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Abstract: New concepts of lightweight components are conceived nowadays thanks to the advances
in the manufacture of composite structures. For instance, mature technologies such as Automatic Fibre
Placement (AFP) are employed in the fabrication of structural parts where fibres are steered along
curvilinear paths, namely variable angle tow (VAT), which can enhance the mechanical performance
and alleviate the structural weight. This is of utmost importance in the aerospace field, where
weight savings are one of the main goals. For that reason, shell structures are commonly found in
the aerospace industry because of their capabilities of supporting external loadings. Straight-fibre
composite shell structures have been studied in recent decades and, now, spatially varying composite
shells are attracting the attention of manufacturers. This work analyses the mechanical behaviour of
VAT composite shells subjected to different external loadings and boundary conditions. The Carrera
Unified Formulation (CUF) is employed to obtain the different structural models in a systematic
and hierarchic manner. The outcomes of such numerical models are discussed and compared with
commercial software Abaqus.

Keywords: composite aerospace structures; stress analysis; numerical methods

1. Introduction

Nowadays, an increasing number of engineering applications, such as civil, marine,
automotive and aerospace, are employing thin-walled structures—as an example, bridges
and oil rings, ships, chassis and aircraft, respectively. Specifically, shells consist of curved
lightweight constructions, which became very widespread in structural engineering thanks
to their high performance when supporting external loads. Such outstanding mechanical
properties stem from the coupling between the membrane and flexural behaviour, induced
by the curvature. The geometric characteristics of shell structures, including the initial
curvatures, have a direct influence on the stiffness properties [1]. Therefore, a proper
design of such structures is crucial to perform accurate stress predictions under different
loading and boundary conditions. The popularity of shell models is thanks to their lower
computation cost compared to three-dimensional (3D) models.

As stated by Kapania [2], composite shell structures are playing a crucial role in several
branches of engineering. Particularly in aerospace, composite materials offer an attractive
possibility to more traditional types of construction due to their corrosion resistance, high
strength-to-weight ratio, ease of formability, excellent fatigue resistance and tailoring ability.
In fact, the stiffness, strength and flexibility characteristics can be controlled in different
directions allowing one to obtain a significant increase in performance. Furthermore,
the possibility of applying fibres that are not constrained along straight paths but can
follow curvilinear paths leads to numerous advantages from the point of view of structural
efficiency, increasing the design space and improving the tailoring process [3–5]. These
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new advanced composite structures, called variable angle tow (VAT), have attracted a lot
of interest because they allow the manufacturing of variable stiffness composite laminates
(VSCL) without discontinuity in the material while maximising the ratio of stiffness to mass.

The VAT methodology is not new, but it has recently received renewed interest due to
significant technological improvements in the automatic manufacturing process. Essen-
tially, the advanced Automated Fibre Placement (AFP) technique [6] and the Continuous
Tow Shearing (CTS) process [7] allow the fibre orientation angle of a layer to vary with
respect to one or more spatial directions. The literature concerning the VAT theories is
vast. As an example, several progressive damages and failure analyses on classical and
VAT composite panels were performed by Lopes et al. [8], showing the potentialities of the
variable stiffness structures to redirect the load fluxes to the stiffer edge area to improve
the structural performance. Curvilinear fibres were adopted by Hyer and Lee [9] to change
the stress concentration around a hole. Stodieck et al. [10] investigated the possibility of
improving the aeroelastic tailoring of a rectangular unswept laminate wing using the VAT
methodology with the comparison with the classical one. Setoodeh et al. [11] adopted the
VAT technique to maximise the buckling load of composite panels.

Over the years, researchers and scientists have developed several efficient shell the-
ories. For example, the studies of Poisson, [12], Love [13], Mindlin [14], Kirchhoff [15],
Reissner [16] and Cauchy [17] represent the classical formulation of the shell models.
Typically, these classical theories are adopted in the commercial codes. However, the
applicability of classical theories is limited to a narrow range of applications, for example,
when dealing with the thin-walled structure and without local effects. On the contrary,
more accurate shell formulations are needed when transverse stresses analyses are re-
quired. Recently, several higher-order 2D formulations were formulated to improve the
accuracy of classical theories. For example, Reddy [18] provided a simple high-order theory
for laminated composite two-dimensional (2D) structures. A shear model considering
a parabolic distribution of transverse shear deformations in the thickness direction was
presented by Reddy and Liu [19]. An assessment of the relevance of displacement variables
in refined theories for isotropic and multilayered shells using an axiomatic/asymptotic
technique was carried out by Mashat et al. [20]. Carrera [21,22] developed several refined
shell theories in the framework of the Carrera Unified Formulation (CUF). Cinefra and
Carrera [23] performed linear analyses of composite cylindrical structures using finite shell
elements with different through-the-thickness kinematics. A useful review of methods and
guidelines for the choice of the shell model was reported by Petrolo and Carrera [24]. A
detailed review of the theories is not within the scope of this work. Readers are referred to
[25,26] for other significant works on refined shell formulations.

