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Abstract—In the last decades, the number of photovoltaic 

(PV) generators significantly increased over the world. An 

accurate analysis of the massive data gathered from the meters 

of the PV plants can improve the management of their 

intermittent generation. This paper presents a methodology to 

analyse the production profiles of a portfolio of thousands of PV 

plants installed in an Italian region. The procedure faces the 

problem of filtering poor and incomplete data, then uses a 

stratified sampling technique for the statistical validation of the 

remaining profiles. Finally, the checked production profiles are 

used to adjust the energy model to better match the measured 

data and calculate the whole PV portfolio production.  

Keywords— Photovoltaic generators, photovoltaic plant 

portfolio, stratified sampling, PV modelling, optimization.  

I. INTRODUCTION 

The increase in photovoltaic (PV) module efficiency, the 
progressive reduction of their price, and the increasingly 
higher targets for renewable energy deployment, make the PV 
technology one of the most installed in the last years, with a 
new world capacity of more than 100 GW in 2020 [1]. In the 
last years, also the diffusion of metering systems increased, 
and the operators could access an ever-increasing amount of 
measured PV generation power profiles. The measured data 
can be used for different purposes, among which performance 
analysis [2], improvement of energy modelling, development 
of methods to better increase the penetration of renewable 
energy in the grid [3], forecasts [4], etc. A key issue is the 
extraction and elaboration of big datasets of power profiles, 
with their statistical validation. In fact, the PV profiles can be 
incomplete or affected by bad data, and the search for the main 
causes of bad data is a topic that is gaining interest [5]. 

The proposed procedure has the goal to analyse and 
simulate measured production profiles of a portfolio of 
thousands of PV plants. It is the case of countries with high 
penetration of distributed generation, such as Italy, the 
methodology applies to PV systems with different sizes and 
characteristics, but the available information is limited to the 
position of the plants (coordinates), the nominal power of the 
PV generator, the technology, and the hourly PV generation 
profiles measured by the meter of the Distribution System 
Operator (DSO). 

Considering that it is not possible to check the status of 
each plant in a portfolio of several thousands of plants, the 
procedure isolates the wrong profiles due to failure in the 
monitoring infrastructure or incorrect operation of the plant. 
In addition, the procedure faces the issue related to the missing 
detailed information about the plants, typical in the 
management of such large portfolios (i.e., tilt and azimuth of 
the PV modules, data from local irradiance and temperature 
sensors, datasheet of PV modules and converters). Thus, in the 

first step of the procedure (Section II), the definition of the 
minimum requirement in terms of information about the PV 
generators is discussed. The procedure continues with a 
multicriteria filtering of the data to remove profiles with errors 
(due to issues in the measurement or in data transmission and 
storage), or profiles of PV plants with non-adequate 
performance. Section III discusses the modelling of the PV 
generation by a straightforward model, and the parameters that 
could be adjusted to better match the generation profiles. In 
Section IV, the second step of the procedure is presented in 
detail: it consists of the stratified sampling method applied to 
the portfolio of PV plants. It results in the partition in 
subgroups of plants for the statistical validation of the 
generation profiles. In Section V, a case study with the 
application of the procedure are presented. The last section 
contains the conclusions. 

II. ANALYSIS AND FILTERING OF PV PRODUCTION PROFILES 

A. STEP#A – PV plant general information  

 To analyse the production profiles of a PV plant, 
geographical location is essential to obtain meteorological 
data, for example from free GIS databases [6,7]. The tilt and 
azimuth of the PV modules are necessary for the calculation 
of the irradiance on their surface; these values can be obtained 
by inspections, or by viewing the layout of the plants. If the 
documentation of the PV plants is not available, and the 
inspections are not possible, a common method to check the 
general construction information is the use of satellite or street 
images [8]. In addition, the starting operation date is necessary 
for assessing degradation losses [9]. Nominal power is 
essential for the calculation and check of the measured 
production. It is also the variable used to classify the plants. 
Regarding the technology, this information permits to define 
the values of some parameters in the production model (this 
aspect is clarified in Section IV). 

