
08 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A model predictive control approach to optimally devise a two-dose vaccination rollout: A case study on COVID-19 in
Italy / Parino, F.; Zino, L.; Calafiore, G. C.; Rizzo, A.. - In: INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR
CONTROL. - ISSN 1049-8923. - STAMPA. - (2021). [10.1002/rnc.5728]

Original

A model predictive control approach to optimally devise a two-dose vaccination rollout: A case study on
COVID-19 in Italy

Wiley postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1002/rnc.5728

Terms of use:
openAccess

Publisher copyright

This is the peer reviewed version of the above quoted article, which has been published in final form at
http://dx.doi.org/10.1002/rnc.5728.This article may be used for non-commercial purposes in accordance with Wiley
Terms and Conditions for Use of Self-Archived Versions.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2933354 since: 2021-10-20T15:16:05Z

John Wiley and Sons



Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

RESEARCH ARTICLE1

A model predictive control approach to optimally devise a2

two-dose vaccination rollout: A case study on COVID-19 in Italy3

Francesco Parino1 | Lorenzo Zino2 | Giuseppe Carlo Calafiore1 | Alessandro Rizzo1,34

1Department of Electronics and
Telecommunications, Politencico di Torino,
Turin, Italy

2Faculty of Science and Engineering,
University of Groningen, Groningen, The
Netherlands

3Office of Innovation, New York University
Tandon School of Engineering, Broonlyn
NY, USA
Correspondence
Alessandro Rizzo, Department of
Electronics and Telecommunications,
Politecnico di Torino, Corso Duca degli
Abruzzi 24, 10129 Torino, Italy.
Email: alessandro.rizzo@polito.it

Summary

TheCOVID-19 pandemic has led to the unprecedented challenge of devisingmassive
vaccination rollouts, toward slowing down and eventually extinguishing the diffu-
sion of the virus. The two-dose vaccination procedure, speed requirements, and the
scarcity of doses, suitable spaces, and personnel, make the optimal design of such
rollouts a complex problem. Mathematical modeling, which has already proved to
be determinant in the early phases of the pandemic, can again be a powerful tool to
assist public health authorities in optimally planning the vaccination rollout. Here, we
propose a novel epidemic model tailored to COVID-19, which includes the effect of
nonpharmaceutical interventions and a concurrent two-dose vaccination campaign.
Then, we leverage nonlinear model predictive control to devise optimal scheduling
of first and second doses, accounting both for the healthcare needs and for the socio-
economic costs associated with the epidemics. We calibrate our model to the 2021
COVID-19 vaccination campaign in Italy. Specifically, once identified the epidemic
parameters from officially reported data, we numerically assess the effectiveness of
the obtained optimal vaccination rollouts for the two most used vaccines. Determin-
ing the optimal vaccination strategy is nontrivial, as it depends on the efficacy and
duration of the first-dose partial immunization, whereby the prioritization of first
doses and the delay of second doses may be effective for vaccines with sufficiently
strong first-dose immunization. Our model and optimization approach provide a
flexible tool that can be adopted to help devise the current COVID-19 vaccination
campaign, and increase preparedness for future epidemics.
KEYWORDS:
nonlinear modeling; epidemic modeling; epidemic control; nonlinear optimization; model predictive
control
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1 INTRODUCTION6

Since its inception in December 2019, COVID-19 has rapidly become a global pandemic, infectingmore than 162million people,7

with more than 3 million fatalities as of May 2021.1 As a response to such a global heath crisis, pharmaceutical researchers8

made an extraordinary efforts toward the development of effective vaccines against the novel disease,2,3,4,5 and most countries9

are currently undergoing a vaccination campaign.6 The first vaccines developed and used in the vaccination campaigns require10

the administration of two doses to be injected within an interval of few weeks (typically, 3 to 12, depending on the vaccine11
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and on the local vaccination policies).7,8,9,10 However, different from standard vaccines and drugs for which the approval by12

public pharmaceutical agencies is typically a long procedure, the current health crisis has called for the implementation of13

extraordinary fast approval procedures. As a consequence, an agreement among public health authorities and researchers on a14

common protocol on vaccination strategies and delays between the two doses has not been found yet.9,1015

Mathematical models of epidemic spreading have emerged as a valuable paradigm to predict the spread of epidemic diseases16

and assess the effectiveness of different intervention policies.11,12,13,14,15 Notably, in response to the COVID-19 pandemic, sev-17

eral mathematical models have been developed,16,17,18,19,20,21,22,23,24,25,26,27 with the aim of supporting decision makers in the18

implementation of nonpharmaceutical interventions (NPIs) during the first phases of the outbreak in 2020,20,21,22,23 and on their19

gradual uplifting during the 2021 vaccination campaigns.24,25,26,2720

Besides predicting the spread of the disease and assessing the effectiveness of NPIs, mathematical models can also provide21

valuable insight to assist vaccination campaigns. Specifically, the systems and controls approach to epidemic modeling has22

provided powerful tools to study how to optimally distribute drugs and vaccines in a population by formalizing and solving23

resource allocation problems.28,29,30 More details can be found in recent review papers.12,15 However, all these approaches rely24

on the simplifying assumption that the vaccination procedure consists in a single dose, after which individuals become immune25

to the disease, while more complex and realistic vaccination procedures (including the multi-dose procedures that characterize26

most of the COVID-19 vaccines)7,8 have often been overlooked. Motivated by the current challenges, some efforts have been27

recently proposed to assess the effectiveness of two-doses vaccination rollouts.31,32 However, to the best of our knowledge,28

mathematical tools to optimally design a two-dose vaccination rollout are still missing.29