There exists a limited number of works regarding the stress evaluation of VAT shells.
To the best of the authors’ knowledge, only a couple of works have been published about
this topic, specifically, the works by Tornabene et al. [27] and Sarvestani et al. [28]. The
former [27] used a similar approach to the one proposed in this paper, whilst the latter [28]
adopted a semi-analytical methodology to perform hygro-thermo-mechanical analysis on
thin to relatively-thick VAT composite panels. To circumvent that research absence, this
paper aims to present additional stress benchmarks for future comparisons. In this manner,
the main objective of this manuscript is to accurately predict the 3D linear stress state of
tow-steered composite shells and provide stress benchmarks.

The proposed methodology relies on the CUF [29]. In CUF, the accuracy of the model
can be fine-tuned straightforwardly since the order of the structural model is treated as
input of the analysis. CUF has been adopted to obtain 2D theories, which have been
then extended to the analysis of multilayered, composite plates and shells, and later for
beam models [30–32]. In recent years, CUF has also been employed in the analysis of VAT
composites. For instance, Demasi et al. [33] showed some numerical assessments on the
stress distribution of VAT plates employing Equivalent Single Layer (ESL) and Layerwise
(LW) theories. The vibrations and buckling of variable stiffness plates were studied by
Vescovini and Dozio [34] by coupling the CUF and Ritz method. Viglietti et al. [35]
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introduced 1D elements for the free vibration study of VAT laminates. Lately, Pagani
and Sanchez-Majano [36,37] and Sanchez-Majano et al. [38] analysed the influence of
manufacturing defects on the mechanical performance of VAT composites.

This manuscript is subdivided as follows: (i) first, a description of the 2D CUF
modelling approach for shells is made in Section 2, including a description of VAT over
curved domains; then, Section 3 presents the numerical results obtained with CUF shell
models. Finally, conclusions are drawn in Section 4.

2. Unified Finite Elements for VAT Shells
2.1. Preliminary Considerations

In this work, the structures are modelled using refined shell models. A shell is a 2D
structural element where the thickness is negligible compared to the other dimensions.
Typically, this geometry is described employing an orthogonal curvilinear reference system
(α, β, z), as reported in Figure 1, in which α and β indicate the in-plane surface and z the
thickness direction. For the sake of brevity, the complete description of the shell formulation
in the CUF domain is not within the scope of this article. The reader is referred to [32,39].

β

R

h

α

R�
α

β

T1

T0

l
�

lβ
�'

β'

Figure 1. Geometry and reference system of a generic VAT shell model.

The transposed displacement, strain and stress vectors for each layer k are written as
follows:

uk = { uk
α, uk

β, uk
z }T

εk = {εk
αα, εk

ββ, εk
zz, εk

αz, εk
βz, εk

αβ}T

σk = {σk
αα, σk

ββ, σk
zz, σk

αz, σk
βz, σk

αβ}T

(1)

The displacement-strain relations are written as:

εk = Duk (2)
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in which D represents the differential operator containing the geometrical relations between
strains and displacements. This operator reads as:

D =



∂α
Hα

0 1
HαRα

0
∂β

Hβ

1
HβRβ

0 0 ∂z

∂z − 1
HαRα

0 ∂α
Hα

0 ∂z − 1
HβRβ

∂β

Hβ

∂β

Hβ

∂α
Hα

0



(3)

where ∂α = ∂(·)/∂α, ∂β = ∂(·)/∂β, ∂z = ∂(·)/∂z, and Hα, Hβ are defined as:

Hk
α = Ak(1 + zk/Rk

α), Hk
β = Bk(1 + zk/Rk

β) (4)

where Rk
α and Rk

β denote the radii of the middle surface of the kth layer, and Ak and Bk

indicate the Lamé parameters. Using the constitutive equations, stresses are evaluated as:

σk = Ckεk (5)

where Ck is the material elastic matrix [40,41]. Since in this work VAT structures are
investigated, the fibres have a general orientation function of the space coordinates, i.e.,
θ(α, β). Thus, we write:

σk = C̃kεk (6)

in which:
C̃k = TTCkT (7)

where T represents the rotation matrix [42]. The matrix C̃k changes pointwise in VAT
composite structures.

