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A Machine Learning Enabled
Multi-Fidelity Platform for the
Integrated Design of Aircraft
Systems
Thepush toward reducing the aircraft development cycle timemotivates the development of col-
laborative frameworks that enable themore integrated design of aircraft and their systems. The
ModellIng and Simulation tools for Systems IntegratiONonAircraft (MISSION) project aims to
develop an integratedmodelling and simulation framework. This paper focuses on some recent
advancements in theMISSION project and presents a design framework that combines a filter-
ing process to down-select feasible architectures, amodeling platform that simulates the power
system of the aircraft, and a machine learning-based clustering and optimization module. This
framework enables the designer to prioritize different designs and offers traceability on the
optimal choices. In addition, it enables the integration of models at multiple levels of fidelity
depending on the size of the design space and the accuracy required. It is demonstrated for
the electrification of the Primary Flight Control System (PFCS) and the landing gear
braking system using different electric actuation technologies. The performance of different
architectures is analyzed with respect to key performance indicators (fuel burn, weight,
power). The optimization process benefits from a data-driven localization step to identify
sets of similar architectures. The framework demonstrates the capability of optimizing
across multiple, different system architectures in an efficient way that is scalable for larger
design spaces and larger dimensionality problems. [DOI: 10.1115/1.4044401]

Keywords: conceptual design, design integration, design of multiscale systems,
multidisciplinary design and optimization, simulation-based design, systems design,
systems engineering

1 Introduction
The popularization of air travel and the increased number of

flights have caused the environmental impact of aviation to rise to
worrying levels. According to a European Commission report on
the impacts of aviation, the CO2 released by the global air transpor-
tation system grew 80% between 1945 and 2014; the NOx emis-
sions doubled in the same period [1], and they are projected to
grow more than 40% up to 2035 if no action is taken. To mitigate
these impacts, the Advisory Council for Aeronautics Research in
Europe (ACARE) has set goals for the aviation industry to reach
by the year 2050 [2]. The ACARE goals include the following: a
50% cut in CO2 emissions per passenger kilometer and an 80%
cut in NOx emissions, plus a reduction in perceived noise to
one-half of current average levels. In order to achieve these ambi-
tious goals, new technologies need to be introduced, and many of
these technologies require higher integration between aircraft
systems and an improved collaboration between the different
actors in an aircraft manufacturer chain. The European Commission
has launched a series of research projects, since the sixth framework
program, and up to the current Clean Sky 2 Joint Technology Initia-
tive [3], as the vehicle to achieve the goals set out by ACARE
through the research and development of processes, tools, and tech-
nologies. These projects aim to develop a more collaborative and
integrated design process of different aircraft systems and comprise
a variety of approaches and applications, ranging from thermal inte-
gration, to electrical architecting, to cockpit design [4–8].

The work presented in this paper is part of the efforts in the
ModellIng and Simulation tools for Systems IntegratiON on Air-
craft (MISSION) project [9], which is part of the Clean Sky 2
initiative. The main objective of the overall project is to develop
an integrated modeling and simulation framework capable of sup-
porting the entire aircraft development cycle and enable collabora-
tion between different entities through the use of open standards
such as the Functional Mock-up Interface [10,11], a cross-tool stan-
dard for co-simulation and model exchange. These design problems
are multidomain in nature and require holistic and multidisciplinary
approaches to the assessment of the impact of technology changes
on aircraft performance.
This paper addresses the problem of integrating multidomain

models and handling libraries of systems representations at different
levels of fidelity for the efficient exploration, analysis, and optimi-
zation of novel aircraft system architectures. Particular attention is
dedicated to the design and optimization of the different power
flows in the aircraft with the demonstration of the framework for
two uses cases related to the adoption of newMore-Electric technol-
ogies in actuation systems. When a new design for an aircraft
system is being developed, there are many technologies to consider
integrating. These technologies cover both traditional and novel
design. The choice between different technologies can cause
many changes to the overall system architecture due to a small
change in a specific system. The choice among multiple technology
options for many aircraft systems coupled with the downstream
changes associated with them generates a very large design space.
However, many technologies are incompatible and many architec-
ture options do not fulfill requirements, which leads to large
pockets of unfeasible architectures that can be discarded outright,
and many feasible architectures are suboptimal due to uncon-
strained redundancies and oversizing. An aircraft system architec-
ture includes many components and analyzing its performance is
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a computationally expensive effort due to the multiple components
and behaviors that need to be modeled and simulated. This moti-
vates the need to limit the number of architectures to be evaluated
as it reduces the computational expense. However, not limiting
the designer to well-known designs by over-constraining is also
crucial as the intent is to explore the design space opened up by
new technologies. This motivates the framework presented in this
paper, which is detailed in Sec. 2.
The framework proposed combines a computational module