In this paper, we fill in this gap by proposing a methodological approach to optimally calibrate a two-dose vaccination strat-30

egy during an epidemic outbreak, based on nonlinear model predictive control (MPC).33,34 First, we propose a mathematical31

epidemic model tailored to the COVID-19 progression. Specifically, we extend a discrete-time, deterministic susceptible–32

infected–recovered (SIR) population model,13 by adding further compartments to represent different stages of the disease33

progression and of the two-dose vaccination procedure, encompassing a delay between the first and the second dose and a par-34

tial immunity of limited duration that can be gained after the first dose. Then, we utilize nonlinear MPC to optimally design the35

vaccination rollout, that is, to plan the scheduling of first and second doses for the entire duration of the vaccination campaign.36

The nonlinear optimization problem underlying the MPC has for objective the concurrent minimization of both the healthcare37

impact of the epidemic and of the socio-economic impact due to the implementation of NPIs. The epidemic model and its related38

optimization strategy are easily adaptable to any airborne disease with similar vaccination characteristics.39

We calibrate the model on the 2021 vaccination campaign against COVID-19 in Italy. Specifically, we calibrate the epidemic40

model using the officially reported epidemiological data during the “second wave" of the COVID-19 Italian outbreak (from41

September 2020 to March 2021).35 Then, we use nonlinear MPC to devise the optimal vaccination strategy for the two vaccines42

that were most used in Italy during the first phase of the vaccination rollout: Comirnaty (BNT162b2) by Pfizer-BioNTech43

and Vaxzevria (ChAdOx1-S) by AstraZeneca, for which we have estimated the corresponding model parameters from clinical44

data.2,3,4,545

Our findings confirm that optimizing the vaccination rollout is a nontrivial problem.9,10 In fact, the optimal solution depends46

on the characteristics of the vaccine —namely, on the level and duration of the partial immunity entailed by the first-dose— and47

on the spread of the epidemics. Specifically, we find that the first dose can be prioritized in the early stages of the rollout for48

vaccines with a sufficiently efficacious first dose and a long duration of the partial immunity provided (e.g., AstraZeneca).5 This49

prioritization entails a (partial) herd immunity that is effective in avoiding resurgent waves. On the contrary, for vaccines with50

a lower first-dose efficacy and a shorter minimum delay between the doses, an alternate vaccination strategy that minimizes the51

delay between the first and the second dose may be preferable, toward keeping a uniform level of immunity over the vaccinated52

population. Our analysis also highlights the flexibility of our approach, which enables to test several what/if scenarios, demon-53

strating its potential use not only to help assist public health authorities in their current decisions on planning the COVID-1954

vaccination campaigns, but also to create preparedness for future pandemics.55

The rest of the paper is organized as follows. In Section 2, we propose the mathematical epidemic model and formalize the56

optimization problem. In Section 3, we calibrate the model to the COVID-19 outbreak in Italy. Section 4 contains our main57

findings. Section 5 concludes the paper and outlines avenues for future research.58
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2 MODEL59

In this section, we present the mathematical model for the disease progression and vaccination dynamics, and we formalize the60

optimal vaccination rollout problem.61

2.1 Epidemic model62

We propose an extension of a discrete-time, deterministic SIR population model,13 which accounts for i) different stages and63

outcomes of the disease, including hospitalization, recovery, and death; ii) a time-varying infection rate that captures the effect64

of the implementation of NPIs; and iii) a two-dose vaccination procedure, with a minimum interval between the two doses, and65

partial immunity gained after the first dose.66

We denote the discrete time variable ad t ∈ ℤ≥0 and we set the discrete time unit equal to one week. Similar to a standard SIR67

model, a population ofN individuals is partitioned into a set of compartments that represent the possible health and vaccination68

states of the individuals. With respect to a standard SIR, our model incorporates some further compartments described in the69

following and illustrated in Fig. 1.70

For the disease progression, we consider 5 different compartments. Specifically, we denote withS(t) the number of susceptible71

individuals in the population at time t, with I(t) the number of the infectious ones, withH(t) the number of hospitalized ones,72

with R(t) number of the recovered ones, and with D(t) the number of dead ones. Different from many other models tailored73

to COVID-19,16,20,21 our formulation does not require the introduction of an intermediate compartment between contagion74

and infectiousness (often termed “exposed"). In fact, in our model, such a delay is naturally incorporated within the discrete-75

time modeling approach with weekly time-steps, which implies that, upon contagion, individuals become infectious only at the76

following time-step. Such a one-week delay is compatible with the average progression dynamics of COVID-19.36 However,77

the proposed model is of general validity and the approach can be easily extended to accommodate for longer durations of the78

“exposed” state.79

The epidemic process is modeled through the following dynamics, which take place concurrently.80

Contagion The contagion dynamics causes a fraction of the susceptible individuals to become infected and to transition from81

compartment S to I at time t+1. Such a fraction is proportional to the fraction of infectious individuals in the population,82

i.e., I(t)∕N , and to a time-varying infection rate �(t) ≥ 0, which captures the transmissibility of the disease and the effect83

of NPIs in reducing human-to-human contacts through which the disease spreads.84

Recovery Among the infectious individuals I(t), a fraction � ∈ [0, 1] of them recovers and transitions to compartment R at85

time t + 1.86

Hospitalization Among the infectious individuals I(t), a fraction  ∈ [0, 1] is hospitalized, transitioning to the compartment87