In a VAT structure, the fibre can change continuously along a curvilinear path in each
ply. In this way, the laminate has a different stiffness value at each position. A linear
fibre angle variation over the lamina is employed in this work, see Figure 1, and the fibre
orientation, using the notation of Gürdal [43], is formulated as follows:

θ(α′) = Φ + T0 +
(T1 − T0)

d
|α′| (8)

where the fibre path exhibits a rotation of an angle Φ with respect to a certain reference
direction. The fibre orientation angle at this point is T0 and varies along a direction α′

oriented by angle Φ from the original coordinate axis α. The fibre orientation reaches the
value T1 at a characteristic distance d from the reference point. By considering this rotation
angle, the fibre orientation path θ(α, β) is expressed as θ(α′), in which α′ = αcosΦ + βsinΦ.
The parameter d is equal to a/2 or b/2 when Φ = 0° or Φ = 90°, where a and b are the width
and length of the 2D structure, respectively. For a better understanding of the fibre path
variation along the in-plane, two of the fibre paths considered in the upcoming assessments
are represented in Figure 2.
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(a) [90<30,0>] fibre path

(b) [45<0,−15>] fibre path

Figure 2. Graphical representation of a spatially varying fibre path over (a) squared and (b) rectangu-
lar domains.

For clarity, unlike commercial codes where the lamination angle is considered constant
over the entire element, in the presented methodology, the material coefficients of the VAT
structure are evaluated in specific Gauss points [35]. The use of the Gauss point integration
technique guarantees a more accurate and efficient analysis of composite VAT structures,
since the variability in the material stiffness coefficients Cijkl is accounted in several points
for the same FE. Moreover, in the present model, the number of Gauss points per element
can be increased independently of the FE type, and thus, it influences the number of
degrees of freedom.

2.2. Kinematic Assumption, Governing Equation and FE Approximation

In this article, VAT composite shells are modelled employing refined 2D CUF models.
In the CUF framework, the refinement of the theory is assumed as an input of the analysis,
so low- to higher-order models can be built with ease and in a unified manner (i.e., no ad-
hoc formulations are needed to obtain any model). The 3D displacement field is formulated
as an arbitrary through-the-thickness expansion of the in-plane variables.

uk(α, β, z) = Fk
τ (z)u

k
τ(α, β), τ = 1, . . . , M (9)
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in which Fτ represents a set of thickness expansion functions, uτ is the generalised dis-
placement vector depending on the in-plane coordinates α and β, M indicates the order
of expansion in the thickness direction and the repeated index τ denotes summation. The
choice of Fτ is arbitrary and determines the class of the considered 2D CUF shell model.
For the sake of brevity, the reader is referred to [29] for a detailed description of the shell
theories within the CUF domain.

The use of laminated composite structures leads to important challenges in the design
process. One of the most important assessments is undoubtedly the correct prediction of the
stress distribution within the structure. In the literature, ESL and LW theories are typically
employed when dealing with composite materials. In this work, both the ESL based on
Taylor Expansion (TE) and LW adopting the Lagrange Expansion (LE) are considered. The
acronym LDN, used in the following figures, denotes the LE of order N assumed in the z
direction. The differences in the assembly procedure for ESL and LW and the behaviour of
the primary variables along the thickness of the shell are reported in Figure 3.

N = 1 N = 3

N = 2

LE 1 LE 2
s

sss

s

Equivalent Single Layer (ESL)

Layer-wise (LW)

Figure 3. Assembling procedure of the stiffness matrix and behaviour of the primary variables along
the thickness of the structure.

In detail, in ESL the stiffness matrix is evaluated with the homogenisation technique
of the properties of each layer by summing the contributions of each layer. The result is a
multilayer configuration modelled as a single layer having a set of variables assumed for
the entire cross-section. On the contrary, LW theories divide and expand the displacement
field within each material layer. By doing so, homogenisation is carried out at the interface
layer. ESL theories exhibit accurate results of the global response (fundamental vibration
frequency, transverse deflection), but they are often inaccurate for the 3D stress distributions
compared to the LW methodology.

Independently of the selected shell model kinematics, the finite element method
(FEM) is used to approximate the in-plane generalised displacement vector employing the
Lagrange shape functions Ni(α, β).

uk
τ(α, β) = Ni(α, β)qk

τi, i = 1, 2, . . . , Nn (10)

in which qτi denotes the unknown nodal variables, Nn indicates the number of nodes
per element and i stands for summation. For completeness, the classical 2D nine-node
quadratic finite element (FE) (Q9) is considered in the following analyses for the shape
function in the α, β plane.

The principle of virtual displacements (PVD) is used to derive the expression for the
stiffness matrix. PVD states that:

δLint = δLext (11)
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in which δLint represents the virtual variation of the internal strain energy

δLint =
∫

V
δεTσdV (12)

and δLext is the virtual work of external loading

δLext = δqT
sjpsj +

∫
S

δqT
sjfsjdS (13)

where psj is the vector of the applied point load components (3 × 1) and fsj is a surface
force.