that filters out unfeasible architectures with an evaluation module
able to capture the effect of the changes at the system level in
the aircraft power architecture. The results from these two
modules are then localized to sets of similar architectures. These
sets are assessed according to different performance metrics to iden-
tify the optimal one. Then, the optimal architecture is computed
within the optimal set. This methodology can be used with models
of different fidelities at different stages of the design process as
the design space is reduced and localized according to the design-
er’s needs.
The evaluation of the aircraft system architecture step requires

the analysis of multiple aircraft system models and necessarily
involves analysis based on multiple disciplines and the interaction
of the disciplines in the design space. The number of architectures
being evaluated in this paper requires that the evaluation step main-
tains a reasonable computational cost per architecture. In order to
achieve this, we explored a broad set of multidisciplinary design
optimization (MDO) approaches. A seminal survey of different
MDO formulations is proposed by Sobieszczanski–Sobieski and
Haftka in 1997 [12], and a subsequent review of the state of the
art was published by Agte et al. [13] and Martins and Lambe
[14]; multiple examples of multidisciplinary design and optimiza-
tion approaches for aircraft can be found in the literature [15–18].
The problem of addressing the design of onboard aircraft systems
within a multidisciplinary framework has been addressed also in
the context of the AGILE project [19–21] by Roy et al. [22] and
by Tfaily and Kokkolaras [23].
In addition to the multidisciplinary aspect of the multiple aircraft

systems, the presence of highly integrated aircraft systems added to
the size of the design space could result in a very computationally
challenging problem if all systems were evaluated at a high level
of fidelity, even if the disciplinary couplings are efficiently
managed. For this reason, the fidelity of the models involved has
to be carefully managed in order to provide the necessary level of
fidelity for the analysis needed in the minimum simulation time.
Multiple approaches to multifidelity problems are present in the lit-
erature, a set of previous works tackle the problem using surrogate
and lower-fidelity models to address the disparity in fidelity [24,25].
Another approach covered in literature focuses in the collaborative
and distributed elements of modeling at different levels of fidelity
[26–28], as well as more recent advancements focused in aircraft
design problems in the SUAVE project [29], Clark et al. [30],
Bryson et al. [31], and the AGILE project [21,32]. There are also
significant contributions to the recent literature on multi-fidelity
approaches under uncertainty [33,34], and more novel approaches
to surrogate modelling techniques [35,36].
In this paper, machine learning techniques are applied not only to

reduce the models to a manageable level of complexity but also to
reduce the number of architectural options after the first evaluation
is performed by implementing a classification algorithm. Numerous
approaches to leveraging machine learning techniques in complex
engineering design problems are present in literature [37–40].
Early applications in the aerospace domain include the use of
support vector machines [41] and kriging [42] and co-kriging
[43] methods for metamodels as well as the application of Bayesian
[44] and neural networks [45] for the classification of architectures
and topologies. More recently, the field of aerospace design has
been enhanced by a broader use of machine learning applications
for a multitude of specific design problems and applications [46–
50]. Previous work in the context of the MISSION project
focuses on the integration of the system-level dynamics with the

aircraft-level [51] and the design of controls for multiple aircraft
systems [52]. This paper leverages the modeling framework pro-
posed in Garcia Garriga et al. [53] to enable trade-off studies
among multiple power architectures in the evaluation of aircraft
system architectures and proposes a principled approach to reduce
the architecture design space and speed up the identification of
the optimal architecture.
We demonstrate the framework proposed in this paper for two