H at the following time-step.88

Hospital discharge Among hospitalized individuals, a fraction � ∈ [0, 1] recovers and is discharged from the hospital,89

transitioning to R(t + 1).90

Death Among hospitalized individuals, a fraction � ∈ [0, 1] dies, transitioning to D(t + 1).91

We assume that recovered individuals cannot be infected again for the duration of our simulation, which is consistent with the92

clinical literature that founds evidence that immunity lasts at least 6–8 months.37,3893

The vaccination dynamics is modeled by adding further compartments to the model. We consider a two-dose vaccination94

procedure, where the two doses must be inoculated a minimum of L weeks apart (for instance, for the COVID-19 vaccines,95

3 weeks is the minimum interval between the two doses for Pfizer–BioNTech vaccine,7 while 4 weeks is the minimum for96

AstraZeneca vaccine).8 Hence, we consider L − 1 additional compartments to represent individuals that were vaccinated with97

the first dose in the previous week (F1(t)), two weeks before (F2(t)), up to L − 1 weeks before (FL−1(t)). Then, we add one98

compartment to account for individuals that were vaccinated with the first dose at least L weeks before, and thus are ready99

to receive the second dose, denoted by W (t), and one for individuals that have received the second second dose and are fully100

vaccinated, denoted as V (t).101

At time t, both first and second doses may be administered to the population. Specifically, u1(t) susceptible individuals receive102

their first dose, thus transitioning from state S to state F1 at the following time-step (week); and u2(t) individuals who are ready103
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for full vaccination receive their second dose, thus transitioning from W to V at the following time-step (week). We assume104

that individuals who have received both doses are fully immunized against COVID-19 and cannot be infected for the time of105

our simulations, while those who have received only one dose can still be infected at a reduced rate. Specifically, we assume106

that individuals in compartment Ft(t), with t = 1,… , L − 1, have the same infection risk of susceptible individuals. Hence, a107

fraction �(t)I(t)∕N of them becomes infected at each time-step and transitions to I(t + 1), while the rest transition through a108

cascade mechanism, from F1 to F2, from F2 to F3, and so on, up to those in FL−1 who transition toW . We assume that those109

who are waiting for the second doseW (t) have a partial immunity, as supported by clinical data.2,3,4 Hence, the infection rate110

for these individuals is reduced by a parameter � ∈ [0, 1], which models the partial immunization caused by the first dose, while111

only a fraction (1 − �)�(t)I(t)∕N of them transitions to the infectious state. Finally, we assume that the efficacy of the partial112

immunization guaranteed by the first dose has a limited duration, after which its effects are lost and the individual becomes113

again susceptible to the disease (with no partial immunity). We model this phenomenon by assuming that, at each time-step, a114

fraction � ∈ [0, 1] of individuals in W (t) transitions back to the susceptible state S, where 1∕� is the average duration of the115

partial immunization.116

The time-varying infection rate �(t) is designed to mimic the evolution of the implementation of NPIs during the course of
the epidemic.39,40 Specifically, since NPIs are typically enforced and strengthened when the number of infections and hospital-
izations increases,41 we let �(t) evolve according to a feedback mechanism based on the size of the hospitalized compartment,
similar to some recently proposed feedback-controlled SIR models.42,43 First, we define two limit values for the infection rate,
corresponding to the maximum level of NPIs and the absence of implementation of NPIs, respectively, as 0 < �NPI < �0. Then,
we let the time-varying infection rate vary continuously between these two limit values, according to

�(t + 1) = �NPI + (�0 − �NPI )
(

1 + 1
2
tanh

(

�
H(t) − H̄

H̄

))

, (1)
where � > 0 is the reactivity of the population to changes in NPIs, which determines the velocity of adoption of behaviors that117

reduce the contagions when NPIs are implemented and the velocity of returning to normalcy upon their uplifting, and H̄ is a118

critical number of hospitalization. As we shall discuss in the following section, we will identify the four parameters �NPI , �0, �,119

and H̄ from available epidemic data.35120

Finally, we define a variable B(t) that quantifies the number of vaccine doses available in stock at time t. Hence, B(t + 1) =121

B(t) + Y (t) − u1(t) − u2(t), where Y (t) are the new doses delivered at time t. Note that, in general Y (t) can be a deterministic122

sequence, or a realization of stochastic variables that may capture the possible uncertainties in the deliveries.123

When the population size N is large, we can approximate the state variables as continuous, as typically assumed in mathe-
matical epidemic models,15,14 and define the following (8 +L)-dimensional system of recurrence equations, which governs the
epidemic dynamics:

S(t + 1) = S(t) − �(t)S(t) I(t)
N

+ �W (t) − u1(t)

I(t + 1) = (1 − � − )I(t) + �(t)
(

S(t) +
∑L−1

l=1 Fl(t) + (1 − �)W (t)
)

I(t)
N

H(t + 1) = (1 − � − �)H(t) + I(t)
R(t + 1) = R(t) + �I(t) + �H(t)
D(t + 1) = D(t) + �H(t)
F1(t + 1) = u1(t)
Fl(t + 1) = Fl−1(t)

(

1 − �(t) I(t)
N

)

, l = 2,… , L − 1

W (t + 1) = (1 − �)W (t) + FL−1(t)
(

1 − �(t) I(t)
N

)