By using Equations (10) and (12), the constitutive law (Equation (6)) and the geometri-
cal relations which results in the following equation for the stiffness matrix:

δLint = δqT
sjk

ijτsqτi (14)

where kijτs is the 3 × 3 fundamental nucleus (FN), see the CUF book [29] for its derivation.
The mathematical expression for FN results in:

kijτs =
∫

V
DT(NiFτ)C̃D(NjFs)dV (15)

Conversely, from other CUF-based works, Equation (15) cannot be split into separate
integrals where the FE solution and CUF expansion are independently evaluated, and,
therefore, a 3D integration is needed. Finally, the global assembled stiffness matrix K is
obtained by looping through the indices i,j,τ,s.

3. Numerical Results

The stress analyses of VAT shell structures subjected to different loadings are discussed
in this section. In particular, flat and curved panels with different material properties,
lamination schemes, curvature ratios and boundary conditions were investigated. For this
purpose, both the layerwise theory and equivalent single layer approaches are adopted and
compared, showing the need to adopt layerwise when evaluating transverse shear stresses.
The material properties considered in the following studies are reported in Table 1. These
materials were selected from existing literature concerning shell-like structures [32,44].

Table 1. Elastic properties of the materials used for the different analysed VAT structures.

Case E1 [GPa] E2 = E3 [GPa] G12 [GPa] G23 [GPa] ν12 [-] ν23 [-]

Simply supported VAT flat panel 143.17 9.64 6.09 3.12 0.252 0.349
Clamped VAT curved panel 165.0 9.0 5.60 2.80 0.34 0.50

Hinged VAT shell 3.30 1.10 0.66 0.66 0.25 0.25

3.1. Simply Supported VAT Flat Panel

The first numerical assessment consists of a laminated squared flat panel composed of
two layers. This flat panel is simply supported on its four edges, and the stacking sequence
is: θ = [0 < 90, 45 >, 0 < 0, 45 >]. A graphite/epoxy composite, whose elastic properties
are available in Table 1, is employed in this structure. A graphical representation of the flat
panel subjected to a uniform pressure (Pz = 10 kPa) exerted on the top surface, including
its dimensions, is illustrated in Figure 4.
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b=1 m a=1 m

h=0.1 m 

z

y

x
h/2

h/2

LAYER 2

LAYER 1

Pz

Pz

Figure 4. Geometry and loading condition of the simply supported VAT flat panel. The exerted
pressure is Pz = 10 kPa.

First, a convergence study on the in-plane finite element mesh is carried out. The
reference results were obtained using commercial software Abaqus [45], where a mesh
employing 80× 80× 16 solid C3D8R elements was utilised. Figure 5 shows the trans-
verse normal (σzz) and (σyz) shear stresses for different 2D plate models, from 64 Q9 FEs
up to 196 Q9 FEs, whereas 2LD3 elements were placed through the thickness direction.
Table 2 gathers the six stress components evaluated at point Q (x = 0.25 m, y = 0.25 m) and
z = 0.02 m for the different mesh approximations. These results suggest that a 10× 10 Q9
mesh approximation provides an accurate evaluation of the stresses. However, by looking
at Figure 5b, the lower part of the stress distribution does not match properly with the
reference results. A better prediction is provided in this case by the 14× 14 mesh approx-
imation. Then, it is appreciated in both Figure 5a and Table 2 that the present approach
does not predict the transverse shear stress distribution of the commercial software. These
differences are mentioned below.

(a) σyz (b) σzz

Figure 5. hrough-the-thickness stress field, measured at point Q, of the simply supported
[0 < 90, 45 >, 0 < 0, 45 >] flat panel. (a) σyz; (b) σzz

Table 2. Stress state of the simply supported [0 < 90, 45 >, 0 < 0, 45 >] flat panel evaluated at point Q and z = 0.02 m for
different FE mesh approximations. Each discretization employs 2LD3 elements through the thickness direction.

Model DOF σxx [kPa] σyy [kPa] σzz [kPa] σxz [kPa] σyz [kPa] σxy [kPa]

Abaqus 334,611 −11.13 −56.06 −8.33 −19.64 −4.02 21.64
8× 8 Q9 6069 −4.19 −53.26 −6.67 −21.68 −7.95 27.37

10× 10 Q9 9261 −12.75 −54.96 −8.35 −22.73 −7.77 22.52
12× 12 Q9 13,125 −8.33 −54.45 −8.43 −22.10 −7.75 25.03
14× 14 Q9 17,661 −12.71 −55.29 −8.39 −22.61 −7.66 22.67

To perform an accurate stress prediction, different expansion functions are used for
the thickness discretisation. Both LE and TE functions are considered in this study. The
through-the-thickness stress distribution is shown in Figure 6. The corresponding stress
values are enlisted in Table 3 for different 2D theories. As appreciated, the LW approach
provides the more accurate stress results when 2LD3 theories are employed. The outcomes
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suggest that the ESL model is sufficient to evaluate the in-plane normal and shear stresses,
whilst their accuracy diminishes when predicting the transverse shear stresses. Concerning
the latter, TE 6, TE 7 and TE 10 provide a similar distribution compared to 2LD3 but present
equal or higher DOF. However, oscillations appear close to the interface for those two
theories. This means that even considering up to tenth-order terms, an accurate evaluation
of these stress components is not available. Additionally, there exist differences between
the Abaqus model and the 2LD3 relative to shear transverse stresses, especially for the
σyz component. These are due to the different formulations that both models present: the
dedicated Abaqus model uses a solid 3D linear model (C3D8R element), whereas a LW
formulation is achieved with the present approach. Indeed, Abaqus does not respect the
stress-free condition at the plate’s bottom and top as shown in Figure 6e.