use cases: the electrification of the primary flight control system
(PFCS) and the landing gear (LG) braking system of a short-range
aircraft. The use cases are chosen because PFCS and braking system
electrification are one of the key enablers of the evolution toward
more-electric aircraft [54–56] and, ultimately, fully electric aircraft.
The possible technologies considered to replace the traditional
servo-hydraulic actuation (SHA) system are electro-mechanical
actuation (EMA) and electro-hydrostatic actuation (EHA), in addi-
tion to the original hydraulic actuation and EHA as a backup solu-
tion (EBHA) for the PFCS as in existing more-electric aircraft such
as the A380 and the B787.
In this paper, Sec. 2 explains the methodology applied to the opti-

mization process; Sec. 3 describes the setup of the two use cases ran
to demonstrate the methodology. Then, Sec. 4 presents the results of
the case studies. Finally, Sec. 5 draws the conclusions and outlines
the avenues of future development.

2 Methodology
This section presents the methodology developed for the design

and optimization of power architectures and offers a more detailed
description of its constituent modules. In particular, we propose a
three-step procedure that combines three constitutive modules as
shown in Fig. 1.
The complete set of possible configurations is processed by the

architecture exploration block (I, Sec. 2.1): a computational
module that filters out the unfeasible architectures in subsequent fil-
tering steps. Once the architecture space is sufficiently reduced—
meaning the modeling framework can evaluate its performance
within the time constraints given—the performance of the feasible
architectures is analyzed using the architecture evaluation block
(II, Sec. 2.2). This block consists of high-level modeling platform
for the aircraft’s power systems plus higher fidelity system
models for the systems studied in order to assess their impact at air-
craft level. The results of this evaluation are then processed in the
clustering and optimization block [III, Sec. 2.3]. In this step, the
results are first reduced to significantly different sets of similar
architectures according to given design metrics. Those families of
architectures can then be evaluated for multi-objective optimization
tasks that can occur at the family of architectures level and within
each family. The optimization tasks select the optimal candidate
architecture in two steps: first by shortlisting the best set of architec-
tures and then either identifying the best in class within this set or
choosing the closest architecture to the representative architecture
in the set (centroid). The final outcome is a very reduced number
of feasible and non-dominated architectures, giving the designer
the option to choose the optimal one based on their prioritization
of objectives. Each of these steps is described in greater detail
later in this section of the paper.
This method aims to reduce the number of candidate architec-

tures to evaluate through different subsequent screening steps
while keeping traceability to higher level requirements. The pro-
gressive reduction of the number of architectures to evaluate
(searching for the optimal one) allows the designer to allocate
larger time budget to the single evaluation and run even high-
fidelity, computationally expensive models. Depending on the for-
mulation of the optimization problem and the goal of the designer,
the fidelity of the models within each optimization loop can be
adjusted to the specific accuracy needs and time constraints; in
the context of this paper, this methodology is implemented in a cen-
tralized machine; however, the evaluation of each architecture is not
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dependent on the other and can be distributed across computing
machines.
The selection of the models of different fidelity depends on the

models available in the library, the size of the design space as an
output of the different steps, and the computational effort available
to the designer. The selection can be done manually by the designer
based on an informed decision coming from each of the different
steps in the methodology and can be automated taking into account
the size of the solution space and the computational resources avail-
able. The scope of the work in this paper is to present a platform that
enables this decision by including the library of models of different
fidelity and a principled approach that guides the decision of when
to switch from one level of fidelity to another.

2.1 Architecture Exploration. The design problems tackled
by the proposed methodology are mathematically complex in
nature, and for this reason, the methodology adopts in its first
step the architecture enumeration and evaluation (AEE) method
[57,58] developed at United Technologies Research Center. The
AEE method provides a systematic, rigorous, and exhaustive explo-
ration of the architecture design space for new architectures. The
AEE procedure implements a multi-level filtering process (Fig. 2)

