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Abstract: Gait analysis applications in clinics are still uncommon, for three main reasons: (1) the
considerable time needed to prepare the subject for the examination; (2) the lack of user-independent
tools; (3) the large variability of muscle activation patterns observed in healthy and pathological
subjects. Numerical indices quantifying the muscle coordination of a subject could enable clinicians
to identify patterns that deviate from those of a reference population and to follow the progress
of the subject after surgery or completing a rehabilitation program. In this work, we present two
user-independent indices. First, a muscle-specific index (MFI) that quantifies the similarity of the
activation pattern of a muscle of a specific subject with that of a reference population. Second, a
global index (GFI) that provides a score of the overall activation of a muscle set. These two indices
were tested on two groups of healthy and pathological children with encouraging results. Hence,
the two indices will allow clinicians to assess the muscle activation, identifying muscles showing an
abnormal activation pattern, and associate a functional score to every single muscle as well as to the
entire muscle set. These opportunities could contribute to facilitating the diffusion of surface EMG
analysis in clinics.

Keywords: gait analysis; EMG; muscle activation patterns; movement analysis

1. Introduction

The assessment of the muscle activation during human locomotion is necessary to
perform a comprehensive gait analysis. In previous studies, instrumented gait analysis
proved to be a powerful tool to quantitatively assess muscle activation during locomo-
tion [1–3]. In the last decades, the activation of muscles during gait was studied through
surface Electromyography (sEMG), which allows for the determination of the timing and
extent of muscle activation [4–6] without relevant patient discomfort. A typical dynamic
sEMG evaluation session consists of three subsequent phases. Phase I: Patient prepara-
tion, preliminary tests on the correct positioning of the probes, and patient instruction.
Biomedical engineers, physiotherapists, and kinesiologists/human motion scientists usu-
ally carry out this phase [7]. Phase II: Signal acquisition, processing, and quality control.
Biomedical engineers and kinesiologists/human motion scientists usually carry out this
phase [7]. Phase III: Analysis and interpretation of signals and data obtained as output of
the previous phase. A multidisciplinary team comprising kinesiologists/human motion
scientists, clinical neurophysiologists, physiatrists, biomedical engineers, and physical
therapists evaluate signals and data obtained in the previous phase and jointly prepare the
clinical report [7].

Phase I: It depends on the ability of operators in: (i) correctly positioning the sEMG
probes; (ii) performing a preliminary check of the signal quality; (iii) correctly instructing
the patient on how to perform the movement to be studied. SEMG probe positioning may
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be standardized following existing protocols (i.e., see “Results of the Seniam European
project” http://www.seniam.org/ (accessed on 18 October 2021)). Moreover, when looking
at muscle activation intervals, a probe displacement as large as 20 mm along the muscle
causes a timing error smaller than 1% of the gait cycle. Hence, probe positioning is not a
major cause of variability of the results. Preliminary tests on the patient or poor patient
instruction may be controlled by using very simple protocols and trained operators. Hence,
this phase is not considered as a major cause of variability of the test results.

Phase II: Signal processing methods adopted are the major cause of poor repeatability
of results. It has been shown in the past that pre-processing—usually denoising and band-
pass filtering—as well as the choice of parameters to obtain the linear envelope of the signal
and, in some cases, the activation intervals, are important causes of poor repeatability
of results among different gait analysis laboratories. In fact, these are “user-dependent”
choices, which can be replaced by automated algorithms that do not require any inter-
action by operators and that are generally referred to as “user-independent”. Several
user-independent algorithms have been published in the past in specialized journals and
thoroughly characterized and validated [8–16]. These algorithms are aimed at standardiz-
ing signal processing methods and signal quality control. The aim is to warrant that results
obtained in different laboratories are comparable. The two indices we present in this paper
are intended to be used in Phase II to quantify the adherence of the activation pattern of a
muscle belonging to a specific subject to the activation prototype of that muscle obtained
on a specific reference population as well as in Phase III to facilitate the interpretation of
results.

Phase III: Analysis and interpretation of signals and data obtained through Phase II is
generally carried out by a team of different professionals. This phase is highly subjective
and results strongly depend on the team qualification, which may differ in different
laboratories. Nonetheless, to facilitate the exchange of the results of gait analysis sessions
among different laboratories, a common standard for test reports should be developed and
gain a large consensus. At this time, to our best knowledge, a general consensus has not
been reached on any of the report prototypes proposed. The two indices presented in this
paper may help the team of professionals carrying out the interpretation of the test results
and hence in finding consensus on the coordination of muscle activations.

The high variability of sEMG signals collected during gait, even in healthy subjects,
makes it difficult to compare the muscle activity of different subjects and to find similarities
or differences that could be of clinical interest [17]. Statistical Gait Analysis (SGA) has been
proved to lessen this limitation, through the acquisition and processing of a large number of
gait cycles [18–21]. This methodology allows for an automatic and user-independent analy-
sis of sEMG, goniometric, and foot-switch signals collected during walking sessions lasting
several minutes, and hence containing up to some hundreds of strides. In the literature,
there is evidence of a great variability of the muscle activation patterns, both intra- and
inter-subjects [8,22]. In previous works, the CIMAP (Clustering for Identification of Muscle
Activation Patterns) algorithm was proposed to cope with intra-subject variability [9,10].
This algorithm allows for grouping strides showing similar sEMG activation patterns and,
as a spin-off of this procedure, to obtain the subject’s Principal Activations (PAs), as the
intersection of the cluster prototypes [9,10]. PAs have been defined, from a biomechanical
point of view, as those muscle activations that are strictly necessary for accomplishing
a specific motor task: they describe the essential contributions of a specific muscle to
kinematics, and they are reasonably repeatable among normal subjects [9,10]. This concept
is complementary to that of Secondary Activations (SAs), which are activations that have
auxiliary functions and are not repeatable during a single walk also within the same subject.
The concept of Principal and Secondary Activations applied to the analysis of sEMG signals
may significantly simplify the understanding of muscle contribution to the biomechanics
of movement, and it has also been applied to the study of muscle synergies [23,24].

The terms “muscle function”, “muscle activation”, and “EMG signal” are crucial for
the understanding of basic muscle physiology. The term “muscle function” refers to the
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force production of an active muscle that, in turn, causes its biomechanical action and its
contribution to the movement. The term “muscle activation” means the physiological active
state of a muscle: muscle fibers are activated by the release of acetylcholine underneath
the end-plates which, in turn, release the neurotransmitter when they are reached by the
depolarization spikes traveling along the second motor neuron that innervates the motor
unit the muscle fibers belong to. When a muscle fiber is activated, depolarization arises
underneath the end-plate and travels along the muscle fiber, thus causing its contraction.
The “EMG signal”, that may be detected invasively or by means of surface electrodes
(sEMG), is due to the summation of the action potentials of the active muscle fibers that
are within the detection volume of the probe. Then, the (s)EMG signal (a physiological
variable) is a sign of muscle activation (a physiological state of the muscle) that, in turn, is
responsible for the biomechanical action of the muscle (muscle function). There is a large
consensus on the fact that sEMG provides information on the neuromuscular function that
is not provided by other assessment techniques [7].

