
08 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Flexible Parallel Learning in Edge Scenarios: Communication, Computational and Energy Cost / Malandrino, Francesco;
Chiasserini, Carla Fabiana. - ELETTRONICO. - (2022). ((Intervento presentato al convegno IEEE PerCom Workshops -
PeRConAI 2022 tenutosi a Pisa (Italy) nel 21-25 March 2022 [10.1109/PerComWorkshops53856.2022.9767275].

Original

Flexible Parallel Learning in Edge Scenarios: Communication, Computational and Energy Cost

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/PerComWorkshops53856.2022.9767275

Terms of use:
openAccess

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2950174 since: 2022-07-05T16:07:47Z

IEEE

Flexible Parallel Learning in Edge Scenarios:
Communication, Computational and Energy Cost

Abstract—Traditionally, distributed machine learning takes the
guise of (i) different nodes training the same model (as in
federated learning), or (ii) one model being split among multiple
nodes (as in distributed stochastic gradient descent). In this work,
we highlight how fog- and IoT-based scenarios often require com-
bining both approaches, and we present a framework for flexible
parallel learning (FPL), achieving both data and model paral-
lelism. Further, we investigate how different ways of distributing
and parallelizing learning tasks across the participating nodes
result in different computation, communication, and energy costs.
Our experiments, carried out using state-of-the-art deep-network
architectures and large-scale datasets, confirm that FPL allows
for an excellent trade-off among computational (hence energy)
cost, communication overhead, and learning performance.

Index Terms—Edge computing; distributed machine learning

I. INTRODUCTION

The emerging pervasiveness of machine learning (ML)
and the fact that data generated by people, machines and
sensors is expected to soon amount to 850 ZB [1] have
led to an increasing adoption of distributed ML, involving
multiple network nodes. Reasons to adopt this new paradigm
include the ability to leverage more computational and energy
resources, and the possibility of exploiting local data without
disclosing it [2], [3] or transporting it to far-away data centers.
This is particularly important for the training of ML models,
especially in the case of the popular deep neural networks [4]
(DNNs). DNNs are indeed composed of many layers, requiring
large amounts of data to set the many parameters they are
composed of and take a high toll in terms of computing
resource and energy consumption. There are currently two
main approaches to distributed supervised learning: federated
learning (FL) [2], [3], [5] and distributed stochastic gradient
descent (D-SGD) [6], both depicted in Fig. 1. Under both
FL and D-SGD, the total training time includes both (i) local
computation, and (ii) network delay.

Under FL, all nodes share the same DNN architecture and
each node trains its DNN with local data. After one or more
local training epochs, local parameters are sent to a centralized
learning server, which is in charge of combining them (by
averaging them, or through more complex strategies [7]), and
sending the results back to the learning nodes. The main appeal
of FL is its ability to exploit local data for learning, without
sharing it, which is especially important for private and/or
potentially sensitive data. Further, FL is suitable for scenarios
where learning nodes, such as mobile user devices, can appear
or disappear in an unpredictable manner, including network
resource scheduling [8] and the management of drone-powered
MEC systems [9]. As multiple learning nodes train different

Fig. 1. Two of the main existing approaches to distributed supervised learning:
FL (left) and D-SGD (right).

instances of the same model on different sets of data, FL is
said to implement data parallelism [10].

On the contrary, the D-SGD paradigm allows for splitting a
given DNN architecture among learning nodes, enabling each
node to run only a part of the DNN. Nodes communicate
with each other during each learning iteration (both forward-
and back-passes), exchanging information on the values and
gradients of model parameters. Compared to FL, D-SGD
typically requires a tighter coordination among learning nodes
and cannot handle their addition/removal, but the amount of
data to transmit is lower; furthermore, unlike most FL variants,
D-SGD does not require a learning server, and data can be
exchanged directly between learning nodes, in a decentralized
fashion. Due to its support for DNN splitting, D-SGD is a
popular choice when the learning task involves nodes with
limited capabilities, e.g., smart sensors [11]. D-SGD is said
to implement model parallelism [10], as different nodes run
different parts of the same model.