− (1 − �)�W (t) I(t)
N

− u2(t)
V (t + 1) = V (t) + u2(t)
�(t + 1) = �NPI + (�0 − �NPI )

(

1 + 1
2
tanh

(

�H(t)−H̄
H̄

)

)

B(t + 1) = B(t) + Y (t) − u1(t) − u2(t) ,

(2)

where the sequence of deliveries Y (0), Y (1),… is assumed to be known (deterministically, or as a random variable) and the124

variables u1(t) and u2(t) are the two control inputs.125

We briefly comment that this modeling framework can be straightforwardly adapted to capture further real-world features126

of vaccination. For instance, imperfect efficacy of full vaccination can be incorporated by simply adding a possible transition127

between compartment V and compartment I , with an opportunely reduced infection rate.128
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FIGURE 1 Schematic of the epidemic process. Colors are used to denote different infectiousness statuses. Green nodes are
susceptible to the disease (with those inW with a reduced risk due to partial immunity); the red node denotes individuals that
are infectious; blue nodes are individuals that are nor infectious nor susceptible (because recovered, dead, isolated, or fully
vaccinated).

Remark 1. Note that, in the epidemic model in Eq. (2), the effective reproduction number Rt can be computed following its
definition as the average number of secondary infections generated by an infected agent as

Rt ∶=
�(t)
� + 

S(t)
N

. (3)

2.2 Optimization problem129

In this section, we provide the details of the optimization approach that we use to devise the optimal vaccination rollout, based on130

nonlinear MPC.33,34 In particular, our goal is to understand how to optimally administer the two doses u1(t) and u2(t) along the131

entire vaccination campaign, in order to keep the number of hospitalizations under control and reduce the need of implementing132

NPIs. Hence, fixing the time-horizon of the optimization process T ∈ ℤ>0, which coincides with the entire duration of the133

vaccination rollout, the control variable is defined as a 2T -dimensional vector u = (u1(0),… , u1(T − 1), u2(0),… , u2(T − 1)).134

To keep the notation compact, we will denote by x the vector that gathers all the variables of the dynamical system in Eq. (2)135

from t = 1 to t = T .136

2.2.1 Cost function137

The goal of designing an optimal vaccination rollout is to quickly achieve herd immunity while, first, keeping low the pressure
on the healthcare system (captured by the number of hospitalized individuals H(t)) and second, allowing the relaxation of
NPIs, thereby allowing a fast return to normalcy. In order to model these two—competing— targets, we design a quadratic cost
function J (u(t)) that accounts for two distinct factors, as

J (u,x) =
T
∑

i=1

(

H(t)
Hmax

)2

+
T
∑

t=1

(

�0 − �(t)
�0 − �NPI

)2

(4)
The first term in Eq. (4) captures the healthcare cost and is proportional to the sum of the squares of the number of hospitalized138

H(t) individuals, along the entire duration of the vaccination campaigns.139

The second terms instead, considers the socio-economic cost associated with the implementation of NPIs and the current140

reduction of social and economical interactions among the individuals in the population (e.g., due to the enforcement of social141

distancing, curfews, or closures of nonessential economic activities). This term sums the squares of the discrepancy between142
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the actual value of �(t)—which is proportional to individual social activity— and its desirable value, which coincides with the143

one in the absence of NPIs, �0.144

The two terms are then properly weighted to evenly balance the two contributions. In particular, in the healthcare cost, the145

number of hospitalized H(t) is divided by Hmax = 37, 383 representing the maximum number of hospitalized individuals146

obtained through simulating the scenario without vaccination. As a result each summand of the healthcare cost is bounded147

between [0, 1]. The socio-economic cost, instead, is divided by �0 − �NPI that represents the maximum discrepancy between148

�(t) and its desired value �0. Hence, also in the second term, each summand is bounded between [0, 1].149

2.2.2 Constraints150

Here, we provide the details of the additional constraints that the optimal solution has to meet, besides verifying the dynamical151

system in Eq. (2). In particular, the control variable u(t) needs to satisfy constraints on the total number of weekly doses injected,152

which cannot be more than the healthcare capacity, nor more than the available doses. Furthermore, the number of first and153

second doses inoculated each week cannot be greater than the number of individuals that are admissible to receive them (i.e.,154

S(t) andW (t), respectively). All these constraints are gathered in the following list:155

• We set an upper-bound U on the total number of doses that is possible to inoculate in one week. This accounts for the
maximum capacity of the healthcare system to accommodate vaccinations. Hence, we set the constraint

u1(t) + u2(t) ≤ U. (5)
• The constraintB(t) ≥ 0 is set to guarantee that the number of doses done in week t does not exceed the number of vaccines156

available in stock at time t.157

• The constrain S(t) ≥ 0 is enforced to guarantee that the number of first doses u1(t) is not greater than the number of158

susceptible individuals, available for the vaccination campaign.159

• Finally, the constrainW (t) ≥ 0 is enforced to ensure that the number of second doses performed each week u2(t) is not160

larger than the individuals admissible for a second dose.161

2.2.3 Formulation of the optimization problem in the MPC framework162

Based on the considerations above, we formalize the optimal vaccination problem through the following minimization problem:163

minimize Eq. (4)
subject to Eq. (2)

u1(t) ≥ 0, ∀t ∈ {0,… , T − 1},
u2(t) ≥ 0, ∀t ∈ {0,… , T − 1},
u1(t) + u2(t) ≤ U, ∀t ∈ {0,… , T − 1},
B(t) ≥ 0, ∀t ∈ {1,… , T },
W (t) ≥ 0, ∀t ∈ {1,… , T },
S(t) ≥ 0, ∀t ∈ {1,… , T }.