(a) σxx (b) σxy

(c) σyy (d) σxz

(e) σyz (f) σzz

Figure 6. Through-the-thickness stress field, measured at point Q, of the simply supported
[0 < 90, 45 >, 0 < 0, 45 >] flat panel. (a) σxx; (b) σxy; (c) σyy; (d) σxz; (e) σyz; (f) σzz. Legend in
(a,c,f) apply for all figures in the panel.
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Table 3. Point Q stress state of the simply supported [0 < 90, 45 >, 0 < 0, 45 >] flat panel at z = 0.02 m for different
structural theories and a 14× 14 Q9 FE mesh approximation.

Theory DOF σxx [kPa] σyy [kPa] σzz [kPa] σxz [kPa] σyz [kPa] σxy [kPa]

TE 1 5046 −26.65 −55.07 −24.49 −7.95 −11.68 18.71
TE 2 7569 −17.13 −51.08 −7.33 −13.49 −8.43 22.17
TE 3 10,092 −10.65 −50.57 −7.57 −13.96 −10.15 25.19
TE 4 12,615 −11.79 −51.04 −8.44 −19.43 −6.48 24.99
TE 5 15,138 −12.53 −51.38 −8.37 −20.96 −7.07 24.66
TE 6 17,661 −12.94 −51.49 −8.41 −21.64 −6.48 24.47
TE 7 20,184 −13.06 −51.52 −8.39 −22.97 −7.45 24.44

TE 10 27,753 −13.30 −51.59 −8.35 −23.27 −8.30 24.32
2LD3 17,661 −13.11 −55.35 −8.22 −22.54 −7.63 22.48

3.2. Clamped VAT Curved Panel

The second numerical assessment considers a curved VAT panel. The structure has
one meter length, an opening angle ϕ = 0.2 rad, internal radius Rα = 1.25 m and thickness
h = 0.05 m. The panel is clamped on its longitudinal edges and an uniform pressure
pz = 10 kPa is exerted on the upper surface, as depicted in Figure 7. The stacking sequence
is chosen to be θ = [0 < 0, 50 >, 90 < 0, 75 >, 45 < 0, 15 >]s. The material properties are
gathered in Table 1.

α

β β
 = 1 m

Rα = 1.25 m

φ = 0.2 rad

z
α

pz = 10 kPa

ClampedClamped

h = 0.05 m

(a)

α

β

T ≡ (0.25,0.5) m
V ≡ (0.375,0.75) m

(b)
Figure 7. Graphical description of the clamped curved VAT panel: (a) geometry and boundary
conditions; (b) points where magnitudes are measured.

First, a mesh convergence analysis is performed by varying the number of in-plane
finite elements, while a 6LD2 expansion theory is employed in the thickness direction.
Tables 4 and 5 show the convergence of the transverse displacement and the stresses
computed at points T and V, respectively. Figure 8 shows the stress distribution at point V
using the present approach, whilst the convergence of the Abaqus model is available in
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Figure 9. Small differences between FE meshes are appreciated when accounting for the
transverse displacement and the in-plane stresses σαα and σαβ. However, these differences
are more evident for the transverse stresses σzz and σβz. From these results, it is inferred
that a 20 × 10Q9 + 6LD2 mesh approximation thoroughly predicts the stress distribution.

Table 4. Finite element mesh convergence for the transverse displacement calculated at point T and
z = 0.025 m for the [0 < 0, 50 >, 90 < 0, 75 >, 45 < 0, 15 >]s clamped VAT shell.

FE Mesh DOF −uz·106 [m]

6 × 2Q9 + 6LD2 2535 2.37
10 × 5Q9 + 6LD2 9009 2.93

20 × 10Q9 + 6LD2 33579 3.00
30 × 15Q9 + 6LD2 73749 3.01

Table 5. Finite element mesh convergence for the stresses calculated at point V and z = 0 m for the
[0 < 0, 50 >, 90 < 0, 75 >, 45 < 0, 15 >]s clamped VAT shell.