A further, recently emerging alternative is represented by
the split learning (SL) paradigm [12]. SL envisions splitting
the DNN layers in two parts: a local part, ran by each node
using its own local data, and a global part run at edge- or
cloud-based servers leveraging the intermediate outputs of all
learning nodes. It can be considered akin to D-SGD, in that
the model is shared across multiple nodes, each of which
only implements a part of it. Compared to D-SGD, SL offers
more flexibility, e.g., by allowing to process data coming from
different sources through duplicate, parallel subsets of the
DNN architecture.

In this work, we envision a new distributed supervised
learning paradigm, called flexible parallel learning (FPL), that
allows for an increased flexibility in leveraging the resources
available at Internet-of-Things (IoT) and mobile user devices.
FPL achieves this goal by combining both data and model

𝑦"
𝐶! 𝐶" 𝐹! 𝐹"

Fig. 2. Top: example scenario, with two cameras observing the same object,
capturing different views thereof. Bottom: example DNN architecture, taken
from [13], for image classification.

parallelism, thus inherently bringing the benefits coming from
both approaches. Like D-SGD and SL, it enables splitting
one model across multiple nodes, thereby associating different
learning tasks to different nodes, and, like FL, it can leverage
an arbitrary number of nodes performing the same learning
task on their own local data: knowledge of such a number is
not needed at the time of designing the DNN architecture, so
long as it remains constant for the duration of the training. At
the same time, FPL supports partial replication of the model
across multiple devices working on different data, thereby
achieving indeed both model and data parallelism. Such higher
flexibility is obtained by including an additional layer in the
DNN topology to accommodate data coming from different
sources. Importantly, such layer can also be effectively used
to properly weigh input data depending on their quality. To
assess the impact of this additional layer, we compare the FPL
communication, computation, and energy costs against those
of FL and D-SGD, using state-of-the-art DNN architectures
and large-scale, de facto standard datasets.

The remainder of the paper is organized as follows. Sec. II
introduces the FPL paradigm, along with the main use cases
it targets. Then Sec. III and Sec. IV describe the experiments
we perform and the insights they provide. Finally, Sec. V
concludes the paper.

II. THE FLEXIBLE PARALLEL LEARNING PARADIGM

Learning problem formulation. A distributed learning
problem includes a set I = {1, . . . , I} of learning nodes,
all cooperating in order to optimize a model composed of
layers L = {l1, . . . , lL}. Node i owns a local dataset Xi and
local parameters wm

i , with m ∈ Li and Li ⊆ L denoting the
layers running at node i. The global model is given by the set
of all parameters for all layers, with parameters of the same
layer present at different nodes being averaged:

wl =
1

|{i ∈ I : l ∈ Li}|
�

i∈I : l∈Li

wl
i. (1)

From the weights and the input data, it is possible to compute
the output of the model ŷ = g(X1, . . . ,XI ,w); as an exam-
ple, in a classification problem, values in ŷ represent the prob-
abilities assigned to each class. The learning objective is to
find the parameters w� that minimize a loss function f(ŷ,y),

where y are the ground-truth. For classification tasks, the most
commonly-used loss function is the categorical cross-entropy

−
C�

c=1

yc log ŷc, (2)

with c = 1 . . . C denoting the existing data classes.
The FPL paradigm targets IoT- and fog-based scenarios such

as the one exemplified in Fig. 2(top), where multiple sources
of data and multiple processing-capable devices are available
and can be leveraged to perform a common learning task, i.e.,
train a DNN such as the one exemplified in Fig. 2(bottom).
The high-level goal of FPL is to use all available data sources
(hence, achieving data parallelism), while distributing different
parts of the DNN across the devices, without duplicating them
unless needed (hence, achieving model parallelism). As an
example, one may want to run the two convolutional layers,
C1 and C2, of Fig. 2(bottom) separately at each of the two
cameras, and then run only one instance of each of the fully-
connected layers, F1 and F2, at an edge-based server.

More specifically, given a DNN architecture, the FPL
paradigm operates as follows:

1) it identifies the DNN layers that should be replicated at
each learning node to leverage multiple data sources;

2) it merges the output of the above DNN layers through
an appropriate junction layer;

3) it distributes the remaining DNN layers across the most
suitable available nodes.