(6)

The nonlinear optimization problem in Eq. (6) is leveraged to obtain optimal vaccination policies in the MPC framework.34164

Specifically, the solution of the nonlinear MPC is based on iterative, finite-horizon optimization of the cost function J (u). At165

time t, the current state is sampled and a cost-minimizing control strategy is computed via a numerical minimization algorithm166

for a time horizon of 15 weeks. Only the first step of the control strategy is executed, and then the model evolves to a new state167

at time t+ 1. The calculations are repeated starting from the new current state, yielding a new sample of the control input and a168

new instance of the predicted state.169

3 CALIBRATION TO THE 2021 COVID-19 VACCINATION CAMPAIGN IN ITALY170

We calibrate themodel to reproduce the Italian outbreak of COVID-19, identifying the epidemiological parameters from publicly171

available epidemiological data.35 Then, we calibrate the parameters related to the vaccination campaign by using clinical data172
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TABLE 1 Model parameters identified by fitting Italian official data of reported hospitalizations and deaths.35

Symbol Meaning Value

� transition rate I → R 0.488
 transition rate I → H 0.0279
� transition rateH → R 0.356
� transition rateH → D 0.122

�NPI infection rate with severe NPIs 0.457
�0 infection rate without severe NPIs 0.799
H̄ critical number of hospitalizations 20, 320
� reactivity of the population 20.32

on the two mostly used vaccines during the first phases of the vaccination campaign, that is, the Pfizer-BioNTech and the173

AstraZeneca COVID-19 vaccines.174

3.1 Calibration of the epidemic model175

We identify the epidemiological parameters from data on the number of hospitalizations and deaths, reported by the official Ital-176

ian Civil Protection Department (Dipartimento della Protezione Civile) in a publicly available database.35 Namely, we identify177

the following four transition rates: �, from I to R;  , from I toH ; �, fromH to R; and �, fromH to D. Moreover, we identify178

the four parameters governing the dynamics of the infection rate in Eq. (1), that is, the bounds �NPI and �0, the critical number179

of hospitalizations H̄ , and the population reactivity to changes in the NPIs �.180

We execute the calibration on epidemic data collected between September 1, 2020 and March 23, 2021 (for a total of 29181

weeks). This time-window spans from the inception of the second-wave to the third wave in Italy, which is still ongoing as ofMay182

11, 2021. In the selected time-window, vaccinations had a negligible effect. In fact, even though the vaccination rollout in Italy183

officially started on December 27, 2020, less than 4.5% of the population was fully vaccinated as of March 23, 2021.6 Hence,184

to identify the epidemiological parameters of the model, we consider a pertinent submodel (i.e., SIRHD), obtained from the185

first 5 equations of Eq. (2) and by setting u1(t) = u2(t) = 0, for all t ∈ ℤ≥0, and F1(0) = ⋯ = FL−1(0) = W (0) = V (0) = 0.186

The model is initialized with the official data on the number of hospitalized individuals, cumulative recovers, and cumulative187

deaths as of September 1, 2020,35 which allows us to setH(0) = 1, 686 andD(0) = 35, 520, while we assume that the rest of the188

population is either susceptible or infected. Since the official number of reported infections is subject to possible under-reporting189

and delays and a reliable estimations of its initial value I(0) is not available, such initial condition is thus set as a parameter I0190

to be identified. Finally, we set S(0) = N − I(0) −H(0) −D(0), where N = 59, 394, 207 is the total Italian population, from191

Census data.44192

The parameter identification is performed by solving a suitable minimization problem. Specifically, we define a cost function
C as the sum of the squared error between the number of hospitalizations (H(t)) and deaths (D(t)) predicted by the model and
the corresponding quantities officially reported (denoted by D̂(t) and D̂(t), respectively), aggregated at a weekly level.35 Hence,
the 9 model parameters are estimated as

(�∗, ∗, �∗, �∗, �∗NPI , �
∗
0 , H̄

∗, K∗, I∗0 ) = argmin�,,�,�,H̄,�NPI ,�0,K,I0C , (7)
with

C =
T
∑

t=1

(

H(t) − Ĥ(t)
)2 +

T
∑

t=1

(

D(t) − D̂(t)
)2 , (8)

where T is the duration of the time-window of the parameter identification, that is, T = 29 weeks. The minimization problem in193

Eq. (7) is solved numerically by means of a dual-annealing procedure,45 yielding the parameters reported in Table 1. Figure 2194

shows the results of the numerical calibration procedure. Note that, in the absence of severe NPIs, our calibration procedure195

estimates that the reproduction number would tend to 1.65 (see Remark 1), whereas severe NPIs would reduce it to below 1.196
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H̄

mFIGURE 2 Results of the model calibration. The first two plots show the temporal evolution of the number of deaths and
hospitalized individuals, respectively, as predicted by the model (blue curve, where a series of resurgent waves can be noticed),
compared with the officially-reported data (orange crosses) that are used to calibrate the model.35 The red horizontal line in the
second plot denotes the estimated critical number of hospitalizations H̄ . The model parameters identified are summarized in
Table 1.