FE Mesh DOF σαα [Pa] σzz [Pa] σβz [Pa] σαβ [Pa]

6 × 2Q9 + 6LD2 2535 −8.31·104 −4.65·103 5.47·103 −5.18·104

10 × 5Q9 + 6LD2 9009 −9.67·104 −3.20·103 6.78·103 −5.97·104

20 × 10Q9 + 6LD2 33,579 −1.00·105 −3.38·103 7.08·103 −6.21·104

30 × 15Q9 + 6LD2 73,749 −9.98·104 −3.32·103 6.97·103 −6.17·104

(a) σαα (b) σzz

(c) σβz (d) σαβ

Figure 8. Convergence of the through-the-thickness stress distribution for the [0 < 0, 50 >, 90 <

0, 75 >, 45 < 0, 15 >]s clamped VAT shell calculated at point V. CUF models. (a) σαα; (b) σzz; (c) σβz;
(d) σαβ.
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(a) σαα (b) σαβ

Figure 9. Convergence of the through-the-thickness stress distribution for the [0 < 0, 50 >, 90 <

0, 75 >, 45 < 0, 15 >]s clamped VAT shell calculated at point V. Abaqus quadratic models. (a) σαα; (b)
σαβ.

In the following, stress distributions provided by high-order LE and TE expansion
theories are compared with commercial software Abaqus. For such purpose, the 20 × 10Q9
FE mesh approximation is employed. The Abaqus solid model utilises 80 × 40 × 18
C3D20R quadratic elements. Table 6 and Figure 10 provide the stress components computed
at point V of the structure. From the former, it is inferred that TE theories are unable to
predict the shear stress σβz, while for the remaining stress components, these expansions
are in agreement with 6LD2 and 6LD3. The latter demonstrates that 6LD1 is not capable of
retrieving response for any stress component. It is also shown that TE models provide an
accurate evaluation of the in-plane terms while presenting difficulties when predicting the
transverse components, especially the shear stresses σαz and σβz. The Abaqus prediction
of the transverse shear stresses are not reported in Figure 10c–e since it is not feasible to
obtain accurate results for such stress components.

Table 6. Comparison of the in-plane and out-of-plane stresses provided by different expansion
theories for the [0 < 0, 50 >, 90 < 0, 75 >, 45 < 0, 15 >]s clamped VAT shell. Stresses are computed
at point V and z = 0 using the 20 × 10 Q9 mesh approximation.

Theory DOF σαα [Pa] σzz [Pa] σβz [Pa] σαβ [Pa]

TE 1 5166 −8.43·104 −4.37·103 1.18·103 −5.10·104

TE 2 7749 −9.11·104 −4.33·103 1.33·103 −5.57·104

TE 3 10,332 −9.44·104 −3.55·103 2.53·103 −5.80·104

TE 4 12,915 −9.65·104 −3.62·103 2.53·103 −5.95·104

6LD1 18,081 −9.99·104 −3.31·103 6.62·103 −6.19·104

6LD2 33,579 −1.00·105 −3.38·103 7.08·103 −6.21·104

6LD3 49,077 −1.00·105 −3.53·103 6.89·103 −6.21·104
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(a) σαα (b) σββ

(c) σzz (d) σαz

(e) σβz (f) σαβ

Figure 10. Through-the-thickness stress distribution of the [0 < 0, 50 >, 90 < 0, 75 >, 45 < 0, 15 >]s
clamped VAT shell calculated at point V for the different expansion theories. The Abaqus solid model
comprises 80 × 40 × 18 C3D20R quadratic elements. (a) σαα; (b) σββ; (c) σzz; (d) σαz; (e) σβz; (f) σαβ.

3.3. Hinged VAT Shell

The third numerical assessment consists of a hinged VAT shell structure. This curved
panel comprises three composite laminae where the fibres are steered following the stacking
sequence θ = [90 < 30, 0 >, 0 < 30, 0 >, 90 < 30, 0 >]. A graphical representation of the
VAT shell is available in Figure 11, and the material properties are enlisted in Table 1.

Specifically, a convergence analysis is first conducted to find the mesh that provides
the most accurate results; then, a comparison between ESL and LW models is carried out.
Finally, the effect of the fibre orientation parameters T0 and T1 on the stress distribution is
addressed.
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Figure 11. Graphical description of the hinged VAT shell: (a) geometry and boundary conditions;
(b) points where magnitudes are measured.

3.3.1. Mesh Convergence Analysis

A convergence study concerning the number of in-plane finite elements is conducted.
Likewise, the through-the-thickness expansion order is addressed. Tables 7 and 8 show the
convergence results for both the transverse displacement and the stress distribution at point
R and z = 6.35 mm, and point S, respectively. Then, in Figure 12, it is appreciated that a
32 × 32 Q9 mesh approximation is necessary to retrieve an accurate evaluation of both the
transverse displacement and the stress distributions. The effect of the different expansion
functions on the latter is also accounted for in the right panel of Figure 12, especially in the
out-of-plane stress variation. Indeed, it is demonstrated that a 6LD2 expansion is required
to predict accurately such distributions.