With reference to the example in Fig. 3, FPL creates two
copies of C1 and C2, i.e., one per data source. The outputs
of the two C2 copies, C(a)

2 and C
(b)
2 , are then merged at the

network edge through the junction layer J . The input and
output size of the junction layer match those of the preceding
and succeeding layers; in the example of Fig. 3, J’ input size
will be the sum of C

(a)
2 ’s and C

(b)
2 ’s output sizes, while J’s

output size will be equal to the input size of F1.
We remark that a fundamental aspect of FPL is how it

handles DNN merges. One option would indeed be averaging
the parameters, as in FL; however, such an approach is often
suboptimal when the data sources are not equivalent, e.g.,
they observe different aspects of the phenomenon [7], [14].
D-SGD and SL opt instead for statically adapting the DNN
architecture to the number of available data sources; however,
this (i) requires changing the size of F1 – and potentially
the whole DNN architecture – when moving to a scenario
with a different number of data sources, and (ii) gives all data
coming from all sources the same weight, regardless of their
quality or importance. A better option is represented by the
FPL paradigm, which combines the information coming from
different data sources by including the junction layer in the
DNN architecture, represented in purple in Fig. 3. The junction
layer is fully-connected and serves two purposes. The first is
to adapt the number of parameters to the size of input and
output layers; such a purpose is achieved by setting the input
and output sizes of J : with reference to Fig. 3, J’s input size
is the sum of the output sizes of C

(a)
2 and C

(b)
2 , while its

𝐶!
(#) 𝐶%

(#)

𝐶!
(&) 𝐶%

(&)

𝑦#
𝐹! 𝐹%𝐽

Fig. 3. Example decisions made under the FPL paradigm. The two convolu-
tional layers of the DNN in Fig. 2(bottom) are duplicated, and an instance of
each layer is ran at each of the two cameras in Fig. 2(top). The outputs are
then sent to the edge-based server, passed through the junction layer J , and
then fed to the rest of the original DNN.

output size is the same as the input size of F1. The second,
and arguably most important, is to automatically learn how to
combine the output of DNN layers running at different nodes.
Indeed, the value of the parameters of layer J describe how
information coming from different sources shall be processed,
especially when they are of different quality. Dataset quality
itself is generally linked with whether a dataset over- or under-
represents some data classes: datasets that do so are of poor
quality, while i.i.d. datasets, adequately representing all types
of data, are of high quality.

Dealing with low-quality, non-i.i.d. dataset is the focus of
several FL studies, including [5], [15]–[17], and the main
strategy they use is assigning to learning nodes weights
reflecting their data quality, thus, the contribution they can
give to the learning process. FPL achieves the same objective
through the junction layer: the values of the parameters therein
– hence, the importance to assign to different data sources –
are found as a part of the DNN training process. Indeed, the
parameters of the junction layer are model parameters like all
others, and are optimized through the same process – forward-
and back-passes, gradient optimization.

Replicating parts of a given DNN and merging them through
a junction layer allows FPL to support both data and model
parallelism, as well as different combinations thereof. If the
scenario or the nature of data require so, FPL allows pro-
cessing data coming from different sources in different ways,
and distributing the necessary layers across various devices.
At the same time, FPL supports scenarios where most of the
processing is executed at the edge, and learning nodes only
perform the operations necessary to reduce the quantity of data
to transfer (e.g., running a convolutional layer).

Difference w.r.t. FL, D-SGD, and SL. FPL shares with
the three distributed learning paradigms discussed earlier,
namely, FL, D-SGD, and SL, the high-level goal of allowing
a distributed set of nodes to cooperatively perform a learning
task. There are, however, fundamental differences in the com-
putations performed by nodes, and the data they exchange:

• under FL, all nodes run the same model, and exchange,
after one or more local epochs, the weights (parameters)
of the whole model;

• under D-SGD and SL, each node runs a part, i.e., some
layers, of the model, and node exchange gradient infor-

mation during the forward- and backward-pass of each
epoch.