In the present work, the proposed procedure and analysis 
consider fixed PV plants of any size, both ground-installed 
and building-integrated. Only plants with tracking systems, 
concentrators, and storage systems, that are 1% in Italy, and 
require specific models for their simulation, are excluded. 

B. STEP#B – PV plant production data filtering 

The energy profile of a PV system usually comes from the 
electricity meter installed between the DC/AC converter and 
the point of connection with the grid, as shown in Fig. 1. 
Regarding the time step, generally profiles from monitoring 
systems have 1 hour resolution [10]. In fact, in most 
applications, hourly profiles are easier to obtain and elaborate, 
involving lower computational cost with respect to data with 
shorter time steps, e.g., from seconds to minutes [11]. 



 
Fig. 1. Grid-connected PV system architecture. 

Production profiles obtained by meters of DSOs can be 
affected by errors in data measurement, transmission, and 
storage. Also plant shutdown due to maintenance operations 
and failures must be considered. The resulting profiles, with 
missing days, weeks, or months of production lead to the 
underestimation of the yearly performance of the plant, that is 
one of the criteria for data filtering. Taking into account the 
above-described issues, four filtering criteria are proposed to 
remove wrong profiles: 

• Step#α - Night production percentage: it may happen to 
observe abnormal production at night, which is obviously 
physically impossible, as the possible presence of storage 
would need separate metering. In this step, the ratio µ 
between night energy production (occurring during the 
whole year, between 11 p.m. and 4 a.m.) and the total 
annual production is calculated, removing only plants that 
exceed a threshold limit. This limit µmax has to be selected 
according to the scope of the analysis: the most stringent 
limit (µmax = 0) leads to the removal of all the plants with 
at least a single measurement (error) during night hours. 

• Step #β - Zero-production days: in some cases, production 
data could be partial. “Holes” in the profiles (days, weeks 
or entire months) can be due to failure of the plants, 
maintenance, or failure of the monitoring infrastructure. In 
the presented procedure, plants with missing data are 
removed to avoid wrong contributions in the validation of 
the energy production. Otherwise, the failure of the 
monitoring infrastructure could mistakenly lead to 
underestimate the performance of the plants. 

• Step#γ - Typical territorial range production: A plant with 
optimal installation in a specific location has an annual 
productivity [kWh/kWp/year] with small interannual 
variation (generally in the range ±4%). This step 
eliminates plants that produce beyond the lower and upper 
bounds limits based on productivity maps, such as those 
available in the PVGIS database [6]. Obviously, plants are 
often installed in non-optimal conditions. For example, in 
building applied plants, modules are installed at the tilt and 
azimuth of the roof of the building. For these reasons, the 
limits must be properly selected to exclude only the plants 
with atypical annual production. For example, in Italy the 
PV production typically ranges between 1100 and 1600 
kWh/kWp/year, typical for Northern and Southern Italy, 
respectively. In this case, plants with production <900 
kWh/kWp/year are assumed to be not well working, or in 
any case they do not represent a noteworthy case. The 
maximum limit is restricted by the solar radiation source: 
plants with production > 1700 kWh/kWp/year are 
presumably affected by measurement errors. 

• Step#δ - Depending on the number of remaining plants, an 
additional step could be performed. In case of a reduced 
number of plants, and in the absence of additional 
information, the manual inspection of satellite images of 
the plants can be performed. Thus, Step#δ consists of the 
check of actual installation conditions of the remaining 
plants. The plants that do not represent a noteworthy case 
(for example, are affected by shadows from near obstacles 
or incorrect design), can be removed. 

 
Fig. 2. PV portfolio analysis with stratified sampling technique. 

 Fig. 3 shows an example of a proper generation profile 
from a PV plant with rated power of 40 kW (a week in June 
2018). There is no generation during night hours or missing 
data. The shape of production of the sunny days does not show 
the presence of obstacles (as checked by satellite images); the 
annual production of the plant (≈1400 kWh/kW) is in the 
correct range. The same considerations can be applied to the 
annual production profiles of a 12 kW PV plant (Fig. 4). 

 
Fig. 3. Example of PV generation profile (40 kW plant, one week). 

 
Fig. 4. Example of PV generation profile (12 kW plant, one year). 