In recent years, the objective assessment, based on gait data, of locomotion dysfunc-
tions has become a research field of great interest. In literature, several works showed that it
is possible to take advantage of gait parameters to improve the diagnostic process of differ-
ent conditions [25–33]. Numerous studies proposed indices for an objective gait assessment
based on spatio-temporal and/or joint kinematics parameters [11,32–36], but only a few
works used the information extracted from sEMG signals to this purpose [12,37–39]. In
particular, in the work by Castagneri et al. [12], the asymmetry level of lower limb muscles
in healthy, orthopedic, and neurological subjects was assessed by combining the SGA and
CIMAP algorithm, suggesting that appropriate indices can be successfully used in clinics
for an objective assessment of the muscle activation asymmetry during locomotion. In this
context, the definition of a quantitative and reliable index for measuring the similarity of
the dynamic muscle activation of a pathological subject with that of a reference population
can be extremely useful for the assessment of the disease progression and for the evaluation
of treatment outcomes. At this time, to the best of our knowledge, an index with these
properties has not yet been presented in the literature.

The aim of this study is twofold. First, to present a Muscle Functional Index (MFI)
that quantifies the similarity of the activation pattern of a muscle of a specific subject with
that of the corresponding muscle of a reference population. Second, to present a Global
Functional Index (GFI) to quantify the overall muscle activation similarity of a muscle set of
a specific subject compared to that of a reference population. In this paper, we defined the
two indices considering a reference population of healthy children and then we assessed
the behavior of the proposed indices using two groups, one consisting of healthy children
(not belonging to the reference population and referred to as “controls”) and a second one
consisting of hemiplegic children.

2. Definition of the Indices

To assess the similarity between the activation pattern of the muscle(s) of a specific
subject with respect to a reference population, we introduced two indices. The first index
(MFI) quantifies the similarity of the activation intervals of a specific muscle of a subject
with respect to the corresponding muscle of a reference healthy population. The second one
(GFI) quantifies the overall similarity of the muscle activation patterns of a specific group
of muscles with respect to those of the reference healthy population. The definition of the
functional indices consists of two phases: (1) the characterization of the muscle activation of
the reference healthy population and (2) the computation of the muscle functional indices.
Figure 1 describes the various steps of each phase.
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Both phases are based on the measure of similarity SimA,B between the binary vectors
A and B, of equal length (n bits), as calculated in Equation (1):

SimA,B = 1− ∑n
i=1|Ai − Bi|

n
(1)

where Ai and Bi are the values of the i-th bit in A and B, respectively. This measure
evaluates the percentage of bits that are similar between vectors A and B and ranges from
0, if A and B are completely different, to 1, if the two vectors are equal.

2.1. Characterization of the Muscle Function Relative to the Reference Population

The characterization of the muscle function relative to the reference population consists
of three steps: Section 2.1.1 extraction of the Principal Activations from the myoelectric
signals collected on the subjects belonging to the reference population during the task to be
studied, Section 2.1.2 description of the muscle activation modalities found in the reference
population, and Section 2.1.3 calculation of the reference thresholds.

2.1.1. Extraction of the Principal Activations from the Subjects Belonging to the
Reference Population

First, the PAs of each muscle are extracted from all the subjects belonging to the
reference population using the optimized version of the CIMAP algorithm [10]. To apply
this algorithm, the sEMG signal acquired from a specific muscle is pre-processed as follows:

• The sEMG signal is segmented into separate gait cycles by using foot-switch signals
and time-normalized to 1000 samples [13];

• The onset–offset activation intervals are detected by using a two-threshold statistical
detector [14];

• The onset–offset activation intervals lasting less than 3% of the gait cycle are removed,
while activation intervals separated by less than 3% of the gait cycle are joined to-
gether [40];

• Every i-th gait cycle is described through a vector containing m couples of onset–offset
activation intervals (ONi, OFFi):

stridei = {ONi,1, OFFi,1, . . . , ONi,m, OFFi,m} (2)

where m is the number of onset-offset activation intervals within the same gait cycle
and generally differs from muscle to muscle.
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The CIMAP algorithm [10] is then applied to all the gait cycles of each investigated
muscle to obtain clusters showing similar muscle activation patterns. For each cluster, the
strides belonging to right and left sides are separated and the prototype of each group is
calculated as the median of the time instants (ONi, OFFi) (Figure 2a). The prototypes are
coded as strings of 1000 bits (0 = no muscle activation; 1 = muscle activation). Then, the
intersection of the corresponding cluster’s prototypes constitutes the PA (Figure 2b). At
the end of this phase, every subject within the reference population is characterized by two
PAs (one for each side).
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application of CIMAP. Strides belonging to the clusters are represented in blue, clusters’ prototypes
are represented in orange. (b) PAs, obtained as the intersection of the cluster prototypes, are
represented in green.

2.1.2. Description of the Muscle Activation Modalities Typical of the Reference Population

This step aggregates the information contained in the PAs extracted from the reference
population for each investigated muscle. For a specific muscle, pairwise comparisons
among a PA A and all the other PAs B in the reference population are performed using
Equation (1). Then, the median of all the obtained similarity values (RA) is calculated for
the PA A as detailed in (3):

RA = median(DistA,B), ∀B 6= A (3)
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where B represents every principal activation in the reference population except for A, and
SimA,B is the measure of the similarity as described by Equation (1).

After computing the R values for a given muscle (RA), the maximum across the
reference population Rmax is used to normalize every R-value:

RA,norm =
RA

Rmax
(4)

This normalization step allows for the obtaining of comparable values for different
muscles, since the Rmax values generally differ in different muscles. At the end of this
phase, a set of Ri,norm values, representing the similarity of each i-th PA compared to the
other PAs, describes the behavior of the population for each investigated muscle.

2.1.3. Computation of the Reference Thresholds

A reference threshold RTh calculated for each muscle allows for the comparing of the
muscle activation of a specific subject with that of the reference population. In particular,
RTh was obtained as the 5th percentile of all RA,norm across the reference population. This
means that 95% of the PAs in the reference population have a similarity higher than RTh
compared to the other PAs. At the end of this phase, a reference threshold RTh is associated
with each specific muscle.

2.2. Calculation of the Muscle Functional Indices

Given a subject that does not belong to the reference population, the extraction of the
Muscle Functional Index (MFI) and the Global Functional Index (GFI) consists of three
steps: Section 2.2.1 extraction of the PAs of the subject, Section 2.2.2 calculation of the MFI
for every muscle, and Section 2.2.3 computation of the GFI.

2.2.1. Extraction of the Principal Activations of a Subject

First, the two PAs (one for each side) are extracted for each muscle belonging to the
muscle pool of interest using the optimized version of the CIMAP algorithm [10], following
a procedure similar to that described above with respect to the reference population
(Section 2.1.1 Extraction of the Principal Activations from the subjects belonging to the
reference population).

2.2.2. Calculation of the MFI for Every Muscle

For each muscle (left side and right side separately), the MFI is computed as detailed
in Equation (5):

MFI =
median(SimS,A)

Rmax
, ∀A in the reference population (5)

where SimS,A is the similarity among the PA of the subject S and all PAs in the reference
population as obtained by Equation (1), and Rmax is the maximum R-value computed
within the reference population.

The obtained MFI value can be compared with the corresponding reference threshold
RTh to assess the muscle function with respect to a reference population: an MFI value
below the reference threshold represents an abnormal muscle function, while an MFI
value above the threshold represents a muscle function comparable to that of the reference
population.