where the design space is adaptively reduced in successive refine-
ment levels. The standard AEE implementation commonly includes
two levels of successive filtering, but those can be extended to
several more where the design space is overly large or the filtering
metrics should be implemented in separate levels such as due to
organizational concerns. In the first level, AEE uses an abstraction
of the architecture space to rapidly explore it and identify feasible
and infeasible solutions. The set of feasible solutions is further
screened using higher fidelity analysis in the second level. A
detailed description of the core procedure is provided by Zeidner
et al. [58] and includes the enumeration of all possible architectures
in the design space represented as abstracted system-technology
combinations and a rapid and efficient generative filtering approach
to pare down the design space by excluding those architectures that
violate application-specific constraints and only generating those
architectures that are feasible.
The framework proposed in this paper implements AEE at the

first filtering level only. The goal is to identify a feasible collection
of possible designs combining different technology solutions, dif-
ferent number of components, and different interconnection pat-
terns between components. Many of the candidate architectures
generated are found to be infeasible or violate regulatory norms,
so the design space can be reduced by imposing constraints.
There is no requirement imposed on the size of the design space
after this exploration step, but rather the constraints imposed to
ensure a reduction by eliminating all potential architectures that
would not be physically compatible or otherwise feasible, for
example, a mathematically possible architecture would connect an
electrical actuator to the hydraulic system, but that is not physically
compatible, therefore that architecture is not considered.
The implementation of these constraints ensures that redundancy

rules are respected and that only feasible architectures are consid-
ered for more detailed evaluations. The reduction of the number
of candidate architectures leads to a containment of the overall com-
putational effort required for subsequent evaluation and optimiza-
tion purposes. For the applications presented and discussed in this
paper, we observe a reduction of three orders of magnitude,
which still leaves a large pool of candidate configurations. A possi-
ble approach to further reduce the number of candidates is over-
constraining; however, over-constraining might compromise a
clear traceability to the higher-level requirements. Therefore, we
proceed in a different way: the remaining feasible architectures
are evaluated through the combination of the system-level models
and the aircraft power platform in the next step.

2.2 Architecture Evaluation. The architecture evaluation
starts once the design space has been initially reduced through the
exploration step. The evaluation step calculates the first-cut set of
results of the impact of the candidate architectures at system and
subsystem level by building a complete model of the system
using available low-fidelity models of the subsystems. The
concept of performing the evaluation of the architecture first at a
higher level is generic for any complex system architecture.
However, the models and the model structure behind this calcula-
tion step are necessarily specific to the application. For the demon-
stration purposes of this paper, we implement this step, and the
whole method, for the design of aircraft systems; therefore, the
architecture evaluation engine is composed of models of the aircraft
power systems.
This evaluation is necessary because in the next step (Sec. 2.3),

the optimal architecture is selected based on the impact metrics at
the aircraft level calculated through this step. This calculation is
done using models of the power systems of the aircraft and a
power platform which manages the interactions between them
with regards to the power flows. Research in this area has
focused on either a small number of options but with more detail
on each of them [59,60], using model-based system engineering
(MBSE) approaches to manage a large number of alternative archi-
tectures but with limited options per system [61,62] or using

Fig. 1 Flowchart schematic of the methodology implemented in
this paper
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heuristics to reduce the size of the design space to a small subset of
architectures [63]. Some literature also focuses on the power distri-
bution of the aircraft [64] and the specific problems of more-electric
system architectures [65,66]. The strategy adopted in this paper
aims at exploring the entire design space with a set of technology
options in successive steps where the fidelity of the models to eval-
uate the systems varies as needed and capturing the downstream
effects in other systems of the different technology options allowing
for the flexibility to evaluate the integration of different technolo-
gies in different systems and domains.
Figure 3 presents a schematic of our modeling framework. Each

of the dashed blocks is a system model implemented in the power

platform to capture the overall flow of different kinds of power
and their impact on aircraft performance. The power platform
includes a library of aircraft system models that represents all the
critical aircraft functions in order to capture most of the effects of
the technology change on the other aircraft systems and their inter-
action. The models for these different systems are realized at differ-
ent levels of fidelity, including models composed of analytical
equations, first-order approaches, historic data for conventional
systems, data tables based on more complex models, and for later
stages in this process, the more complex 0-D dynamic models them-
selves. The structure of the power platform is stored in Matlab and
the different models are called in different tools and programming

Fig. 2 Illustration of the AEE method [58] (Used with permission of UTRC
copyright 2010)