Under FPL, nodes run a part of the model, similarly to D-
SGD and SL, and also communicate during each epoch. FPL
is, however, superior to all alternatives due to the flexibility
afforded by the junction layer, during both the setup and the
training of the DNN. Thanks to the junction layer, the central
controller is able to adapt the DNN architecture to the number
of data sources at setup-time. Even more importantly, the
junction layer can learn, during the DNN training, how to best
combine the information coming from different data source:
this includes how to deal with different types of information,
e.g., pictures and sensor readings, but also giving a lower
weight (or even a negative one) to lower-quality information.

FPL scalability. The size of the junction layer added by
FPL grows with the number of DNN branches to combine,
which may pose a scalability problem. However, scalability is
ensured by the fact that FPL allows flexibility as to where in
the DNN the junction layer is placed. Indeed, the quantity of
data exchanged between DNN layers decreases as we move
closer to the solution, hence, moving the junction layer deeper
into the DNN helps reducing the number of its parameters.

FPL training. A DNN built according to the FPL paradigm,
i.e., including a junction layer, is nonetheless a DNN shared
across multiple devices, as in the D-SGD or SL paradigms. It
follows that such a DNN is trained with the same methodology
and tools as in D-SGD and SL, i.e., with forward- and
backward-passes within each epoch. Nodes exchange gradient
information during each pass of each epoch, and parameters
are optimized through distributed algorithms such as ADAM.
Indeed, the FPL paradigm seeks to innovate how DNNs are
built and distributed across devices, while leveraging existing
training techniques.

Building DNN architectures with FPL. The flexibility of
the FPL paradigm extends to its support for multiple decision-
making strategies and algorithms: the paradigm itself does
not mandate or require any specific strategy to choose which
DNN layers to replicate and how to place them across the
participating nodes. Indeed, any of the existing approaches in
the literature [18], [19] can be accommodated within the FPL
paradigm. However, the addition of a junction layer implies
additional parameters to train and might lead to larger latency
or processing power consumption. Assessing and quantifying
such costs – if any – is indeed one of the main goal of our
experiments.

III. EXPERIMENT DESIGN

Channel and transmission model. Similar to [18], we
assume that all nodes are equipped with cellular antennas and
are covered by the same eNB, with the edge-based sever being
co-located with an eNB itself. Nodes are randomly distributed
in a 500 m-radius circular area around the eNB. The data rate
achieved for transmissions from node i to node j is given
by [18]:

rB log2Ehi

�
1 +

Pihi

I +BN0

�
, (3)

Fig. 4. An example image from EMNIST: original (top left), blurred (top
center), erased (top right), horizontally flipped (bottom left), vertically flipped
(bottom center), cropped (bottom right).

where r is the number of resource blocks (RBs) assigned
to the communication, B is the bandwidth of each RB, Pi

is the transmission power (30 dBm for the eNB, 10 dBm
for the UEs), N0 = −174 dBm/Hz is the noise power
spectral density. hi = oid

−2
ij is the channel gain, where

dij represents the distance between the terminals, and oi
the Rayleigh fading parameter. Consistently with LTE, we
consider a 20 MHz bandwidth, divided into 100 RBs, assigned
according to proportional-fair scheduling.

We compare the FPL paradigm performance and costs
against state-of-the-art alternatives from the viewpoint of (a)
learning accuracy, (b) model size, (c) learning time, (d) net-
work overhead, and (e) energy consumption. We assess the
performance of FPL and its alternatives over a classification
task, based on the EMNIST dataset [20].

EMNIST has been introduced to provide a more challenging
variant of the famous MNIST handwritten number dataset, and
includes a total of 814,255 images belonging to 62 classes
(26 uppercase and lowercase letters, plus ten digits). All
images are in gray-scale and have a size of 28 × 28 pixels,
hence, they can be represented as 28×28×1 three-dimensional
tensors. The main reasons for using the EMNIST dataset are its
relative simplicity and wide availability. Due to the former, we
can compare the performance of FPL to its alternatives using a
streamlined DNN architecture, as detailed next. Thanks to the
latter, our results can be reproduced, generalized and compared
against other existing works.