2.2.3. Calculation of the GFI

The GFI is the average of the MFI values (one for each muscle) for a given muscle pool
of a specific subject (6):

GFI =
∑M

i=1 MFIi

M
(6)
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where M is the total number of observed muscles. The GFI quantifies the overall similarity
of the activation patterns of a pool of muscles of a subject compared to the reference
population.

3. Demonstration of the Applicability and Proper Behavior of the Indices
3.1. Subjects

In this study, we retrospectively analyzed gait data acquired from 105 school-age
children [16,21]: 55 healthy children, without known neurological or orthopedic disorders,
were used as reference population; 25 healthy and 25 hemiplegic children were used as test
sets to evaluate the behavior of MFI and GFI. Table 1 reports the average anthropometric
parameters of the populations.

Table 1. Anthropometric parameters of the populations.

Number of Subjects Age (Years)
(Median and Range) Gender 1 Height (cm)

(mean ± S.D.)
Body Mass (kg)
(mean ± S.D.)

Healthy Children
(Ref. population) 55 9 (7–11) 28M/27F 133.1 ± 9.7 30.3 ± 6.2

Healthy Children
(Test Set) 25 9 (6–11) 12M/13F 133.8 ± 9.1 31.1 ± 7.4

Hemiplegic Children
(Test Set) 25 8 (4–14) 15M/10F 129.7 ± 18.8 30.2 ± 11.7

1 M = Male; F = Female.

3.2. Acquisition System and Experimental Protocol

To acquire sEMG, goniometric, and foot-switch signals, we used the wearable system
STEP32 (Medical Technology, Turin, Italy), CE certified for clinical gait analysis. Participants
were equipped bilaterally with:

• Three foot-switches (size: 10 mm × 10 mm × 0.5 mm; activation force: 3 N) attached
beneath the heel, the first, and the fifth metatarsal heads of each foot;

• Two electrogoniometers (accuracy: 0.5◦) attached to the lateral side of the knee joints;
• Five sEMG active probes in single differential configuration (two Ag-disks with a

diameter equal to 4 mm per probe; inter-electrode distance: 12 mm; probe size:
27 mm × 19 mm × 7.5 mm) attached, after skin preparation, on the belly of each
muscle. Specifically, we recorded signals from Tibialis Anterior (TA), Gastrocnemius
Lateralis (LGS), Vastus Medialis (VM), Rectus Femoris (RF), and Lateral Hamstring
(LH) muscles on both body sides. An expert user visually inspected signals to exclude
the presence of crosstalk.

The signal amplifier had an adjustable gain (60–94 dB) and a 3 dB bandwidth ranging
from 10 to 400 Hz. Gain was adjusted to fit the signal amplitude to the input dynamic
range of the A/D converter as much as possible, but avoiding its saturation. The sampling
rate was equal to 2 kHz, and signals were converted by a 12-bit A/D converter and stored
on the hard disk of the host computer.

Figure 3 shows the acquisition system composed of the sEMG active probes, the
foot-switch sensors, and the electrogoniometers. Figure 4 shows an example of sensor
placement on a healthy subject.
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Figure 3. Details of the acquisition system: (A) the host computer, the patient unit, and two elec-
trogoniometers; (B) two different kinds of foot-switches (on the left, a less sensitive set, for adults;
on the right, a more sensitive set, for children); (C) different kinds of sEMG probes: two different
versions of single differential probes (upper left); a three-bar double differential probe (lower left); a
variable geometry probe (right); (D) a knee electrogoniometer.

Subjects walked barefoot at self-selected speed over a 10 m walkway, back and forth,
for approximately 2.5 min. The experimental protocol conformed to the Helsinki decla-
ration on medical research involving human subjects and was carried out in a clinical
environment with continuous medical supervision. Subject assent and signed parental
informed consent were obtained for each subject.

3.3. Signal Pre-Processing

Using the SGA routines included in the software of the acquisition system (which is
CE certified), we obtained, for each lower limb, the following gait phases: Heel contact
(H), Flat foot contact (F), Push off (P), and Swing (S) [13]. The sEMG signals were then
segmented in separate gait cycles and time-normalized to the stride duration [13]. For
healthy children, we considered only the gait cycles showing the typical sequence of gait
phases (i.e., H, F, P, and S phase). For hemiplegic children, since a very small number of
HFPS gait cycles was available, we analyzed the strides of the most represented sequence
of gait phases of each subject [15,16].

A multivariate statistical filter was used to discard strides related to deceleration,
acceleration, and changes of direction [13].

Subjects whose sEMG signals had an SNR value lower than 6 dB for even a single
muscle were discarded from the analysis, since we considered the signal quality not suitable
to warrant reliable data.

Finally, the onset–offset muscle activation intervals were detected for each muscle and
each side through a double-threshold muscle activation detector specifically developed for
gait analysis [14].
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Figure 4. Sensor placement and recorded signals. SEMG active probes are positioned over the main
muscles of the lower limb, bilaterally. Electrogoniometers are attached to the lateral aspect of the
knee joints. Foot-switches are placed beneath the heel, the first, and the fifth metatarsal heads of each
foot. (A) Subject performing an evaluation session. (B) Detail of the electrogoniometer attached to
the lateral aspect of the knee to measure the knee joint angles during gait. (C) Detail of a variable
geometry sEMG probe attached over the Rectus Femoris muscle of the subject. (D) Detail of the
foot-switches attached underneath the first and fifth metatarsal heads and the heel (lower picture);
how the foot-switches are attached to their connector (upper figure). (E) Example of the average
variation of the knee joint angle over a given number of strides superimposed to the correspondent
four-level coded foot-switch signal. (F) Example of two sEMG signals (Tibialis Anterior, upper trace;
Gastrocnemius Lateralis, lower trace) collected during gait and processed by the user-independent
activation detector: the yellow color means that the muscle is not electrically active and red color
means that the muscle is electrically active. (G) Example of a four-level coded foot-switch signal: the
four levels correspond to Heel strike (H phase), Flat foot contact (F phase), heel raise or Push off (P
phase), and Swing (S phase); the sequence of foot-contact phases here represented corresponds to
that observed in normal subjects during level walking.

3.4. Characterization of the Muscle Function Relative to the Reference Population

The three steps described in the previous section were applied to data relative to
the healthy children included in the reference population to obtain, for each muscle, the
RA,norm value and the corresponding reference threshold RTh.

3.5. Calculation of the Muscle and Global Muscle Functional Indices

Onset–offset activation intervals of the groups of healthy and hemiplegic children were
used to compute the MFI for each muscle and subject, as well as the corresponding GFI. We
believe that using a radar diagram is a simple and effective way for visually inspecting the
behavior of a specific subject against the average behavior of the reference population. For
each muscle, the MFI values can be compared with the corresponding reference threshold
RTh of the healthy population, to visually check their similarity. Figure 5 shows an example
of this representation used to inspect the behavior of specific subjects.
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Figure 5. Radar diagram representation of MFI values for (a) a healthy child and (b) a hemiplegic
child, both sides. The corresponding GFIs are reported under each diagram. The dotted red lines
join the reference thresholds RTh for each muscle. The blue lines join the MFI values of the subject.
Muscles: Tibialis Anterior (TA), Gastrocnemius Lateralis (LGS), Vastus Medialis (VM), Rectus Femoris
(RF), and Lateral Hamstring (LH).