Fig. 3 Structure of the modelling framework
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languages ranging from Microsoft Excel, Python, Matlab, or differ-
ent Modelica tools such as SimulationX depending on the fidelity
and whether they are legacy models or not. Each individual subsys-
tem is represented by its own set of models with a consistent input
and output structure and then built up to the full system following a
modular approach. This results in a platform where for each specific
system there is a dedicated library of models of different levels of
fidelity that can be queried at different stages of the process.
In order to reduce the computational time, the fidelity of the

models is the minimum necessary to capture the impact of the tech-
nology change. For most cases, this means that the model of the
system where the technology change occurs has the most detail,
while other system models are kept simple.
The performance assessment of each architecture relies on differ-

ent system-level key performance indicators (KPIs) such as system
volume and weight and their overall impact on aircraft performance.
The aircraft level impact analysis considers the changes in mass and
power flow in the different systems involved in the candidate archi-
tecture and calculates their impact on the weight, power balance, and
fuel burn of the aircraft. The additional weight of fuel that needs to be
carried and the updated system weight is fed-back to the power plat-
form systems to update their performance requirements until the
design converges to a final set of KPIs at aircraft level. For
example, as the aircraft consumes more fuel, the fuel pump perfor-
mance changes, and they extract a different amount of power from
the engine which in turn changes the overall fuel burn, this causes
a design loop that needs to converge to accurately represent the
impact of the technology change on the aircraft performance.
The models of the individual systems in the power platform have

to account for mass, geometry, electrical, or hydraulic performance,
and mechanical performance of the different systems. This paper
discusses two specific use cases, both dealing with the electrifica-
tion of aircraft actuation functions. For both the cases, all the feasi-
ble architectures are compared against a baseline conventional
aircraft configuration including all-hydraulic actuation and addi-
tional systems constituting what we refer to as the conventional con-
figuration. The conventional configuration includes bleed-air based
environmental control and ice protection systems, mechanical fuel
pumps and other engine accessories, a fuel-burning auxiliary
power unit (APU) and two turbofan engines. The changes in the
actuation systems are considered to be the only change affecting
the power consumption of a given architecture, with all the other
power sinks fixed at the baseline configuration. While this paper
focuses on the implementation of the methodology for this specific
systems and demonstrating its performance, future implementations
of this method will accommodate a larger number of choices in dif-
ferent systems to assess the compounding effects of changing
several systems in a larger number of domains at once.
This performance assessment step requires models of the systems

involved in aircraft operations in order to evaluate the architectures.
In the context of the MISSION project, detailed dynamic models of
the systems are being developed to study the system-level perfor-
mance for design optimization, control design, and system integra-
tion [51]; most of the dynamic models are built in Modelica
language, with the controls being designed in Matlab Simulink.
The dynamic models of the actuation systems are integrated in
the overall MISSION platform. For the application discussed in
this paper, these detailed, high-fidelity models of the actuators are
run offline and mapped into a look-up table, which are then read
during simulation by the power platform. The simulation of the
other aircraft systems acting as power sinks are run using low-
fidelity models since they are not changing from the baseline:
such simplifications do not negatively impact the solution and con-
tribute to contain the associated computational effort.
The sizing constraints for the actuators are derived from regula-

tory load cases and maneuverability requirements [67,68]. The
dynamic performance of an actuator is calculated for the standard
mission phases where the actuator is acting. In addition, the
power requirements during emergency operations (e.g., rejected
takeoff and one-engine landing) drive the sizing of the subsystems

for power generation and transportation. Previous work demon-
strated that the modeling framework used in this paper effectively
captures the compound effects of changing multiple technological
solutions and discussed implementation details for an actuation
use case [53].