As shown in Fig. 2(top), our goal is to assess the effect of
FPL and its alternatives when dealing with different, partial
views of the same phenomenon. To emulate this, we apply
to the EMNIST one of the five transformation exemplified in
Fig. 4: Gaussian blur; random erasure; horizontal or vertical
flip; random crop. Unless specified otherwise, to perform the
classification task, we use the DNN architecture proposed
in [13] and represented in Fig. 2(bottom), including two CNN
layers (each followed by a max-pooling layer, not represented
in the figure) and two fully-connected layers. The DNN, as
well as the image transformations, is implemented in Python
using the PyTorch framework. We selected PyTorch over
the more popular TensorFlow framework due to the greater
control the former affords over the manipulation of data, which
simplifies implementing the newly proposed FPL paradigm.

5 10 15
Epoch

0.00

0.25

0.50

0.75

1.00

Va
lid
at
io
n
lo
ss

original
SL

FPL: J → F1

gFL: F1/F2

Fig. 5. Validation loss of FPL and its alternatives. Markers indicate the
iteration at which the loss reaches its minimum value, hence, training can
be considered complete.

We compare FPL against the following alternatives:
Split Learning: we implement the “vertical partitioned data”
variant of SL, introduced in [12, Sec. 2]: the convolutional
layers are duplicated, with an instance thereof running at each
data source. The input size of layer F1, which is the first non-
duplicated layer, is adjusted so that the concatenated outputs
of the duplicated layers can be fit therein.
Transfer images: one single model is trained using all of the
five image sources. This entails transferring the images to the
edge, thus incurring additional network overhead and delay;
Generalized FL (gFL): models for each of the five image
sources are separate, but some or all their layers are averaged
at the end of each epoch. This reproduces and generalizes FL.
Since the input datasets are not i.i.d., the FedProx strategy [17]
is used in lieu of the more common FedAvg to combine the
updates coming from different nodes. One averaging round is
executed after each local computation one.

We run our experiments using a server with a 40-core
Intel Xeon E5-2690 v2 3.00 GHz CPU, 64 GB of memory,
and equipped with a Tesla K80 GPU. We have opted not to
use GPUs for training, in spite of the fact that PyTorch is
able to exploit them, and doing so would have resulted in
faster learning times. The main reason is that GPU usage is
comparatively tricky to track, while – via the psutil library
– it is possible to accurately measure the CPU consumption
(hence, learning time and energy cost) associated with both
FPL and the benchmark solutions.

IV. PERFORMANCE EVALUATION AND DISCUSSION

The first aspect we are interested into is the convergence
behavior of FPL and its alternatives, depicted in Fig. 5, where
J → F1 denotes that the junction layer in FPL is placed
before layer F1 of the original DNN, i.e., between the second
convolutional layer C2 and the first convolutional layer F1. For
gFL, we list the layers that are averaged à la FL, e.g., F1/F2

indicates that the two fully-connected layers are averaged
(while the convolutional ones are kept separate).

The plot shows the value of the loss function (2), com-
puted over the validation set at each iteration; convergence
is achieved when the loss function starts increasing, which
signals overfit. It is easy to observe how FPL has the fastest

(a)

SL

tr
an
sf
er
im
g.

gF
L:

F
1
/F

2

gF
L:

C
2
/F

1
/F

2

FP
L:

J
→

F
2

FP
L:

J
→

F
10

0.5

1

1.5

2

2.5

N
o.
of
pa
ra
m
et
er
s
[1
07
]

(b)

SL

tr
an
sf
er
im
g.

gF
L:

F
1
/F

2

gF
L:

C
2
/F

1
/F

2

FP
L:

J
→

F
2

FP
L:

J
→

F
10

1

2

3

4

Tr
ai
ni
ng
tim
e
[h
] process

network

(c)

SL

tr
an

sf
er

 im
g.

gF
L:

 F
1
/F

2

gF
L:

 C
2
/F

1
/F

2

FP
L:

 J
→
F 2

FP
L:

 J
→
F 1

100

102

104

N
et

w
or

k
ov

er
he

ad
 [

M
bi

t]

(d)

Fig. 6. Classification task over the EMNIST dataset: learning accuracy (a), number of model parameters (b), training time (c), and network overhead (d)
under the FPL paradigm and its alternatives.

convergence, i.e., it takes fewer epochs to train than its
alternatives. This translates into shorter training times, even
if more operations (e.g., training the junction layer) must be
performed at each epoch.