3.6. Statistical Analysis

We applied the Lilliefors test to assess the normality of the MFI and GFI distributions
of hemiplegic children, both for the hemiplegic and the sound sides, and healthy children,
both for the left and right sides. Based on the Lilliefors test result, a two-tailed paired
Student t-test (α = 0.05) (in case of normal distributions) or a Wilcoxon signed-rank test
(α = 0.05) (for non-normal distributions) was used to compare: (a) hemiplegic and sound
side of hemiplegic children, (b) left and right side of healthy children. The statistical
analysis was carried out using the Statistical and Machine Learning Toolbox of MATLAB®

release 2020b (The MathWorks Inc., Natick, MA, USA).

4. Results

The data of 31 children out of 105 were discarded due to the low SNR of the myoelectric
signals: 15 children belonging to the reference population, 7 healthy children belonging to
the control population, and 9 hemiplegic children.

An average of 168 ± 27 gait cycles were collected for each child of the reference
population and an average of 167 ± 25 and 133 ± 35 gait cycles were collected for each
child of the two test groups (healthy and hemiplegic children, respectively).

From the reference population of 40 healthy children, we obtained the following
threshold values: RTh = 0.86 for VM, RTh = 0.83 for TA and RF, and RTh = 0.78 for LGS
and LH. Figure 5 reports the MFI and the GFI values for two representative subjects of
the test set (panel a: a typically developing child; panel b: a hemiplegic child). The dotted
red lines join the reference threshold RTh for each muscle. The blue lines join the MFI
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values of specific subjects. The radar diagram allows for the easy highlighting of muscles
with an abnormal behavior and significantly simplifies the interpretation of the MFI and
GFI values. As an example, Figure 5a shows that, for the representative healthy child
chosen from the reference population, all the muscles (both sides) present an MFI value
above the reference threshold RTh, and the GFI values are equal to 0.98 and 0.95 for the
left and right sides, respectively. Differently, for the hemiplegic child, whose results are
reported by Figure 5b, only the Gastrocnemius Lateralis (LGS) and the Lateral Hamstring
(LH) muscles of the sound side show MFI values above the reference threshold, meaning
that their behavior is similar to that of 95% of the reference healthy population. For the
hemiplegic side, the MFI values are below the respective thresholds for all the muscles
studied. Tibialis Anterior (TA) and Gastrocnemius Lateralis (LGS) show MFI values close
to those of the reference population, thus demonstrating minimal dysfunction of these
muscles, while proximal muscles (RF, VM, and VL) show MFI values close to 0.6, thus
demonstrating a noticeable dysfunction. Consequently, GFI values of the hemiplegic child
are 0.73 and 0.66 for the sound and hemiplegic side, respectively. This demonstrates that,
in this specific child, both lower limbs cannot be considered as normally functioning and,
as expected, the hemiplegic side shows a more severe condition than the other side. In
addition, the non-affected side may not be considered to have a normal function. Figure 5
shows how the two indices may quantify the degree of functionality of the investigated
muscles in a specific subject, either normal or pathological. This is the most important
use of the two indices in clinics. As an example, considering the healthy child (Figure 5a),
the radar plot clearly shows that, on both body sides, all the observed muscles are above
the threshold that represents the minimum value of the index obtained on the 95% of
subjects belonging to the reference population. Hence, this specific subject may not be
distinguished by 95% of subjects belonging to the reference population. Moreover, it is
clear that, while on the right side all the five observed muscles show a value of the MFI
index close to 1 (the best possible match to controls), on the left side the TA muscle shows
a value of MFI that is only slightly higher than that corresponding to the threshold. This
could be a suggestion for clinicians to investigate the behavior of the TA muscle more in
depth, to decide whether to prescribe a rehabilitation program to the subject or simply to
repeat the exam after 6–12 months, to document possible changes. More than one third
of typically developing children show mild gait abnormalities when they undergo a gait
analysis test; in most cases, these abnormalities have no clinical meaning or disappear
when the subject grows up, but in some cases they are worthy of being treated, since they
could cause problems in adulthood or in the elderly. Figure 5b is a clear example of how
MFI can very simply indicate which muscles of the observed muscle pool show an altered
activation. On the hemiplegic side, TA and LGS (dorsi and plantar flexors of the ankle)
show an MFI value very close to the threshold, thus demonstrating their almost normal
activation timing. On the contrary, RF, VM, and LH show MFI values definitely below the
threshold, thus demonstrating that muscle timing is compromised at the level of proximal
muscles, that control both knee (LH, VM, and RF) and hip (RF and LH). The left radar
plot of Figure 5b shows that, on the sound side, the MFI value of TA is slightly lower
than the threshold. More interestingly from a clinical point of view, it is evident that knee
extensors (RF and VM) show MFI values close to those of the affected side, while the LH
shows a timing compatible with that of 95% of the control population. The considerations
above show how the MFI values can be very effective in outlining the inappropriate timing
of some of the muscles belonging to the considered muscle pool. The value of the GFI
quantifies how the timing of the considered muscle pool is close to that of the normal
population.

Figure 6 shows the MFI value for each muscle and for each of the two test groups
(Panel a: healthy children belonging to the control group; Panel b: hemiplegic children).
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Figure 6. Radar diagram of MFI values for (a) the 18 healthy children and (b) the 16 hemiplegic
children, both sides. The dotted red lines join the reference threshold RTh for each muscle. The blue
lines join the MFI values for each subject in the two test groups. Muscles: Tibialis Anterior (TA),
Gastrocnemius Lateralis (LGS), Vastus Medialis (VM), Rectus Femoris (RF), and Lateral Hamstring
(LH).

The dotted red lines join the reference thresholds RTh computed over the reference
population for each muscle. The blue lines join the MFI values for each specific subject in
the two test groups. It is evident that the MFI values for healthy children are mostly above
the thresholds for all the muscles and both sides. Only in 2 out of 40 cases, on the left side,
there are subjects whose MFI values relative to one or two muscles are slightly outside the
behavior of 95% of the subjects belonging to the healthy population. For the hemiplegic
group, on the contrary, the distribution of the MFI values is wider, showing an abnormal
behavior, definitely more evident on the hemiplegic side. We included Figure 6 for two
different reasons. First, for demonstrating that the control population (that was not used to
obtain the threshold values) shows values of the MFIs that are almost always above the
thresholds computed for each specific muscle, while this is not the case—as expected—for
hemiplegic children. Hence, the behavior of MFI matches our expectations. Second, when
considering hemiplegic children, it is evident that every subject shows a different pattern
of MFI values, thus demonstrating the capability of the index to capture differences among
different subjects.

Table 2 reports the mean, the first and third quartile of the MFI values for the two test
groups and for each muscle and side. The last column of the table contains the values of
the reference threshold RTh for the five muscles.

Figure 7 shows the boxplots of the MFI values for the five muscles observed in this
study, for the test populations of healthy (in violet) and hemiplegic children (in orange),
for the two sides, separately. Since most of the distributions resulted non-normal according



Sensors 2021, 21, 7186 13 of 20

to the Lilliefors test, the Wilcoxon signed-rank test was used for comparing the MFI
values of each muscle separately. In particular, the values of the MFI are not statistically
different between the left and right side of healthy subjects for all muscles (p > 0.05), as
expected. For the hemiplegic children, MFI values are not statistically different between
left and right lower limbs for all the muscles, except for the RF (p = 0.02). This is not
surprising, because to compensate the deficiency of muscles on the anatomically affected
side also muscles belonging to the non-affected side must modify and adapt their activation
modality. Comparing the MFI values of each lower limb of the healthy children and the
two sides of the hemiplegic population, it emerges that values are statistically different for
all comparisons, except for: (i) the right side of the healthy children with respect to the
sound side of the hemiplegic children for the RF muscle (p = 0.08) and (ii) the left side of
the healthy children with respect to the sound side of the hemiplegic children for the LH
muscle (p = 0.11).
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Table 2. MFI and GFI values for the test groups (mean value [first and third quartile]) and the reference thresholds.