3.2 Vaccine parameters197

We utilize clinical data to set the three parameters that characterize the specific features of the vaccines under consideration.198

Specifically, we consider the two vaccines that were mostly used in Italy during the first phase of the vaccination campaign:199

Comirnaty (BNT162b2) by Pfizer-BioNTech and Vaxzevria (ChAdOx1-S) by AstraZeneca. For the sake of simplicity, we200

will refer to each vaccine using the name of the pharmaceutical company that has developed it, that is, Pfizer–BioNTech and201

AstraZeneca, respectively. The three parameters, namely, theminimum number of weeks between the first and the second doseL,202

the efficacy of the first dose �, and the velocity of loss of partial immunity �, are set as detailed in the following and summarized203

in Table 2.204

Pfizer–BioNTech. The minimum interval between the two doses for Pfizer–BioNTech vaccine was identified as L = 3 weeks205

via clinical studies by Pfizer.7 The efficacy of a single dose, in “Phase 3" clinical trials, during the interval between206

first and second doses was estimated at 52% (95% confidence interval [30%, 68%]).2 Another recent study analyzing the207

vaccination campaign in Israel, confirm the efficacy against PCR-confirmed similar results (14–20 days after the first dose208

46% (95% confidence interval [40%, 51%]) and 21–27 after the first dose 60% (95% confidence interval [53%, 66%])3. We209

set for our analysis � = 0.52.210

AstraZeneca. We set L = 4 weeks, which is the minimum for interval between the two doses of AstraZeneca vaccine deter-211

mined in the clinical trials8). Clinical data of the efficacy of a single dose of the AstraZeneca vaccine are reported from212

different places in the world (UK, Brazil, and South Africa), confirming a vaccine efficacy of 76% (95% confidence interval213

[59%, 86%]) after a first dose, with protection maintained to the second dose.5 Accordingly, we set � = 0.76.214

At the time being, �, accounting for the vanishing of the first dose immunity, is still unknown or vaguely guessed from the215

literature for both vaccines.3,5 As a consequence, we initially make an educated guess by setting � = 1∕12, as 12 weeks is the216

maximum duration of the period between two doses tested in clinical trials. In Sec. 4.3 we will then explore the effect of different217

values of � on the optimal vaccination rollout.218

4 RESULTS219

In this section, we study the problem of the two-dose vaccination rollout with the two vaccines, namely Pfizer–BioNTech220

and AstraZeneca (characterized by the parameters reported in Table 2). In our analysis, we focus on a year-long vaccination221

campaign (T = 52 weeks), starting from Week 52 of 2020 (December 21–28), that is, the first week of the Italian vaccination222

campaign.46 To this aim, we initialize the epidemic model in Eq. (2) with I(0) = 597, 719, H(0) = 33, 450, D(0) = 67, 631,223

S(0) = 55, 211, 502, and F1(0) = ⋯ = FL−1(0) = W (0) = V (0) = 0 (with L = 3 for Pfizer-BioNTech and L = 4 for224
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TABLE 2 Parameters of the two vaccines in the case study

Symbol Meaning Pfizer–BioNTech AstraZeneca

L minimum weeks from the first to the second dose 3 4
� efficacy of first dose 0.52 0.76
� velocity of loss of partial immunity 0.0833 0.0833

AstraZeneca), as estimated from our calibrated model. Note that we have opted to initialize the system with the conditions225

generated by our model (calibrated on real-world data, see Table 1) instead of using directly the reported data, to avoid the226

possible underestimation of the number of infected individuals due to underreporting. In our model, we consider a regular227

(deterministic) weekly supply of Y (t) = 1, 000, 000 doses for each t ∈ ℤ≥0, an amount that is consistent with the average weekly228

doses delivered in the period between February and May 2021 in Italy.46 Finally, when needed, the weekly upper bound for the229

total number of injection u1(t) + u2(t) ≤ U = 5, 000, 000million doses, consistent with the limitations of the healthcare system,230

when at full capacity.46231

4.1 A comparison between two trivial strategies232

We start our analysis by presenting amotivating example that illustrates the complexity of the optimization problem. In particular,233

we consider two simplified vaccination strategies consisting in minimizing the delay between the two doses and prioritizing the234

first doses, respectively. These two strategies are explicitly defined in the following.235

Alternating strategy This solution aims at maximizing the total number of fully vaccinated individuals, by alternating first and
second doses. Specifically, all the individuals that receive the first dose during week t, and not get infected while in, will
receive the second dose exactly during week t + L. Accordingly, at each time step the control u(t) is given by:

{

u1(t) = Y (t) − u2(t)
u2(t) = W (t) ,

(9)

where we observe that the constraint u1(t) + u2(t) ≤ U is always verified, since Y (t) < U .236

First doses only In this case all the available doses are used for the first doses, that is,
{

u1(t) =Y(t)
u2(t) = 0 .