III. PV MODELLING: CALCULATION AND OPTIMISATION 

A. Modelling of PV energy production 

The production of a generic grid connected PV plant (as 
shown in Fig. 1), can be calculated by considering a model 
proportional to the rated power of the generator PPV defined at 
Standard Test Conditions (STC, ���� = 1000 W/m2, TSTC = 
25°C) and irradiance G. As a reasonable compromise between 
simplicity and accuracy for a large-scale population of PV 
plants, this straightforward (STR) model considers the effect 
of temperature and several loss parameters [12]: 

 ���  �  �	
 ∙ �
������  ∙ �� ∙ �� ∙ ���/��   (1) 

• (G-G0)/GSTC: is the modelling used to take into account the 
nonlinearity effects of the semiconductor as irradiance 
changes. The low irradiance limit G0 is the value below 
which the PV modules do not produce; it is in the range 
10÷50 W/m2 [13]. 

• CT = 1+γT(T-TSTC): is the thermal factor that describes the 
linear dependence of production on cell temperature 
against STC conditions; γT is the thermal coefficient of 
power and is in the range -(0.3÷0.5) %/°C for the 
crystalline silicon (c-Si) technology [14].  
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• ηG = ηlife ηdirt ηrefl ηmis ηcable : the overall performance ηG of 
the DC side of the PV plant is calculated as the product of 
efficiencies taking into account different sources of losses. 
Production decreases due to dirt deposited on the glass of 
the modules ηdirt, the mismatch phenomenon of the 
current-voltage characteristics ηmis, reflection ηrefl and 
joule effect losses in cables ηcable. The loss by ageing ηlife 
= 1-γlife·n depends on the age of plant n (years) and the 
annual loss coefficient γlife (typically, -0.8%/year for c-Si) 
[15]. 

• ηDC/AC: the DC/AC efficiency is a nonlinear term that takes 
into account the overall performance of DC/AC converter 
including the tracking of the maximum power point [15]. 
In commercial devices, the maximum efficiency exceeds 
98%, with much lower performance when the device 
works at low power levels [16]. 

The module temperature T is calculated with (2) as a 
function of air temperature ��, irradiance G and the nominal 
operating cell temperature (NOCT). This value, from 
manufactures of the modules, is 42–50 °C for c-Si [17]: 

 �  � �� + ����
��°���� �  !" ∙ � (2) 

B. Adjustment of the model to match actual PV production 

The goal of the present work is to calculate the energy 
production of a whole large portfolio of installed plants. Thus, 
the STR model has to be adjusted, because it is created for 
generic plants. Nevertheless, actual plants are affected by 
sources of losses not considered in the STR: e.g., poor quality 
modules leading to high mismatch losses, shadows from near 
constructions that reduce the production especially in winter, 
or high thermal losses (e.g., in case of building integrated PV 
plants). Moreover, in case of missing detailed information 
about the generators, such as the exact tilt and azimuth, the 
STR model could not be able to calculate the energy 
production with an acceptable accuracy. For this reason, the 
STR model is upgraded by optimising some of the parameters 
and introducing an adaptation coefficient CA. 

The optimisation is performed by defining the set of 
parameters x = (#�%,  ��,  ��) and searching for their best set 
to match the measured profiles. The optimisation is written in 
the classical form, where f(x) is the objective function, while 
lb and ub are the lower and upper limits of the parameters, 
respectively: 

 min *+,)       subject to ∶  67 ≤ , ≤ 97 (3) 

By varying G0, the efficiency of the PV modules changes 
in case of low irradiance, especially early in the morning and 
at late afternoon. On the contrary, γTH affects the production 
particularly at midday, when the temperature is the highest. 
The adaptation coefficient CA is multiplied by the rated power 
of the PV generator and takes in consideration all the 
uncertainties that are not characterised by the previous terms. 
In the absence of optimisation, the default is CA = 1. 