Healthy Children Hemiplegic Children
Reference Threshold RThLeft Side Right Side Sound Side Hemiplegic Side

MFI

TA 0.96
[0.95 ÷ 0.98]

0.94
[0.90 ÷ 0.97]

0.83
[0.80 ÷ 0.92]

0.80
[0.78 ÷ 0.82] 0.83

LGS 0.92
[0.89 ÷ 0.97]

0.93
[0.92 ÷ 0.99]

0.82
[0.78 ÷0.87]

0.82
[0.78 ÷ 0.88] 0.78

RF 0.93
[0.90 ÷ 0.96]

0.92
[0.92 ÷0.95]

0.84
[0.78 ÷ 0.95]

0.75
[0.68 ÷ 0.85] 0.83

VM 0.96
[0.95 ÷ 0.99]

0.93
[0.92 ÷ 0.98]

0.85
[0.81 ÷ 0.95]

0.82
[0.80 ÷0.92] 0.86

LH 0.89
[0.83 ÷ 0.95]

0.91
[0.89 ÷ 0.98]

0.84
[0.78 ÷ 0.91]

0.78
[0.71 ÷ 0.86] 0.78

GFI
0.93

[0.92 ÷ 0.95]
0.93

[0.90 ÷ 0.95]
0.83

[0.82 ÷ 0.86]
0.80

[0.78 ÷ 0.83] -

Figure 8 reports the boxplots of the GFI values relative to the test populations of
healthy and hemiplegic children (for the two sides, separately). The last row of Table 2
reports the mean, and the first and third quartile of the GFI values for the two test groups.
Since all distributions resulted normal, the two-tailed Student t-test was applied for the
comparison of the GFI values. In particular, the values of the GFI are not statistically differ-
ent between the left and right side of healthy subjects (p = 0.47), as expected. Comparing
the GFI values relative to each lower limb of the healthy population and the hemiplegic
and sound sides of the hemiplegic children it is evident that values are statistically different
(p < 0.001, all comparisons). Finally, when considering the GFI values of the hemiplegic and
sound sides of hemiplegic children they are statistically different (p = 0.02), as expected.
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5. Discussion

Since the 1980s, numerous studies demonstrated the utility of sEMG for investigating
the muscle function in basic research as well as in clinics. Although numerous research
studies relative to muscle physiology investigated the muscle function in healthy and
pathological subjects at the level of basic research, the number of papers reporting of
sEMG applications in clinics, which really improved the quality of patient management,
is definitely more limited. Then, the body of knowledge available at this time, relative to
research and clinical experiences carried out in the last 40 years, fully demonstrates the
capabilities and outlines the limitations of sEMG.

A recent work [7] investigated the usage and barriers of sEMG in neurorehabilitation,
by sending a 30-question survey to 52 experts on sEMG from different standpoints, coun-
tries, and backgrounds. Among the 18 questions for which a consensus higher than 75%
was reached, some of them well relate to this work. Specifically, a consensus higher than
90% was reached on the following nine points:

1. “sEMG provides information on the neuromuscular function that is not provided by
other assessment techniques/tools in neurorehabilitation” (91%);

2. “In clinical rehabilitation sEMG enhances the assessment and characterization of
neuromuscular impairment in patients” (94%);

3. “sEMG allows to evaluate the effects of non-invasive interventions designed to impact
muscle activity” (91%);

4. “sEMG may be useful to evaluate the appropriateness of the activation among muscles
participating to a specific movement” (97%);

5. “sEMG allows to outline the sequential timing of muscular actions during given
movements” (100%);

6. “sEMG allows to evaluate the appropriateness of the activation among muscles
participating to a specific movement” (97%);

7. “sEMG assessment can be performed as a stand-alone technique to complement/optimize
gait/motion analysis” (100%);

8. “Timing of muscle activations and their variability must be considered of utmost
importance for clinical applications in neurorehabilitation among the EMG-derived
variables” (100%);

9. “The difficulty of performing sEMG data analysis and interpretation without specific
education/training is a potential barrier to the employment of sEMG in clinical
neurorehabilitation” (97%).

From the cited work, which is very recent and, at this time, unique in the field of
sEMG applied in clinics, we can summarize three statements on which the consensus is
total:

• sEMG is a necessary tool to obtain a deep insight into the role of different muscles
during any kind of movement;

• sEMG can be used as a stand-alone technique or it should be used as a complementary
tool in gait/motion analysis, principally considering the timing of muscle activation;

• Performing sEMG data analysis and interpretation, with the tools currently available,
is a complex task that requires specific training.

Hence, we can infer that for encouraging the spread of the usage of sEMG in clinics,
scientists working on basic sEMG research should develop tools as much as possible that
are user-independent, widely tested, and useful in clinics for facilitating the interpretation
of multiple sEMG recordings. This is the purpose of the methodology herein presented.

Since the 1990s, some of the authors of this paper devoted a large part of their research
activities developing user-independent methods to facilitate the application of sEMG signal
analysis in clinics. Briefly, we developed, among others, the following tools: (i) a double
threshold statistical detector of muscle activation [14] (1998); (ii) a comprehensive method-
ology for user-independent gait analysis, in which sEMG plays a major role [41] (2012); (iii)
an improved algorithm for the user-independent segmentation and classification of gait
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cycles from foot-switch signals [13] (2014); (iv) an algorithm for quantifying the gait im-
pairment score based on fuzzy logic [11] (2017); (v) an algorithm for hierarchical clustering
of muscle activations [9] (2017); (vi) a user-independent index for quantifying asymmetry
in muscle activations [12] (2019). This paper is the natural extension of our previous work,
since it describes the development of another two indices aimed at facilitating the usage
of sEMG in clinics without requiring any user-dependent decisions. We stress that user-
independent analysis is essential for assuring high repeatability of the obtained results
among different laboratories.

We introduced two indices based on the Principal Activations, which numerically
describe the muscle activations of a subject with respect to a reference population. We
showed that the muscle activation of a subject may be quantitatively evaluated for a single
muscle (muscle-specific index, MFI) as well as for a specific muscle pool (global index,
GFI). Moreover, to easily identify those muscles that are not activated in a physiological
way, we proposed the representation of the MFIs by means of radar diagrams. This kind of
representation may be easily adapted to any number of observed muscles.

The proposed indices allow for quantifying the similarity of the muscle activation of a
specific subject to normality, which is defined as the behavior of a reference population. The
present work uses as the reference population a group of 40 typically developing children
studied during gait by investigating a group of five lower limb muscles (TA, LGS, RF,
VM, and LH). The choice of these muscles assures having at least a flexor and an extensor
muscle for each of the three joints usually investigated in gait (ankle, knee, and hip), which
we consider as a solution generally satisfactory from a clinical point of view [41].

Notice that, since each MFI value is computed considering the sEMG signal generated
only by the muscle it refers to, it does not depend on the number of observed muscles.
Once the MFI values are obtained for any specific number of muscles considered, the GFI
value may be obtained as the average of all the computed MFIs.

