disease characterized by negligible protective im-
munity after recovery and negligible latency period (individu-
als are infectious on average the day after contagion) [58, 75].
The SIR model is parametrized based on Spanish flu pan-
demic, which is characterized by a short latency period (in-
dividuals are infectious on average after 1–2 days from the
contagion) that can be neglected and by protective immunity
gained after recovery [59].

The epidemic parameters are set from epidemiological data.
Specifically, reliable estimations of the time from infection to
recovery τ are available [58, 59] (namely, τ = 55 days for
gonorrhea and τ = 4.1 days for Spanish flu). Similar to Prem
et al. [76], from these data we define µ = 1− exp (−1/τ).

The parameter λ is obtained from available estimations of
the basic reproduction number R0 for the two diseases [58,
59] (namely, R0 = 1.6 for gonorrhea and R0 = 2 for Spanish
flu). The basic reproduction number is defined as the average
number of secondary infections produced by an infected indi-
vidual in a population where everyone is susceptible. Hence,
given that τ is the average time that an individual is infec-
tious, assuming independence between the time an individual
is infectious and their activity, we compute

R0 =
1

n

∑
i∈V

(ai + 〈a〉)mλτ = 2〈a〉mλτ , (B1)

which implies λ = R0/2m〈a〉τ . For the effectiveness of self-
protective behaviors, we have assumed that they prevent 99%
of the contagions in the SIS (gonorrhea) scenario, where self-
protective behavior may include the use of physical protection
barriers such as condoms). For the SIR model (Spanish flu),
we assume a 95% effectiveness at preventing contagion, with
self-protective behavior including physical distancing, stay-
at-home actions, and wearing masks.

The epidemic parameters computed using this procedure
are gathered in Table II.

Decision-making parameters

We set a common level of rationality β = 6 in all simu-
lations, which captures a moderate level of rationality so that
individuals tend to maximize their payoff, but always have a
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TABLE II: Parameters used in the simulations.

Parameter SIS (gonorrhea) [58] SIR (Spanish flu) [59]
λ 0.3626 0.066
µ 0.1195 0.2164
σ 0.99 0.95

time unit week day

small but nonnegligible probability of adopting the behavior
with the lower payoff. Before detailing the parameters used
in the three case studies, we provide a brief discussion on the
relative order of magnitude between the model parameters,
which guided our choices.

The decision-making process is based on the comparison
between the two payoff functions in Eqs. (2a)–(2b). The con-
tribution of social influence to the payoff is always bounded
between 0 and 1. Hence, social influence is significant if the
other terms do not have a higher order of magnitude. Con-
sequently, policy interventions u(t) > 1 can be considered
severe, since their effect is predominant with respect to social
influence, while policies with u(t) < 1 are milder. The cost of
self-protective behaviors consists of two terms: the immedi-
ate cost per unit-time c and the accumulation factor γ. Small
values of c become negligible in the decision making process,
while, to avoid the immediate cost dominating the other terms,
we should assume c < 1. The accumulation factor γ captures
the cost for continued periods in which an individual adopts
self-protective behaviors. To model a nonnegligible effect of
the accumulation of socio-economic costs, we should guaran-
tee that over long periods in which an individual consistently
adopts self-protective behaviors, the frustration function sat-
urates to a value comparable to the other terms. This can be
achieved by imposing that

lim
t→∞

c+

t∑
s=1

γsc =
c

1− γ
≈ 1 , (B2)

yielding c + γ ≈ 1 (note, the above equality was obtained
using the geometric series). Specifically, values of γ > 1− c
guarantees that self-protective behaviors are eventually dis-
missed, after the complete eradication of the disease or the
policy intervention is switched off. We use the risk perception
function r(t) = kzα with α = 1/2 for cautious populations,
α = 1 to model proportional reactions, and α = 2 for slow
reacting populations. As discussed in the main article, the
risk perception function determines a critical epidemic preva-
lence z∗ = min{z : r(z) > 1 + c} that triggers the adoption
of self-protective behaviors even in the absence of interven-
tions (in the presence of accumulation, the immediate cost c
in the expression of z∗ is substituted by its saturation value
from Eq. (B2), being c/(1 − γ)). We observe that risk per-
ception becomes nonnegligible if k > 1 + c

1−γ . To keep con-
sistency throughout our simulations, we set k = 3, which is

a value that verifies the condition above for all the choices of
parameters c and γ we make in the simulations.

The decision-making parameters used for the two models
are detailed in the following.

SIS model. We assume that the accumulation is negligible
for gonorrhea (where the use of protections has an immedi-
ate cost that typically does not accumulate, such as protective
sexual barriers). Hence, for all three simulations, we fix the
immediate cost to c = 0.3 and the accumulation factor γ = 0.
No policy intervention is set, with u(t) = 0 for all t ≥ 0.
In the three simulations, we test three different risk percep-
tion functions. Specifically, we consider a cautious population
with r(z) = 3

√
z in Figs. 3a and 3e, a population with a pro-

portional reaction, r(z) = 3z in Figs. 3b, 3d, 3f, and 3h, and
a population slow to react with r(z) = 3z2 in Figs. 3c and 3g.

SIR model. Self-protective behaviors involve social dis-
tancing and closures of economic activities, which has been
shown to typically yield an accumulation of psychological
distress and economic losses [15, 48, 63]. Hence, we assume
a high accumulation factor γ = 0.9 and we fix c = 0.12,
in light of our discussion above. To capture the slow reac-
tion of the population due to the initial suppression of infor-
mation (to keep morale up during World War I) [60, 77], we
set r(z) = 3z2. To further mirror real-world interventions
by public authorities, in Fig. 4a, we set an initial intervention
level equal to u(0) = 0, which switches to u(t) = ū = 0.5
once 1% of the population is infected and then remains active
for 28 days before being turned off again, consistent with [60].
Then, we consider three different scenarios of intervention
policies. In Fig. 4b, we set a constant mild level of interven-
tions u(t) = 0.4, for all t ≥ 0. In the other two scenarios, we
set u(0) = 0. Then, in Fig. 4c, severe policies (u(t) = 0.7)
are implemented for 21 days after reaching 1% of infections,
after which u(t) is linearly reduced to u(t) = 0 over 42 time-
steps. In the second scenario (Fig. 4d), more severe policies
(u(t) = 1.2) are implemented for the same period of 21 time-
steps, after which u(t) is linearly reduced to u(t) = 0 over
a shorter time-window of 8 time-steps. Note that we select
the intensity of policy interventions and the duration of the
phased reduction to ensure that the cumulative intervention
effort,

∑
t u(t), over the duration of a lockdown, is equal to

29.4 in both scenarios.

Appendix C: Simulations without social influence

In the absence of social influence, the payoff functions re-
duces to

π0
i (t) = −u(t), π1

i (t) = r
(
z(t)

)
− fi(t). (C1)

The simulations in Figs. 3d and 3h in the main article and in
Fig. 5 are obtained utilizing the payoff functions in Eq. (C1).
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[35] P. Holme and J. Saramäki, Phys. Rep. 519, 97 (2012).
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[65] L. López and X. Rodó, Nat. Hum. Behav. 4, 746 (2020).
[66] S. Cobey, Science 368, 713 (2020).
[67] N. Oliver, B. Lepri, H. Sterly, R. Lambiotte, S. Deletaille,
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