We next look at the classification accuracy, summarized in
Fig. 6(a). Similarly to Fig. 5, for FPL we indicate the layer of
the original DNN before which the junction layer is inserted,
and for gFL we list the averaged layers.

As one might expect, transferring the images (bar with
blue, horizontal line-pattern) results in the best performance;
intuitively, this is because more data is used for training. The
FPL paradigm (two rightmost bars with green patterns) yields
the next-best performance; specifically, inserting the junction
layer J just before the final fully-connected layer F2 is asso-
ciated with the highest accuracy. gFL (bars with pink/purple
slanting-line patterns) is associated with comparatively poor
accuracy. Indeed, FL-like approaches are best suited when
different learning nodes have access to similar images, e.g.,
the same view captured from different cameras. If, however,
the images are qualitatively different, e.g., flipped as in
Fig. 4, forcing the same model to process all images may
be a suboptimal approach. Using advanced strategies like
FedProx [17] to combine the updates coming from different
nodes does improve the performance compared to FedAvg, due
to FedProx’s ability to deal with non-i.i.d. data, but does not
close the performance gap. As for SL, it outperforms gFL, but
yields a lower accuracy than FPL. Furthermore, it is important
to stress that the configuration of the DNN in SL is tied to
the number of data sources (five in our case). While FPL and
gFL could accommodate any number of data sources, doing
so in SL would require restructuring the whole DNN, which
does not suit dynamic scenarios such as IoT- and fog-based
ones.

Fig. 6(b) shows the size of models under the different
paradigms, quantified through the number of their parameters.
As one might expect, FPL is associated with a larger model
size, due to the introduction of the junction layer J . However,
it is important to remark that the increase in model size is
moderate in both cases.

It is more critical to assess whether the extra parameters

introduced by FPL also result in longer learning times. As
highlighted in Fig. 6(c), FPL’s learning times are comparable
with those of its alternatives, actually shorter than those of
gFL: indeed, the higher number of parameters to train is
compensated by the fact that learning itself is more effective,
i.e., as per Fig. 5, requires fewer epochs. From Fig. 6(c) it is
also possible to observe how, unless we transfer all images to
all learning nodes, processing represents the main contribution
to the global training time.

Tab. I summarizes the energy cost and carbon footprint of
each approach, computed according to [21] for private servers
running in northern Italy and supplied by the national energy
provider Enel, which has a carbon efficiency of 0.243 kg/kWh
according to electricitymap.org. Consistently with
Fig. 6(c), it is clear that the FPL paradigm yields lower energy
consumption and pollution.

Looking at Fig. 6(a)–Fig. 6(c), one may observe that
transferring the images results in the highest accuracy, the
smallest model size and a short training time, but Fig. 6(d),
depicting the network overhead, reminds why such a solution
is not viable in virtually all scenarios. More importantly, the
figure also highlights how FPL is associated with a very
small network overhead – lower than gFL approaches –,
regardless of where the junction layer J is placed. This is
due to the fact that, as highlighted in Fig. 1, FL (unlike FPL)
requires transmitting all model parameters. Also notice how
the scale of Fig. 6(d) is logarithmic, and the advantage of FPL
over FL-based approaches is almost one order of magnitude.
Comparing Fig. 6(b) to Fig. 6(c) and Fig. 6(d), it is also
interesting to remark how the introduction of the junction
layer J under then FPL paradigm mildly increases the model
size, but does not result in longer training times or higher
network overhead with respect to gFL. Intuitively, there are
more parameters but they are easier to train, and do not travel
from a learning node to another.