2.3 Architecture Clustering and Optimization. The archi-
tecture exploration step reduces the number of design options,
several orders of magnitude, and enables the evaluation of the archi-
tectures. The evaluation step computes the KPIs at the aircraft level
associated with the different candidate solutions. The objective of
this step is to group the candidate architectures into clusters of
similar performance and then identify the optimal architectures
among them. We target this goal by leveraging machine learning
techniques. The clustering step is beneficial because we expect
that some of the small changes at system level amount to effectively
negligible changes at aircraft level. In addition, at the conceptual
design stage, many choices are confined to discrete option
choices and the models do not have the detail granularity to
capture significant impact among subtle differences in design;
therefore, architectures are expected to group in well-segregated
clusters in the aircraft KPI space. The co-located architectures in
the KPI space that show significant similarities could be filtered
in the previous step, thus reducing the design options to assess;
but then, the family of feasible but dissimilar solutions would not
be complete. The approach proposed in this section aims at retain-
ing full visibility of the feasible architectures and manages their
similarity by grouping similar architectures into sets of solutions
after the initial evaluation step (Sec. 2.2).
We use machine learning to identify clusters of architectures as

features in the space of the KPI. A variety of clustering techniques
are proposed in the literature [69–71]. For the design of on-board
aircraft systems, it is commonly observed that sets of architectures
with similar components and minor differences in subsystem
parameters behave very similar and clearly distinct from architec-
tures including different technology options [53,60]. Therefore,
we expect well-segregated clusters in the space of the KPIs; to
learn and capture these structures, we adopt K-means. K-means is
a machine learning technique commonly used for clustering pur-
poses; it relies on a form of competitive learning to identify K
groups of similar input data and compute the associated K centroids.
We use K-means to group the narch architectures that survived the
exploration and evaluation phases (Sec. 2.1 and 2.2) where we eval-
uated the corresponding KPI values with agile models, usually char-
acterized by low-level of fidelity. Specifically, each architecture (τi)
corresponds to a point in the performance space defined by its
weight impact on the aircraft empty weight (Weighti), its impact
on the secondary power extracted from the engine (PowerExti),
and its impact on the total fuel burn of the aircraft (FuelBurni):

τi = [FuelBurni, Weighti, PowerExti], i = 1, . . . , narch (1)

Therefore, we can now assemble a training matrix T of input data
for the K-mean algorithm to find (learn) their structure in the space
of KPIs:

T = τ1, τ2, . . . , τnarch
[ ]⊤

(2)

During training, K-means assigns the architectures to a set of K
clusters according to a similarity metric:

k* = argmin
k∈1,...,K

‖τi − ck‖, i = 1, . . . , narch (3)

In Eq. (3), τi is the ith architecture, ck∈R3 is the centroid of
the kth cluster and represents a point in the K-means input space
(the KPI space); ‖τi− ck‖ denotes the Euclidean distance between
the ith architecture and the kth centroid. Once training is com-
plete, the vectors {ck}Kk=1 represent the prototypes of the K clusters
of architectures; each prototype averages the KPI values of the
architectures within the associated cluster.
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However, the number K of clusters is not known a priori. Our
objective is to exploit the similarity between the different architec-
tures to group them in different clusters, rather than separate them
into predefined sets whose features would be hardly known in
advance. Therefore, we adopt a particular implementation of the
K-means proposed by Arthur and Vassilvitskii [72] that learns the
number of clusters by iteratively updating K at each epoch.
The algorithm is initialized with a first guess of the minimum

number of clusters K=K0. For our implementation, K0 is set to
meet the number of technology options, because we expect these
to play a significant role and have a large impact on the performance
(KPIs) of the systems. Then, a condition is introduced to determine
whether or not incrementing the number of clusters is appropriate:
if the distance between the centroid and the cluster members in
any cluster k is less than a given similarity threshold, K clusters
are considered sufficient to capture the structure of the input
space; otherwise, K=K+ 1 and the learning continues until the con-
dition is met. The threshold is set by the user and is defined upon
considerations on the fidelity level of the models used to compute
the KPIs.
The output of the clustering step is the final set of K cluster cen-

troids {ck}Kk=1 defined in the KPI space. The search of the optimal
solution can now be conducted among the cluster centroids, with
a sensitive reduction (from narch to K ≪ narch) of the number of
candidates to assess and evaluate for the optimization task. There-
fore, this machine learning-based step is crucial as it generates a
smaller and more manageable amount of representative candidate
solutions and permits the optimization task to complete more
rapidly. In this way, the number of architecture configurations to
evaluate and assess for the optimization step are reduced from
narch to K.
The optimization problem is a multiobjective problem [73–76],

where all the objectives need to be minimized. The objectives are
three key performance indicators, namely, aircraft weight f1, shaft
power extracted from the engine f2, and the fuel burn of the aircraft
over the entire mission profile f3. The multi-objective optimization
problem is formulated as a single objective function combining the
objectives according to a weighted sum approach. The optimization
seeks, among the cluster centroids {ck}Kk=1, the one that minimizes
the objective function:

min
ck

∑3

j=1

γj fj (4)

where γj≥ 0, j= 1, 2, 3 are the weights associated with the KPI:
these values encode objectives prioritization and assume values
such that