The quality of the matching is obtained by minimising the 
Standard Deviation (SD) between measured and simulated 
profiles on hourly level. The SD is weighted on the nominal 
power �	
,:  of each plant in the sample under analysis. This is 

calculated for all the portfolio of plants, or for subsets defined 

in Section IV. In (4), j is the plant, k is the time step, and ���,;:
 

and � ,;:
 are the calculated and measured hourly average 

powers, respectively: 

 *+,)  � ∑ = >?� @ A	B�,CD  – 	F,CD G!H
CI>	JK,DL:MN  (4) 

IV. STRATIFIED SAMPLING OF THE PV PORTFOLIO 

In case of large portfolios of PV systems, the surveying of 
data and its processing can be computationally expensive. 
Inferential statistical methods allow to generalise the results of 
a whole population with an acceptable degree of confidence, 
by analysing a selected sample of elements. In this work, in 
which the population under analysis is a large portfolio of PV 
systems, the Neyman’s Stratified Sampling (SS) technique 
[18] is applied. The variable used for the grouping is the 
nominal size of the PV generators.  

A. STEP#a – Population elements classification 

The SS is applied to the whole population of PV plants. 
The basic requirement of the SS is the creation of 
homogeneous classes (or subgroups), with any variable that 
allows elements with similar characteristics to be grouped in 
each class. The hypothesis is that each class can be represented 
by the Gaussian Probability Distribution (GPD). This makes 
it possible to use some statistical properties of the GPD to 
simply select a subgroup of elements (PV plants) to analyse 
and validate the whole portfolio. 

In the case of a PV portfolio, the rated (or nominal) power 
may be selected as classification variable to create the classes, 
thanks to the direct relation with the energy production. The 
number of classes H and their size limits in the entire portfolio 
are defined as inputs. Then, statistical information is 
calculated for each class h = 1, …, H of the population 
composed of N elements: the number of plants Nh, the average 
rated power μh, and its standard deviation σh. 

It is noteworthy that, to improve the production estimation, 
the criterion for selecting nh plants from the whole population 
Nh (for each class h) should be carefully selected. In case of 
PV plants, considering the almost direct relationship between 
nominal power and energy production, the proposed criterion 
is the selection of plants with nominal powers close to the 
average power of the class. 

B. STEP#b – Sample sizing and elements allocation 

After the division of the whole portfolio in classes, the next 
step is the analysis of a sample of plants with reliable data. In 
the best case, the sample is the whole portfolio; nevertheless, 
generally, the sample is smaller after the filtering (Section II). 
Then, the sample, containing n elements, is divided into H 
classes; the results is the calculation of nh elements to 
statistically represent all the Nh plants of each h class. 

To calculate nh, the optimal allocation method used 
consists of minimising the standard deviation OP of the 
nominal powers of the plants in the sample; it is solved with 
the Lagrangian method, leading to: 

QR � Q ∙ �S∙TS∙U VSVSW>∑ �S∙TS∙U VSVSW>XSI>  (5) 

 YZQ OP� � YZQ N�! ∑ [�S\S ∙ +]R −  QR ) ∙ OP R�_R̀MN  (6) 

where OP Rare the standard deviations of the nominal powers 

of each class. 



The link between the sample size and the accuracy of the 
estimation is given by using (5) and (6): 

 OP� � N�!∙\ ab∑ ]R ∙R̀MN OP RU �S�S
Nc� − Q ∙ ∑ ]RO R� N�S
NR̀MN d
 (7) 

It is assumed the hypothesis that the rated power values 
inside each class follow a Gaussian distribution. In this case, 
is possible to size the sample with n elements starting from a 
desired interval of confidence d: 

 e% �  fgh  ∙ 100 �  ;∙Thgh  ∙ 100 (8) 

where k̂ is the average value of the nominal power of the PV 
plants in the sample, and k is the coverage factor associated 
with the distribution based on various levels of confidence. 
The interval of confidence d is the desired error on the 
estimation (for example, ±5%).  

In this work, dimensioning the sample with (7) can be 
useful for carrying out surveys after validation of the model, 
such as the calculation of the production of the whole portfolio 
of PV plants. It is noteworthy that the sample sizing and the 
achievable confidence interval are limited by the data quality. 
The Gaussian distribution itself is a theoretical assumption 
that enables simplifications in the representation, while the 
real data could be distributed differently, for example with a 
prevailing set of rated values. After the filtering procedure, the 
remaining plants could not be sufficient to fully validate all 
the classes. From the filtering step, defining the available 
systems for each class as nvh, the condition that allows to 
validate a class is nvh ≥ nh. 