Table 7. Expansion order and finite element mesh convergence for the transverse displacement
calculated at point R and z = 6.35 mm for the [90 < 30, 0 >, 0 < 30, 0 >, 90 < 30, 0 >] hinged
VAT shell.

Expansion Order FE Mesh DOF −uz [mm]

6LD1

8 × 8 Q9 6069 0.905
12 × 12 Q9 13,125 0.938
16 × 16 Q9 22,869 0.953
24 × 24 Q9 50,421 0.972
32 × 32 Q9 88,725 0.985
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Table 7. Cont.

Expansion Order FE Mesh DOF −uz [mm]

3LD2

8 × 8 Q9 6069 0.903
12 × 12 Q9 13,125 0.936
16 × 16 Q9 22,869 0.951
24 × 24 Q9 50,421 0.969
32 × 32 Q9 88,725 0.982

6LD2

8 × 8 Q9 11,271 0.905
12 × 12 Q9 24,375 0.939
16 × 16 Q9 42,471 0.955
24 × 24 Q9 93,639 0.975
32 × 32 Q9 164,775 0.990

6LD3

8 × 8 Q9 16,473 0.905
12 × 12 Q9 35,635 0.940
16 × 16 Q9 62,073 0.955
24 × 24 Q9 136,857 0.975
32 × 32 Q9 240,825 0.990
50 × 50 Q9 581,457 1.020

Table 8. Expansion order and finite element mesh convergence for σαα, σzz, σβz, and σαβ at point R and z = 0 mm for the
[90 < 30, 0 >, 0 < 30, 0 >, 90 < 30, 0 >] hinged VAT shell.

Expansion Order FE Mesh DOF σαα [MPa] σzz [MPa] σβz [MPa] σαβ [MPa]

6LD1

8 × 8 Q9 6069 −0.312 −0.0166 −0.0176 −0.0559
12 × 12 Q9 13,125 −0.317 −0.0133 −0.0207 −0.0591
16 × 16 Q9 22,869 −0.321 −0.0151 −0.0216 −0.0603
24 × 24 Q9 50,421 −0.323 −0.0156 −0.0208 −0.0608
32 × 32 Q9 88,725 −0.324 −0.0156 −0.0204 −0.0610

3LD2

8 × 8 Q9 6069 −0.308 −0.0047 −0.0190 −0.0557
12 × 12 Q9 13,125 −0.313 −0.0206 −0.0210 −0.0588
16 × 16 Q9 22,869 −0.316 −0.0121 −0.0216 −0.0599
24 × 24 Q9 50,421 −0.318 0.00080 −0.0209 −0.0605
32 × 32 Q9 88,725 −0.319 0.00080 −0.0205 −0.0607

6LD2

8 × 8 Q9 11,271 −0.308 −0.00453 −0.0202 −0.0558
12 × 12 Q9 24,375 −0.313 −0.00232 −0.0224 −0.0588
16 × 16 Q9 42,471 −0.316 −0.00130 −0.0229 −0.5997
24 × 24 Q9 93,639 −0.318 −0.00092 −0.0222 −0.0605
32 × 32 Q9 164,775 −0.318 −0.00094 −0.0217 −0.0607

6LD3

8 × 8 Q9 16,473 −0.308 −0.00454 −0.0198 −0.0558
12 × 12 Q9 35,635 −0.313 0.00237 −0.0219 −0.0588
16 × 16 Q9 62,073 −0.316 0.00137 −0.0225 −0.0599
24 × 24 Q9 136,857 −0.318 0.00092 −0.0218 −0.0605
32 × 32 Q9 240,825 −0.318 0.00092 −0.0213 −0.0607
50 × 50 Q9 581,457 −0.319 0.00088 −0.0202 −0.0608
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(a) σαα (b) σαα

(c) σzz (d) σzz

Figure 12. Through-the-thickness stress distribution of the [90 < 30, 0 >, 0 < 30, 0 >, 90 < 30, 0 >]

hinged VAT shell calculated at point R. (a) σαα; (b) σαα; (c) σzz; (d) σzz.

3.3.2. ESL and LW Theories for the Analysis of Laminated VAT Shells

Then, a comparison between TE and LE expansion functions is carried out. Table 9
enlists the stress values at point R and z = 0 mm for the different expansion theories. Sub-
sequently, Figure 13 shows the stress variation provided by these expansions. It is inferred
that TE 2, TE 3 and TE 4 theories are able to predict the same in-plane stress distribution
that high-order LD theories provide with a fraction of DOF. However, differences appear
in the evaluation of the transverse stress components. For instance, TE 1 is not enough to
catch the transverse normal stress distribution. Then, as appreciated in Figure 13d,e, TE 1
and TE 2 do not predict the trend of the transverse shear stresses. Moreover, TE 3 and TE 4
present difficulties when retrieving σαz, as depicted in Figure 13d.

Table 9. Comparison of the in-plane and out-of-plane stresses of the hinged VAT shell provided by
the different expansion theories. Stresses are computed at point S and z = 0 mm using the 32 × 32
Q9 mesh.