In summary, the FPL paradigm proves to be an attractive
alternative to present-day approaches like FL or D-SGD. It
provides better learning accuracy, allows for much higher
flexibility and, unlike D-SGD, is a good match for dynamic
scenarios – at the price of a modest increase in model size

TABLE I
ENERGY CONSUMPTION AND CARBON FOOTPRINT ASSOCIATED WITH FPL

AND ITS ALTERNATIVES. FIGURES ARE COMPUTED ACCORDING TO [21]

Strategy Energy [kWh] Carbon [g CO2 eq.]
SL 0.11 38.74
Transfer images 0.13 45.07
gFL: F1/F2 0.23 77.97
gFL: C2/F1/F2 0.33 112.68
FPL: J → F2 0.21 71.45
FPL: J → F1 0.25 84.98

and with comparable learning times and energy consumption.

V. CONCLUSION

To meet the needs of IoT- and fog-based environments,
we have introduced a new distributed supervised learning
paradigm called flexible parallel learning (FPL). FPL exhibits
the advantages of both federated learning and distributed gra-
dient descent, supports the dynamic addition and removal of
learning nodes, and achieves both data and model parallelism.
One of the most distinctive features of FPL is the introduction
of a junction layer, through which data coming from different
sources can be properly combined. We have evaluated the
performance of FPL and its present-day alternatives over an
image classification task, using the EMNIST dataset. The
results highlight how FPL outperforms its alternatives in
terms of learning accuracy, with comparable or lower network
overhead and energy consumption.

Future work will focus on extending the performance eval-
uation of the FPL paradigm considering the ability of the
junction layer to differently weigh the input data, as well
as additional datasets, e.g., CARS or ImageNet, and more
complex DNN architectures, e.g., ResNet and VGG. Although
the FPL paradigm itself works unmodified in these cases, the
different sizes of the DNNs and the images they process may
impact the relative performance of FPL and its alternative
strategies.

REFERENCES

[1] Cisco, “Cisco Annual Internet Report (2018–2023) White Paper,”
https://www.cisco.com/c/en/us/solutions/executive-perspectives/
annual-internet-report/index.html, accessed Feb. 2021.

[2] J. Konečný, B. McMahan, and D. Ramage, “Federated optimiza-
tion: Distributed optimization beyond the datacenter,” arXiv preprint
arXiv:1511.03575, 2015.

[3] J. Kang and et al., “Reliable federated learning for mobile networks,”
IEEE Wireless Comm., 2020.

[4] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. W. Senior, P. A. Tucker et al., “Large scale
distributed deep networks,” in NIPS, 2012.

[5] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE JSAC, 2019.

[6] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale
matrix factorization with distributed stochastic gradient descent,” in
ACM SIGKDD, 2011.

[7] F. Malandrino and C. F. Chiasserini, “Federated learning at the network
edge: When not all nodes are created equal,” IEEE Comm. Mag., 2021.

[8] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “Deep-
learning-based joint resource scheduling algorithms for hybrid mec
networks,” IEEE Internet of Things Journal, 2019.

[9] ——, “Ai driven heterogeneous mec system with uav assistance for
dynamic environment: Challenges and solutions,” IEEE Network, 2020.

[10] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

[11] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, 2019.

[12] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
arXiv preprint arXiv:1812.00564, 2018.

[13] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
arXiv preprint arXiv:1812.01097, 2018.

[14] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,
“Communication-efficient on-device machine learning: Federated dis-
tillation and augmentation under non-iid private data,” arXiv preprint
arXiv:1811.11479, 2018.

[15] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in IEEE INFOCOM, 2020.

[16] T. Nishio and R. Yonetani, “Client Selection for Federated Learning with
Heterogeneous Resources in Mobile Edge,” in IEEE ICC 2019, 2019.

[17] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” arXiv preprint
arXiv:1812.06127, 2018.

[18] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Trans. on Wireless Comm., 2020.

[19] Y. Tu, Y. Ruan, S. Wagle, C. G. Brinton, and C. Joe-Wong, “Network-
Aware Optimization of Distributed Learning for Fog Computing,” in
IEEE INFOCOM, 2020.

[20] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending
mnist to handwritten letters,” in IEEE IJCNN, 2017.

[21] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres, “Quanti-
fying the carbon emissions of machine learning,” arXiv preprint
arXiv:1910.09700, 2019.