MFI and GFI find their most important application in clinics, when used to compare
the activation and coordination of the muscle pool of interest of a specific subject to that of a
reference population, for identifying possible deviations from the “normality”, as Figure 5
shows. As an example, the left radar plot of Figure 5b shows that, on the sound side, the
MFI value of TA is slightly lower than the threshold value. More interestingly from a
clinical point of view, it is evident that knee extensors (RF and VM) show MFI values close
to those of the affected side, while the LH shows a timing pattern compatible with that of
95% of the control population. A plausible clinical interpretation of this observation is that
the compensatory effect on the sound lower limb, that is necessary to obtain an acceptable
locomotion, principally involves knee extensors. This observation may play an important
role in designing a rehabilitation protocol suitable to the needs of this specific subject, thus
implementing a personalized-medicine-approach in rehabilitation. This specific capability
of the proposed indices would help clinicians to develop a personalized rehabilitation
program for each specific patient, thus improving the likelihood of success.

In this work, however, we compared rather extensively the behavior of the two indices
when applied to a control population of typically developing children (different from
that used to obtain the threshold values of the reference population) and a population of
hemiplegic children. This was undertaken using two groups that are known to clearly differ
in muscle activation patterns and coordination, only to give proof of the proper behavior of
the indices. In fact, Table 2, Figure 6, Figure 7, and Figure 8 clearly show that MFI and GFI
values differentiate the two sub-populations, demonstrating that the control population
of typically developing children has a behavior that is always compatible with that of
the reference population of typically developing children, while the group of hemiplegic
children shows a clearly different behavior. These statements have been supported by
proper statistics.

Notice that, even if 31 subjects out of 105 were discarded from the sample population,
this does not limit the validity of the presented results. To the best of our knowledge,
the data set used in this study is still the larger available database of sEMG and other



Sensors 2021, 21, 7186 17 of 20

gait-related signals describing the walking modalities of school-age children. Furthermore,
several acquisitions were discarded solely due to poor adherence to the experimental
protocol of the child, which is more likely to happen in younger subjects compared to older
ones. Possible applications of objective indices describing the similarity of the activity of
a single muscle or of a muscle pool belonging to a specific subject to the behavior of a
reference normal population may have different applications in clinics. Indeed, indices
can be used to demonstrate the anomalous function of a muscle during a specific task
thus allowing the understanding of the causes of a motion abnormality, a necessary step
for developing an effective rehabilitation program or to plan surgery. Moreover, indices
quantifying the similarity of the muscle activation of a subject with reference to a matched
normal population also allow for evaluating the effectiveness of a rehabilitation program
over time, to document objectively the recovery of normal function at a single muscle level
as well as at the level of a muscle pool.

Actually, when we refer to “normal population” in terms of gait, we must be aware
that the concept of “normality” is often associated also to subjects that are affected by gait
abnormalities that do not compromise noticeably their daily activities. It has already been
reported that a fraction of typically developing children shows slight gait abnormalities
that are not evident to the visual observation [21]. These abnormalities do not cause any
specific limitation and hence are not reported to physical therapists or physicians for early
correction. Nonetheless, it may not be ruled out that the possibility of such apparently
negligible abnormalities, that may be already evident in childhood and in teenagers, could
cause more severe problems to affected people in adulthood or in the elderly. These
problems could range from an abnormal fall propensity to low back pain, and several
other conditions. In this perspective, the availability of indices as MFI and GFI, as well as
other indices quantifying the “quality” of gait [11,29,30,34,35], could allow for a relatively
inexpensive and operator-independent screening of school-age children and teenagers, to
identify slight gait abnormalities caused by poor muscle function or coordination and thus
allowing for the definition of specific correction protocols.

Another important class of possible applications is represented by the follow-up of
patients following a rehabilitation program after orthopedic surgery or for compensating
gait abnormalities following acute, degenerative, and congenital conditions of the nervous
system (i.e., stroke, multiple sclerosis, Parkinson’s disease, cerebral palsy, etc.). Even in
longitudinal evaluations, the availability of user-independent and reliable indices is crucial
to allow for an objective patient assessment [42].

Finally, another very interesting application of these indices relates to sports training.
By considering a specific movement performed by top-level athletes, one could build a “top
reference population” to be used for scoring the performance of less talented athletes and,
possibly, suggesting training programs to improve their performance. At this time, we do
not have experience in this application, but we do believe it is worthy of being investigated.

6. Limitations of the Study

Although we believe that the indices we propose may be beneficial in clinics, we are
aware of some limitations.

First, to apply the proposed indices to patients, from childhood to the elderly, we
need three reference populations: typically developing children, normal adults, and elderly
people. This is a limitation, but overcoming it only requires collecting and processing data
from subjects belonging to the populations of interest. We already started collecting data
from normal adults and shortly we will extend the study to elderly people.

A second limitation of this study is the number of investigated muscles, which is
in this paper restricted to only five lower limb muscles. For improving the possible
impact of the indices in clinical gait studies, it could be desirable to consider more than
five muscles for each subject side. As already stated, we are currently working towards
obtaining a reference adult population and we are considering twelve lower limb and trunk
muscles. We foresee considering a set of at least twelve muscles also in the elderly reference
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population. Recording twelve or more muscles from typically developing children was
not considered in our previous study mainly for two reasons. (i) The time needed to
prepare a subject would have been definitely longer, and it is challenging to keep children
concentrated for long periods of time. (ii) Especially for younger subjects, it may be difficult
to place a large number of EMG probes on the limbs, due to the limited size of limbs.

However, the limitations of this study we are aware of, which we can easily overcome
by extending the number of reference populations and considering a larger muscle pool, are
well counterbalanced by the principal strength of this approach. This is the possibility of
easily developing reference data for every cyclic movement, such as biking, running, stairs
climbing, upper limb reaching tasks, swimming, and many others. In fact, although we
tested the two indices and their computation in gait, the algorithms may be easily adapted
to every cyclic movement, thus considerably enlarging the range of possible applications.
In fact, the CIMAP algorithm, that is crucial for the extraction of the PAs on which GFI and
MFI are based, was optimized for cyclic movements in general [10].

7. Conclusions

This work describes two quantitative indices for evaluating muscle activation in gait
studies or several other cyclic movements. The MFI is relative to the activation of a single
muscle, part of an observed muscle pool, and GFI is relative to the entire muscle pool.

In this study, we described how to compute the two indices and we demonstrated
their proper performance in gait studies, considering a reference population of 40 typically
developing children in which we detected sEMG from five lower limb muscles. The
extension of the application of these indices to subjects from childhood to old age only
requires the definition of another two reference populations, namely, one of normal adults
and a second one of physiological elderly subjects. We are currently working on obtaining
these two reference populations. We increased the number of observed muscles in adults
and in the elderly from five to twelve, to extend the applicability of the methodology to
larger muscle pools.

In conclusion, MFI and GFI values can provide a quantitative and reliable evaluation
of muscle activation for identifying the abnormal function of single muscles involved in
different movements and in various populations.

Given the importance of the availability of data describing various reference popula-
tions, we believe that experienced researchers working in this field should share through
public data repositories their data, to make it possible to other research groups working in
rehabilitation and sports medicine to benefit from the open access to reliable data sets.