C. STEP#c – Analysis of the results  

For the validation of the energy production calculated by 
the adjusted STR model, the errors can be calculated in 
different periods Δt of the year. For each class h of the sample, 
the average energy deviation is: ∆n%S∆o   � N\S ∙ ∑ p∆n%q,S∆o p\SrMN  (9) 

where ∆n%q,S∆o  is the relative energy deviation between the 

energy calculated by the model nr,R and the measurement for 

a single i plant of each sample class. 

After the validation of the model, the upscaling of the 
production of the sample can be performed, for estimating the 
production of the whole population of PV systems inside each 
class. The average energy produced by the PV plants 
belonging to the class h during the period Δt is calculated as: ns t R∆o � N\S ∙ ∑ nr,R\SrMN p∆o (10) 

The up-scaling of the results for each class is carried out 

by calculating the entire PV portfolio production ns uvu∆o
 by: 

 ns uvu∆o � ∑ ]R ns t R∆o R̀MN  (11) 

To evaluate the energy deviation on the total production of 
the photovoltaic portfolio, obtained after the up-scaling 
procedure, the total measured production EΔt

pop in the period 
Δt is used as the reference: 

 ∆n%wxw∆o   � 100 ∙ ys wxw∆z 
 ywxw∆zywxw∆z  (12) 

  

Finally, the tolerance interval associated with the estimation is 
calculated using (8),  

OPuvu� � { |]RQR +]R −  QR ) ∙ 1QR − 1 { Anr,R∆o − ns t R∆oG�
  

\S
rMN }`

RMN  

(13) 

where k̂ � ns uvu∆o
 (14) 

 OP � ~OPuvu�   (15) 

The analysis will be statistically acceptable if the 

measured value nuvu∆o  lies within the confidence band defined 

with (16) associated with the estimated value: 

 ns uvu∆o  ± e (16) 

V. CASE STUDY 

The PV portfolio under analysis includes plants installed 
in Lazio, a region in central Italy. Currently, there are 54,323 
plants in this territory: the total PV nominal power is ≈1.3 
GW, that is, 6.5% of the national power. Only 1% of these 
plants has power higher than 200 kWp, but they reach about 
70% of the total installed power. Regarding the technology, 
85% of the plants have polycrystalline silicon (p-Si) modules, 
while 14% have monocrystalline silicon (m-Si) modules. Only 
0.5% of the plants has concentrators or tracking. The Italian 
Transmission System Operator (TSO) [19] provided the 
general information (site coordinates, nominal power, and 
technology) for all the plants (year 2018). The information 
related to the whole portfolio is used in the stratified sampling 
procedure. The hourly production profiles are provided for a 
part of this portfolio (9,096 plants); these profiles are used in 
the filtering procedure. 

A. Plants production patterns in the filtering step 

The 9,096 production profiles (year 2018, one-hour time 
step) have been analysed following the criteria described in 
Section IV. The filtering is essential for the model validation 
and removes most of the data, due to incomplete or unreliable 
profiles, as shown in Table I. The thresholds have been set in 
the most drastic case, namely, the PV plant is excluded when 
even a single data point during the year that does not satisfy 
the filtering conditions.   

TABLE I.  DATA FILTERING PROCEDURE 

Filter  Filter description 
Removed 

plants 

Remaining 

plants 

Α 
Night production percentage: 

0% between 23:00 and 04:00 
2,188 6,908 

β 
Missing-production days: 

0 days/year 
6,808 100 

γ 
Typical territorial production 

outside 900 < kWh/kWp/y <1700 
15 85 

Δ Check of installation conditions 12 73 

With the first filter, 24% of the plants are eliminated: the 
procedure does not admit production during night hours. An 
example of a 200 kWp plant with obvious errors in the annual 
profile is given in Fig. 5. This case is selected because it 
includes three errors: first, production is not zero during night 
hours; second, the maximum production (80 kW) is much 
lower than the rated power; finally, the daily profile is 
identical for each day of a single month. In most of the cases 
the anomalies are not so extended.  



 
Fig. 5. Example of a PV profile with abnormal night production. 