(10)

We analyze these two different strategies in terms of the cost J defined in Eq. (4), with the purpose of understanding the237

circumstances in which one strategy is more efficient than the other. Specifically, we compare the two strategies for the two238

vaccines, and for different values of �, for which there is still uncertainty among the scientific community.3,5239

The results for the two types of vaccine, reported in Fig. 3, show a nontrivial behavior of the cost function. While for the240

Pfizer-BioNTech vaccine, the alternating strategy seems to always outperform the first doses prioritization one, AstraZeneca241

shows a different behavior, whereby the latter becomes preferable when � < 1∕29.242

The analysis of these two trivial strategies confirms the complexity of the problems at hand, where model parameters may243

play an important role. In the rest of this section, we will utilize our MPC-based strategy to derive the structure of the optimal244

vaccination policy and shed light on its dependencies on the characteristics of the vaccine in use.245

4.2 Optimal vaccination rollout for Pfizer–BioNTech and AstraZeneca246

Wenow examine the the optimal vaccination rollout strategies for the two vaccines, obtained by solving the optimization problem247

in Eq. (6) by means of nonlinear MPC.34 Our findings are summarized in Fig. 4. First, we evaluate the effectiveness of the vac-248

cination rollout that employs the MPC solution in slowing down the epidemic and reducing the socio-economic costs associated249

with lockdowns. In Fig. 4A–B, we start by comparing the temporal evolution of the system in the presence and in the absence250

of the vaccination campaign. From these figures, we immediately observe that vaccination is key to decreasing the number of251
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AstraZeneca Pfizer–BioNTech

FIGURE 3 Comparison between the two trivial strategies The figure shows the cost J defined in Eq. (4) for the alternating
strategy (green curve) and the first doses only strategy (blue curve) defined in Section 4.1, for different values of the velocity of
loss of partial immunity �. The left plot shows the results for the AstraZeneca vaccine, the right one for Pfizer-BioNTech.

hospitalizations and avoid the need of multiple lockdowns. In fact, from week 20 (when about 19% of the population is fully252

vaccinated), the evolution of the system with vaccination (orange curve) starts diverging sensibly from the system in the absence253

of it (blue curve) and it does not require further implementation of severe NPIs, with both vaccines.254

The optimal vaccination rollouts are reported in Fig. 4C. For both the vaccines, the optimal strategies tend to distribute evenly255

first and second doses, creating an alternation between the two doses. In addition all the doses are immediately used (see Fig. 4D–256

E). However, how to optimally design such an alternation policy is indeed nontrivial. In fact, while for the AstraZeneca vaccine257

it seems that the optimal strategy alternates weeks in which (almost) only first doses are performed and weeks with (almost) only258

second doses, for the Pfizer-BioNTech vaccine, after a very short transient, the optimal vaccination strategy seems to require an259

(approximately) similar number of first and second doses each week, with small periodic oscillations.260

Further analysis of the solutions shows that the number of people waiting for receiving the second dose, plotted in Fig. 4D,261

is generally small. These results suggest that the overall preferable solutions, in general, aim at maximizing the number of fully262

vaccinated individuals by promptly providing the second doses to the population that has already received the first dose and263

is waiting for it (similar to the trivial alternating strategy proposed in Section 4.1). However, an important exception can be264

observed. Interestingly, at the beginning of the vaccination campaign, Fig. 4D shows a period of approximately 3 months in265

which the optimal solution for the AstraZeneca vaccine tends to inoculate more first doses, thereby postponing second doses.266

Such a phenomenon (that is not observed to the same extent with the Pfizer-BioNTech vaccine), may be due to the good single-267

dose efficacy of the AstraZeneca vaccine,5 which can be useful in the initial phase of the vaccination campaign to create some268

sort of (partial) herd immunity, thereby reducing the risk of resurgent epidemic waves.269

4.3 The effect of the duration of the first dose270

Because of the limited amount of clinical data, there is still uncertainty in the scientific community on duration of the partial271

immunity due to the first dose,3,5 and several countries —including Italy— have attempted to delay the second dose.47 Hence,272

we utilize the optimization tool we have developed to explore different scenarios, by changing the value of the parameter �,273

which captures such a duration. In particular, in view of the observations in Fig. 3, we test the AstraZeneca vaccine (see Table 2)274

by doubling the value of � to � = 1∕6, and halving it to � = 1∕24, which represent two extreme cases of short and long duration275

of partial immunity, which lasts on average 6 and 24 weeks, respectively.276

The optimal vaccine rollouts computed with our optimization tool for the two different values of � are shown in Fig. 5.277

Predictably, the scenario in which the partial immunity due to the first dose has a short duration (� = 1∕6) produces an alternating278

solution, in which most of the individuals receive the second doses as soon as possible (W (t) is small), in order to reduce the279

number of people losing the partial immunity. Interestingly, a longer duration of first dose immunity results in a nontrivial optimal280

vaccination strategy, characterized by long phases in which first doses are prioritized, thereby delaying the second dose. Such a281
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(A)

(B)

(D)

(C)

(E)

AstraZeneca Pfizer–BioNTech

FIGURE 4 Optimal vaccination rollout. On the left, we show the results of the MPC for AstraZeneca, on the right those
for Pfizer–BioNTech (see Table 1). In (A), we compare the temporal evolution of the number of hospitalized individuals H(t)
without vaccinations (blue curve) and implementing the optimal strategy proposed my the MPC (orange curve). In (B), we
compare the temporal evolution of �(t) as an indication of the timeline of NPIs in the absence (blue curve) and presence (orange
curve) of vaccination. The panels in (C) illustrate the number of first doses (green) and second doses (red) that should be
performed each week, under the optimal rollout computed using the MPC. The temporal evolutions of the number of individuals
who are ready to receive the second dose, but for whom the second dose is delayedW (t), and of the number of fully vaccinated
individuals V (t) are reported in panels (D) and (E), respectively.