Author Contributions: Conceptualization, S.R., M.G., V.A., M.K. and G.B.; methodology, S.R., M.G.,
V.A., M.K. and G.B.; software, M.G. and G.D.; validation, S.R., M.G., V.A., M.K. and G.B.; data
curation, S.R., M.G., G.D. and D.F.; writing—original draft preparation, S.R., M.G. and M.K.; writing—
review and editing, S.R., M.G., G.D., D.F., V.A., M.K. and G.B.; supervision, G.B., V.A. and M.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable (this is a retrospective study carried out on a
data set acquired several years ago, conforming to the Helsinki declaration, and gait analysis sessions
were carried out under medical supervision).

Informed Consent Statement: Subject assent and signed parental informed consent were obtained
for each subject.

Data Availability Statement: Data presented in this study are available on request from the corre-
sponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 7186 19 of 20

References
1. Wren, T.A.L.; Gorton, G.E.; Ounpuu, S.; Tucker, C.A. Efficacy of clinical gait analysis: A systematic review. Gait Posture 2011, 34,

149–153. [CrossRef] [PubMed]
2. Tao, W.; Liu, T.; Zheng, R.; Feng, H.; Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait Analysis Using Wearable Sensors. Sensors 2012, 12,

2255–2283. [CrossRef]
3. Chang, F.M.; Seidl, A.J.; Muthusamy, K.; Meininger, A.K.; Carollo, J.J. Effectiveness of Instrumented Gait Analysis in Children

with Cerebral Palsy—Comparison of Outcomes. J. Pediatr. Orthop. 2006, 26, 612–616. [CrossRef] [PubMed]
4. De Luca, C.J. The Use of Surface Electromyography in Biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [CrossRef]
5. Roetenberg, D.; Buurke, J.; Veltink, P.; Forner Cordero, A.; Hermens, H. Surface electromyography analysis for variable gait. Gait

Posture 2003, 18, 109–117. [CrossRef]
6. Frigo, C.; Crenna, P. Multichannel SEMG in Clinical Gait Analysis: A Review and State-of-the-Art; Elsevier: Amsterdam, The

Netherlands, 2009; Volume 24, pp. 236–245.
7. Manca, A.; Cereatti, A.; Bar-On, L.; Botter, A.; Della Croce, U.; Knaflitz, M.; Maffiuletti, N.A.; Mazzoli, D.; Merlo, A.; Roatta,

S.; et al. A Survey on the Use and Barriers of Surface Electromyography in Neurorehabilitation. Front. Neurol. 2020, 11, 1137.
[CrossRef]

8. Agostini, V.; Rosati, S.; Castagneri, C.; Balestra, G.; Knaflitz, M. Clustering analysis of EMG cyclic patterns: A validation study
across multiple locomotion pathologies. In Proceedings of the 2017 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; pp. 1–5.

9. Rosati, S.; Agostini, V.; Knaflitz, M.; Balestra, G. Muscle activation patterns during gait: A hierarchical clustering analysis. Biomed.
Signal. Process. Control. 2017, 31, 463–469. [CrossRef]

10. Rosati, S.; Castagneri, C.; Agostini, V.; Knaflitz, M.; Balestra, G. Muscle contractions in cyclic movements: Optimization of CIMAP
algorithm. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS 2017, 58–61. [CrossRef]

11. Rosati, S.; Agostini, V.; Knaflitz, M.; Balestra, G. Gait impairment score: A fuzzy logic-based index for gait assessment. Int. J. Appl.
Eng. Res. 2017, 12, 3337–3345.

12. Castagneri, C.; Agostini, V.; Rosati, S.; Balestra, G.; Knaflitz, M. Asymmetry Index in Muscle Activations. IEEE Trans. Neural Syst.
Rehabil. Eng. 2019, 27, 772–779. [CrossRef]

13. Agostini, V.; Balestra, G.; Knaflitz, M. Segmentation and classification of gait cycles. IEEE Trans. Neural Syst. Rehabil. Eng. 2014,
22, 946–952. [CrossRef] [PubMed]

14. Bonato, P.; D’Alessio, T.; Knaflitz, M. A statistical method for the measurement of muscle activation intervals from surface
myoelectric signal during gait. IEEE Trans. Biomed. Eng. 1998, 45, 287–299. [CrossRef]

15. Agostini, V.; Knaflitz, M.; Nascimberi, A.; Gaffuri, A. Gait measurements in hemiplegic children: An automatic analysis of
foot-floor contact sequences and electromyographic patterns. In Proceedings of the IEEE MeMeA 2014—IEEE International
Symposium on Medical Measurements and Applications, Lisboa, Portugal, 11–12 June 2014; pp. 1–4.

16. Agostini, V.; Nascimbeni, A.; Gaffuri, A.; Knaflitz, M. Multiple gait patterns within the same Winters class in children with
hemiplegic cerebral palsy. Clin. Biomech. 2015, 30, 908–914. [CrossRef]

17. Di Nardo, F.; Maranesi, E.; Mengarelli, A.; Ghetti, G.; Burattini, L.; Fioretti, S. Assessment of the variability of vastii myoelectric
activity in young healthy females during walking: A statistical gait analysis. J. Electromyogr. Kinesiol. 2015, 25, 800–807. [CrossRef]

18. Di Nardo, F.; Ghetti, G.; Fioretti, S. Assessment of the activation modalities of gastrocnemius lateralis and tibialis anterior during
gait: A statistical analysis. J. Electromyogr. Kinesiol. 2013, 23, 1428–1433. [CrossRef]

19. Di Nardo, F.; Fioretti, S. Statistical analysis of surface electromyographic signal for the assessment of rectus femoris modalities of
activation during gait. J. Electromyogr. Kinesiol. 2013, 23, 56–61. [CrossRef] [PubMed]

20. Benedetti, M.; Agostini, V.; Knaflitz, M.; Gasparroni, V.; Boschi, M.; Piperno, R. Self-reported gait unsteadiness in mildly impaired
neurological patients: An objective assessment through statistical gait analysis. J. Neuroeng. Rehabil. 2012, 9, 64. [CrossRef]
[PubMed]

21. Agostini, V.; Nascimbeni, A.; Gaffuri, A.; Imazio, P.; Benedetti, M.G.; Knaflitz, M. Normative EMG activation patterns of
school-age children during gait. Gait Posture 2010, 32, 285–289. [CrossRef]

22. Winter, D.A.; Yack, H.J. EMG profiles during normal human walking: Stride-to-stride and inter-subject variability. Electroen-
cephalogr. Clin. Neurophysiol. 1987, 67, 402–411. [CrossRef]

23. Ghislieri, M.; Agostini, V.; Knaflitz, M. How to Improve Robustness in Muscle Synergy Extraction. Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc. 2019, 2019, 1525–1528. [CrossRef]

24. Ghislieri, M.; Agostini, V.; Knaflitz, M. Muscle Synergies Extracted Using Principal Activations: Improvement of Robustness and
Interpretability. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 453–460. [CrossRef] [PubMed]

25. Mazzetta, I.; Zampogna, A.; Suppa, A.; Gumiero, A.; Pessione, M.; Irrera, F. Wearable Sensors System for an Improved Analysis of
Freezing of Gait in Parkinson’s Disease Using Electromyography and Inertial Signals. Sensors 2019, 19, 948. [CrossRef] [PubMed]

26. Martínez, M.; Villagra, F.; Castellote, J.M.; Pastor, M.A. Kinematic and kinetic patterns related to free-walking in parkinson’s
disease. Sensors 2018, 18, 4224. [CrossRef]