Theory DOF σαα [MPa] σzz [MPa] σβz [MPa] σαβ [MPa]

TE 1 25,350 −0.316 −0.00267 −0.0144 −0.0599
TE 2 38,025 −0.320 −0.00262 −0.0148 −0.0606
TE 3 50,700 −0.319 −0.00053 −0.0211 −0.0606
TE 4 63,375 −0.319 −0.00052 −0.0212 −0.0607
6LD1 88,725 −0.324 −0.01560 −0.0204 −0.0610
3LD2 88,725 −0.319 0.00080 −0.0205 −0.0607
6LD2 164,775 −0.318 −0.00094 −0.0217 −0.0607
6LD3 240,825 −0.318 −0.00094 −0.0217 −0.0607
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(a) σαα (b) σββ

(c) σzz (d) σαz

(e) σβz (f) σαβ

Figure 13. Through-the-thickness stress distribution of the [90 < 30, 0 >, 0 < 30, 0 >, 90 < 30, 0 >]

hinged VAT shell calculated at point R for the different expansion theories. (a) σαα; (b) σββ; (c) σzz; (d)
σαz; (e) σβz; (f) σαβ.

3.3.3. Effect of the Fibre Orientations on the Stress Distribution

First, the effect of T0 on the stress distribution, evaluated at point R, is addressed.
Precisely, T0 takes the following values T0 = [10, 30, 50, 70]◦. For these analyses, the 32× 32
Q9 mesh approximation coupled with the 6LD3 expansion theory in the thickness direction
is employed. Figure 14 illustrates the influence of T0 on the stress distribution. On the
one hand, it is appreciated that the magnitude of the transverse stresses is affected by T0.
Nevertheless, a sign variation of the stress component, due to T0, is not foreseen. On the
other hand, concerning the in-plane stresses, T0 varies its magnitude and the stress sign.
That is, in σββ, the second layer is subjected to compressive stresses when T0 = [10, 30, 50]◦

and to tension stresses when T0 = 70◦.
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(a) σαα (b) σββ

(c) σzz (d) σαz

(e) σβz (f) σαβ

Figure 14. Effect of T0 in the through-the-thickness distribution at point S of the [90 < T0, 0 >, 0 <

T0, 0 >, 90 < T0, 0 >] hinged VAT shell. A 32 × 32Q9 + 6LD3 mesh approximation is used for
each analysis. (a) σαα; (b) σββ; (c) σzz; (d) σαz; (e) σβz; (f) σαβ.

To study how the variation of T1 influences the stresses over the VAT shell, the initial
[90 < 30, 0 >, 0 < 30, 0 >, 90 < 30, 0 >] stacking sequence becomes [90 < 30, T1 >, 0 <
30, T1 >, 90 < 30, T1 >], where T1 = [0, 10, 50, 70]◦. The stress components are evaluated at
point W, where the effect of T1 is appreciated. Figure 15 illustrates the through-the-thickness
stress distribution. It is observed that the transverse stresses are not greatly affected by
the fibre angle variation. On the contrary, the in-plane components show evident changes,
especially the normal stresses where differences are more obvious in the middle layer.
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(a) σαα (b) σββ

(c) σzz (d) σαz

(e) σβz (f) σαβ

Figure 15. Effect of T1 in the through-the-thickness distribution at point W of the [90 < 30, T1 >, 0 <

30, T1 >, 90 < 30, T1 >] hinged VAT shell. A 32 × 32Q9 + 6LD3 mesh approximation is used for
each analysis. (a) σαα; (b) σββ; (c) σzz; (d) σαz; (e) σβz; (f) σαβ.

4. Concluding Remarks

This paper has presented high-order finite elements to accurately evaluate linear static
stresses over variable angle tow (VAT) shell structures. The Carrera Unified Formulation
(CUF) constitutes the framework in which such numerical models are embedded because
of its capabilities for achieving low fidelity to high-order structural models in a systematic
manner. No approximations have been made on the shell geometry nor on the strains.
Several geometries, boundary and loading conditions, spatially varying fibre paths and
materials have been analysed and compared to commercial software Abaqus. The results
suggest that:

• Equivalent Single Layer (ESL) and Layerwise (LW) are in good agreement with
commercial software formulations for the analysis of flat panels;
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• In the case of curved panels, Abaqus and ESL provide similar results for the in-plane
stress prediction when compared to LW models. Nevertheless, obvious differences
arise in the evaluation of the transverse stresses. Such differences can be mitigated by
employing high-order TE;

• The selection of the fibre path parameters (φ, T0, T1) can be fine-tuned to conveniently
alter the stress distribution at certain points of interest of the structure.

Future works will concern the linear and nonlinear behaviour of sandwich-like VAT
shells and applications for structural failures, such as postbuckling.
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