strategy tends to accumulate individuals in the compartmentW , which are still susceptible to the disease, but they have a partial282

immunity, sufficient to keep the number of infections under control and avoid resurgent epidemic waves and the consequential283

implementation of severe NPIs.284

5 CONCLUSION285

In this paper, we introduced a methodological approach to optimally calibrate a two-dose vaccination policy during an epidemic286

outbreak. We proposed a flexible mathematical epidemic model that extends the susceptible–infected–removed (SIR) model by287

adding further compartments to faithfully capture the COVID-19 epidemic progression and to reproduce a two-dose vaccination288

campaign. In particular, we accounted for some key features of the vaccination procedure, including a tunable delay between289

the first and the second dose and a partial immunity that may be gained after the first dose, but may have a limited temporal290
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α = 1/6

α = 1/24

(A)

(B)

FIGURE 5 Optimal vaccination rollout for different velocity of loss of partial immunity. The figure illustrates the optimal
solutions obtained via the MPC for the AstraZeneca vaccine (see Table 2), by assuming (A) a faster loss of immunity that occurs
on average in 6 weeks (� = 1∕6), and (B) a slower loss of immunity that occurs on average in 24 weeks (� = 1∕24). On the left
panels, we illustrates the number of first doses (green) and second doses (red) that should be performed each week, according to
the optimal solution. On the right panes, we illustrate the temporal evolution of the number of individuals for which the second
dose is being delayed.

duration. Due to the intrinsic nonlinearity of the epidemic process, we propose an optimization framework based on nonlinear291

model predictive control (MPC), which devises the optimal scheduling of first and second doses for the entire duration of the292

vaccination campaign. Specifically, the goal of the optimization problem is to design a vaccination rollout that aims at quickly293

achieving herd immunity while controlling the stress on the healthcare system and allowing the relaxation of NPIs, thereby294

reducing the socio-economic costs associated with the pandemic.295

Wedemonstrated our approach by analyzing the 2021 COVID-19 vaccination campaign in Italy. Our optimization tool allowed296

us to understand the structure of the optimal scheduling of first and second doses for the two vaccines that are mostly used in297

Italy: Comirnaty (BNT162b2) by Pfizer-BioNTech and Vaxzevria (ChAdOx1-S) by AstraZeneca.46 Our results suggested that298

the optimal vaccination rollout indeed entails a nontrivial scheduling of first and second doses, which crucially depends on key299

characteristics of the vaccine —namely, the efficacy of the first dose to provide partial immunity and its duration— and on the300

status of the epidemic process. The dangerous cyclical outbreaks (also known as “waves”) that overwhelmed hospitals and the301

appearance of highly transmissible variants24,48 sparked a public and scientific debate on whether the strategy of getting as many302

first doses as quickly as possible, by delaying the second doses, is medically and strategically sound.32,49,50,51 Across countries303

worldwide, the US and several European countries have committed to delivering the second dose on time for those who received304

the first dose.52,53 A few countries have instead approved guidelines for prolonging the interval between the first and second305

dose, including the United Kingdom and Canada, which deferred the second dose by up to 12 and 16 weeks, respectively.54,55306

Several countries —including Italy— are currently pondering this option.47 Motivated by this debate, and in absence of a final307

word from the clinical community, we leveraged our model to assess the effectiveness of the two strategies, assuming different308

durations for the immunity induced by the first dose. For the Pfizer-BioNTech vaccine, we found that the strategies in which the309

delay between the doses is minimized are preferable, and our optimization technique was used to devise the optimal scheduling of310

the two doses. The results for AstraZeneca showed a different picture, due to reported higher efficiency of first dose immunity.5311

In this case, as the duration of the immunity induced by the first dose increases, nontrivial strategies with periods of first-312

dose prioritization becomes preferable. These strategies are able to create a partial herd immunity that is sufficient to keep the313

epidemics under control without the need of severe NPIs, while further vaccinations are then performed. In conclusion, our314

optimization tool suggested that the optimal strategies for the Pfizer-BioNTech entails no delay in the second doses, whereas315

delaying the second doses of AstraZeneca might be a viable practice, in agreement with the policies adopted by the UK.54316

When evaluating the outcome of our study, one should carefully acknowledge its limitations. In particular, to keep the model317

simple and reduce the number of parameters, we made the simplifying assumption that the first dose yields a partial protection318

against the contagion. However, several studies suggest that, besides this partial immunity, the first dose can also reduce the319

probability of developing severe symptoms.56 While our model can be adapted to this more realistic scenario by adding mode320
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compartments to account for different paths of disease progression, we opted for a simpler model to better focus on the method-321

ological aspects of the study. Furthermore, we assumed that full vaccination is 100% effective in preventing contagion and has322

no temporal decay. Also in this case, more compartments may be added to account for this phenomenon, at the expenses of the323

model parsimony. Through the latter addition, our model may be used to support public health authorities to plan an optimal tim-324

ing for a potential third dose, which seems to be required 9months after the second, according to some recent studies.57 Finally,325

the model can be extended to incorporate an age-stratified population,58 allowing for the study of prioritization strategies for the326

vaccination campaign and for a differentiated use of the vaccines, if multiple kinds of them are available. In particular, such a327

strategy can be devised by extending the control actions u1(t) and u2(t) from scalar to vectors, and adding further compartments328

to represent the vaccination procedure with the different types of vaccines. To sum up, the flexibility of the proposed model and329

of the related optimization strategy will allow us to elaborate extensions of the framework without changing its very nature —330

for instance, by considering uncertainty in the weekly supply— making it suitable to answer a wide range of current and future331

research questions on the optimal design of vaccination campaigns against COVID-19 and other airborne diseases with similar332

characteristics, which may constitute future threats to the mankind.333
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