27. Khoury, N.; Attal, F.; Amirat, Y.; Oukhellou, L.; Mohammed, S. Data-driven based approach to aid Parkinson’s disease diagnosis.
Sensors 2019, 19, 242. [CrossRef]

http://doi.org/10.1016/j.gaitpost.2011.03.027
http://www.ncbi.nlm.nih.gov/pubmed/21646022
http://doi.org/10.3390/s120202255
http://doi.org/10.1097/01.bpo.0000229970.55694.5c
http://www.ncbi.nlm.nih.gov/pubmed/16932100
http://doi.org/10.1123/jab.13.2.135
http://doi.org/10.1016/S0966-6362(03)00005-5
http://doi.org/10.3389/fneur.2020.573616
http://doi.org/10.1016/j.bspc.2016.09.017
http://doi.org/10.1109/EMBC.2017.8036762
http://doi.org/10.1109/TNSRE.2019.2903687
http://doi.org/10.1109/TNSRE.2013.2291907
http://www.ncbi.nlm.nih.gov/pubmed/24760911
http://doi.org/10.1109/10.661154
http://doi.org/10.1016/j.clinbiomech.2015.07.010
http://doi.org/10.1016/j.jelekin.2015.07.004
http://doi.org/10.1016/j.jelekin.2013.05.011
http://doi.org/10.1016/j.jelekin.2012.06.011
http://www.ncbi.nlm.nih.gov/pubmed/22841481
http://doi.org/10.1186/1743-0003-9-64
http://www.ncbi.nlm.nih.gov/pubmed/22931488
http://doi.org/10.1016/j.gaitpost.2010.06.024
http://doi.org/10.1016/0013-4694(87)90003-4
http://doi.org/10.1109/EMBC.2019.8856438
http://doi.org/10.1109/TNSRE.2020.2965179
http://www.ncbi.nlm.nih.gov/pubmed/31944961
http://doi.org/10.3390/s19040948
http://www.ncbi.nlm.nih.gov/pubmed/30813411
http://doi.org/10.3390/s18124224
http://doi.org/10.3390/s19020242


Sensors 2021, 21, 7186 20 of 20

28. Lai, D.T.H.; Levinger, P.; Begg, R.K.; Gilleard, W.L.; Palaniswami, M. Automatic Recognition of Gait Patterns Exhibiting
Patellofemoral Pain Syndrome Using a Support Vector Machine Approach. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 810–817.
[CrossRef]

29. Alaqtash, M.; Sarkodie-Gyan, T.; Yu, H.; Fuentes, O.; Brower, R.; Abdelgawad, A. Automatic classification of pathological
gait patterns using ground reaction forces and machine learning algorithms. In Proceedings of the 2011 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp.
453–457.

30. Kamruzzaman, J.; Begg, R.K. Support Vector Machines and Other Pattern Recognition Approaches to the Diagnosis of Cerebral
Palsy Gait. IEEE Trans. Biomed. Eng. 2006, 53, 2479–2490. [CrossRef]

31. Zhang, B.; Zhang, Y.; Begg, R.K. Gait classification in children with cerebral palsy by Bayesian approach. Pattern Recognit. 2009,
42, 581–586. [CrossRef]

32. Cui, C.; Bian, G.-B.; Hou, Z.G.; Zhao, J.; Su, G.; Zhou, H.; Peng, L.; Wang, W. Simultaneous Recognition and Assessment of
Post-Stroke Hemiparetic Gait by Fusing Kinematic, Kinetic, and Electrophysiological Data. IEEE Trans. Neural Syst. Rehabil. Eng.
2018, 26, 856–864. [CrossRef]

33. Chakraborty, S.; Nandy, A. Automatic diagnosis of cerebral palsy gait using computational intelligence techniques: A low-cost
multi-sensor approach. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2488–2496. [CrossRef]

34. Schwartz, M.H.; Rozumalski, A. The gait deviation index: A new comprehensive index of gait pathology. Gait Posture 2008, 28,
351–357. [CrossRef] [PubMed]

35. Schutte, L.M.; Narayanan, U.; Stout, J.L.; Selber, P.; Gage, J.R.; Schwartz, M.H. An index for quantifying deviations from normal
gait. Gait Posture 2000, 11, 25–31. [CrossRef]

36. Baker, R.; McGinley, J.L.; Schwartz, M.H.; Beynon, S.; Rozumalski, A.; Graham, H.K.; Tirosh, O. The Gait Profile Score and
Movement Analysis Profile. Gait Posture 2009, 30, 265–269. [CrossRef]

37. Kugler, P.; Jaremenko, C.; Schlachetzki, J.; Winkler, J.; Klucken, J.; Eskofier, B. Automatic recognition of Parkinson’s disease using
surface electromyography during standardized gait tests. In Proceedings of the 2013 35th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5781–5784.

38. Bojanic, D.M.; Petrovacki-Balj, B.D.; Jorgovanovic, N.D.; Ilic, V.R. Quantification of dynamic EMG patterns during gait in children
with cerebral palsy. J. Neurosci. Methods 2011, 198, 325–331. [CrossRef] [PubMed]

39. Infarinato, F.; Romano, P.; Goffredo, M.; Ottaviani, M.; Galafate, D.; Gison, A.; Petruccelli, S.; Pournajaf, S.; Franceschini, M.
Functional Gait Recovery after a Combination of Conventional Therapy and Overground Robot-Assisted Gait Training Is Not
Associated with Significant Changes in Muscle Activation Pattern: An EMG Preliminary Study on Subjects Subacute Post Stroke.
Brain Sci. 2021, 11, 448. [CrossRef] [PubMed]

40. Bogey, R.A.; Barnes, L.A.; Perry, J. Computer algorithms to characterize individual subject EMG profiles during gait. Arch. Phys.
Med. Rehabil. 1992, 73, 835–841. [PubMed]

41. Agostini, V.; Knaflitz, M. Statistical gait analysis. In Distributed Diagnosis and Home Healthcare (D2H2); American Scientific
Publishers: Stevendon Ranch, CA, USA, 2012; Volume II, pp. 99–121.

42. Agostini, V.; Ganio, D.; Facchin, K.; Cane, L.; Moreira Carneiro, S.; Knaflitz, M. Gait parameters and muscle activation patterns at
3, 6 and 12 months after total hip arthroplasty. J. Arthroplast. 2014, 29, 1265–1272. [CrossRef]

http://doi.org/10.1109/TITB.2009.2022927
http://doi.org/10.1109/TBME.2006.883697
http://doi.org/10.1016/j.patcog.2008.09.025
http://doi.org/10.1109/TNSRE.2018.2811415
http://doi.org/10.1109/TNSRE.2020.3028203
http://doi.org/10.1016/j.gaitpost.2008.05.001
http://www.ncbi.nlm.nih.gov/pubmed/18565753
http://doi.org/10.1016/S0966-6362(99)00047-8
http://doi.org/10.1016/j.gaitpost.2009.05.020
http://doi.org/10.1016/j.jneumeth.2011.04.030
http://www.ncbi.nlm.nih.gov/pubmed/21549756
http://doi.org/10.3390/brainsci11040448
http://www.ncbi.nlm.nih.gov/pubmed/33915808
http://www.ncbi.nlm.nih.gov/pubmed/1514893
http://doi.org/10.1016/j.arth.2013.12.018