In the second step, 75% of the plants are removed from the 
database due to missing data. As anticipated, the most 
conservative criterion is applied: at least one day of missing 
production is sufficient to remove the plant. In this work, this 
criterion is not relaxed to avoid elaboration of profiles with 
missing data. An example of a plant with rated power of 440 
kW with missing data is visible in Fig. 6. In this selected 
example the days of missing data are several. Moreover, there 
are maximum production peaks well beyond the nominal 
capacity of the plant. As in the previous example, this wrong 
profile is due to the failure of the monitoring infrastructure. 

 
Fig. 6. Example of a PV profile with missing production days. 

The third filter removes 15 plants with annual production 

much lower than the minimum limit of 900 kWh/(kW⋅year). 
Finally, the manual check of the satellite images leads to 12 
plants affected by wrong installation condition, big obstacles 
close to the PV plant (e.g., trees and other buildings), etc. 

B. Data classification and statistical analysis 

The whole portfolio of 54,323 plants has been considered. 
For all these plants, the nominal power is known, and it is used 
as the classification variable. The limits of each class have 
been selected to allocate the largest number of plants in the 
middle of each range. Following this criterion, 11 classes have 
been defined, where, for each class h = 1, ..., 11 the rated 
power of the plant Ph is expressed in kW: P1 ≤3.5, 3.5 < P2 ≤ 
6.5, 6.5 < P3 ≤ 12.5, 12.5 < P4 ≤ 25, 25 < P5 ≤ 70, 70 < P6 ≤ 
120, 120 < P7 ≤ 500, 500 < P8 ≤ 1200, 1200 < P9 ≤ 3600, 3600 
< P10 ≤ 20000, and P11 > 20000. The probability density 
function has been calculated for each class, under the 
Gaussian hypothesis for using it in the stratified sampling.  
This hypothesis just approximates what happens in practice, 
e.g., a peak in the distribution appears just below 100 kWp, 
because PV plants with nominal power ≥ 100 kWp obtained 
lower feed in tariffs, resulting less cost-effective [20]. 

The data about the PV plants in each class are shown in 
Table II. The power share PSh%, is the percentage weight of 
the class compared to the total installed power; the classes 
with the largest power shares include large plants, although 
they are less numerous. The validation of the sample of plants 
after the filtering (n=73) is carried out by a comparison made 
class by class. If the number of available plants nvh is higher 
than the minimum nh, the sample has statistical validity. 

As shown in Table III, in the case study there are no 
sufficient plants for a complete validation; thus, validation is 
possible for six out of eleven classes. Regarding the tenth 
class, there is not a sufficient number of plants for the 

statistical validation, but it includes plants with the highest 
power share. Therefore, the next subparagraph presents also 
the results of the simulation performed in this class. 

TABLE II.  STATISTICAL INFORMATIONS FOR EACH POWER CLASS  

Class Nh (-) PSh (%) μh (kW) σh (%) 

1 22,205 4.3 2.6 27.7 

2 22,377 8.6 5.0 16.3 

3 4,32 3.1 9.5 16.8 

4 2,923 4.0 18 13.6 

5 1,086 3.7 44 25.4 

6 589 4.2 94 11.7 

7 439 8.3 248 44.3 

8 248 16.2 860 18.9 

9 81 15.1 2,448 24.9 

10 52 27.0 6,832 42.9 

11 3 5.4 23,680 2.9 

TABLE III.  STATISTICAL VALIDATION FOR EACH POWER CLASS  

Availability of plants with respect to stratified sampling allocation 

Class 1 2 3 4 5 6 7 8 9 10 11 

nvh - - - 1 6 15 11 18 15 7 - 

nh 3 4 1 1 2 1 10 8 10 31 1 

nvh ≥ nh no Yes no 

C. Model adjustment to match the measured profiles 

The results of the optimization, i.e., the best sets of 
parameters for each class, are presented in Table IV. The 
starting values are x0 = (#�%,  ��,  ��) � +-0.5%/°C, 17 W/m2, 
1) with boundaries set to be always far from the optimal value. 

The increase of G0 in every class demonstrates that the 
STR model needs an adjustment in case of low irradiance 
level, when the efficiency of PV modules falls. The coefficient 
CA is higher than unity, so the degradation of the PV 
generators is lower than the values declared by the 
manufacturers. The coefficient γT lies in the range [-0.43; -
0.51], in agreement with the literature. 

TABLE IV.  OPTIMIZED PARAMETERS 

 Class 

Class 4 5 6 7 8 9 10 

γT% [%/°C] -0.46 -0.50 -0.50 -0.51 -0.54 -0.44 -0.42 

G0 [W/m2] 30 20 20 24 14 29 31 

CA 1.026 1.039 0.942 1.046 1.017 1.009 1.014 

D. Simulation results 

Fig. 7 and Fig. 8 show daily production profiles in a clear 

sky day and in a cloudy day, respectively. It is a 5 MW plant 

from the dataset of accepted profiles. The PV generation 

profiles calculated after the adjustment of the parameters is 

labelled “STR-adj”. With respect to the standard STR model, 

STR-adj better matches the measured data, especially during 

sunny days. During cloudy days, both STR and STR-adj 

cannot match well the measured data, because the formula (1) 

was created for clear sky days, and the optimisation is 

performed on a yearly basis. In fact, with respect to the daily 

profile, the energy calculation at monthly and annual level is 

more accurate. Fig. 9 shows annual energy deviations 

between the models and the measurements for the 73 selected 

PV plants. STR-adj model improves production estimation. 

 
Fig. 7. Daily production profile in a sunny day of June. 
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Fig. 8. Daily production profile in a cloudy day of March. 

 
Fig. 9. Yearly energy deviation between calculated and measured energies. 

Table V shows the annual production of the entire 
photovoltaic portfolio, obtained by extending the results with 
(10) on the basis of the average annual production for each 
class. The actual confidence intervals are calculated with (8) 
and k = 2. The deviations ΔE%,s,pop are less than 5.5%, that is, 
the expected value obtained from the sizing of the sample, thus 
demonstrating the effectiveness of the procedure. The model 
optimization reduces the deviation from -0.77% to -0.6%. 

TABLE V.  YEARLY PV PRODUCTION: ESTIMATION VS. ACTUAL DATA 

 Measurements STR STR-adj 

Es,pop [GWh] 1619 1606.7 1609.5 

d% - 3.64 3.63 

ΔE%,s,pop - -0.77 -0.60 

VI. CONCLUSIONS 

In this work, a procedure has been presented to analyse 

the generation profiles of thousands of PV plants gathered 
from the meters of the DSOs. The procedure is applied to a 

case study with a portfolio of 54,323 PV systems in Italy. The 

information related to the plants are minimal: the site, the 

nominal power, and the technology. For a subgroup of 9,096 

plants the hourly power profiles are also present. First, the 

whole portfolio has been analysed by using the stratified 

sampling technique, based on the rated powers. The results 

are 11 subgroups of plants. Secondly, a multicriteria filtering 

has been applied based on the shape of the profiles and on the 

expected productivity. Starting from the 9,096 hourly 

profiles, more than 75% of them are not usable due to failures 

of the monitoring infrastructure, demonstrating the potential 

benefits in monitoring upgrades. At the end of the filtering, 

only 73 energy productions have been found that satisfy the 

proposed criteria and can be used for further analysis. Then, 

for each class, the statistical validation is performed by 

comparing the minimum number of required profiles and the 

results of the filtering procedure; only 6 classes out of 11 

exhibit statistical validity. For these classes, the measured 

profiles have been compared with the results of an energy 

model, with and without the optimisation of its internal 

parameters. The energy results have been upscaled to the 

whole portfolio of PV plants, showing an energy deviation 

for the usual energy model of -0.77% and an even smaller 

deviation for the optimised model (-0.60%). 

Future work will investigate the relaxation of the filtering 

criteria and the problem of elaboration of the profiles with 

missing data. It will also include the scalability of the filtering 

procedure, e.g., to avoid the manual check of satellite images. 

Future work will also consider other models for the 

calculation of the PV production, including different 

formulas for the PV module temperature. The optimisation 

will be performed on multi-steps for the different seasons, to 

better simulate the power production also in cloudy days. 
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