∑3
j=1 γj = 1. We wish to identify non-dominated solutions

(Pareto front) among the cluster centroids and perform architecture
trade-off studies in terms of KPIs. The Pareto front is generated by
exploring the possible values for the weights using a genetic algo-
rithm. The prioritization of objectives according to specific designer
criteria determines the selection of the optimal solution within the
Pareto set.
Cluster centroids that do not belong to the Pareto front are not

possible solutions to the optimization problem and the architectures
of those clusters are considered suboptimal. However, the optimal
centroids on the Pareto front are not necessarily physical solutions
to the original architecture choice problem. That is, they are not nec-
essarily a real architecture that can be implemented at the aircraft
level. There are two possible solutions to this problem. First, the
closest point in the cluster to the centroid can be thought of as the
representative real solution for that particular cluster. This occurs,
for example, because the design choices that differentiate the archi-
tectures within the cluster are not known. However, this approach
does not identify a rigorously optimal architecture: a better architec-
ture might exist within the cluster, but further away from the cen-
troid. The rigorous solution is to run a second optimization loop
within the architectures of the cluster. This paper follows the
latter approach.

Architecture clustering and the optimization step are introduced
to find the optimal architectures according to the prioritization
given by the user in a principled and efficient manner. In addition,
it provides traceability from the objectives of the optimization func-
tion to the architecture sets, the individual architectures, all the way
to the technology choices made in the very first step of the process.
The progressive reduction of the number of candidate solutions to
evaluate allows running higher fidelity models to predict architec-
ture performance at a later stage. In fact, depending on the available
computational budget and the specific approach chosen, high-
fidelity models can be run for the representative architectures of
each cluster or for all the architectures within the optimal cluster.

3 Problem Setup
The methodology proposed in this paper has been implemented

for two use cases concerning the integrated design of an aircraft
power system architecture. The two use cases cover the electrifica-
tion of (1) the primary flight control system (PFCS) and (2) the
landing gear braking system of a commercial aircraft. The interest
for these use cases is motivated by the key role played by electric
PFCS and electric braking in enabling the transition toward fully
electric aircraft in the future. For this reason, more electric actuation
is already onboard in recent aircrafts such as the A380, the B787,
and the A350. To achieve the goal of flying with fully electric actu-
ation, several technologies are identified as possible solutions,
including electro-mechanical actuation (EMA), electro-hydrostatic
actuation (EHA), and EHA as a backup system (EBHA) to a
hydraulic actuator (as adopted by the A380 in the PFCS).
This work focuses first on the analysis and design of the primary

flight control system in order to show the method and results. The
paper then focuses on demonstrating the repeatability of the
method for the second use case of the electric braking system.
Both the use cases discussed in this paper are chosen to be the rep-
resentative of a short-range, single-aisle aircraft, in the 150–200
passenger class.
At aircraft level, the values of model parameters are chosen for

given aircraft configuration, size, geometry, and mission require-
ments, which in turn define size, geometry, and behavior constraints
for the different systems and determine sets of performance require-
ments for the different design choices. An unconstrained explora-
tion of a design space with multiple components, technology
options, and interconnections generates a very large number of
architectures to be considered. For example, both the use cases dis-
cussed in this paper present a number of actuators for which three or
four technology options are available, in addition to a number of
other components of the associated system and all their inter-
connections, leading to a large number of candidate architectures.
To limit the number of architectures to evaluate, sets of feasibility
and compatibility constraints are derived from the requirements
defined at aircraft level and applied at system and component level.
The two large design spaces that characterize the use cases con-

sidered in this paper motivate the need for an efficient method to
down-select feasible architecture configurations and enable their
optimization based on multiple performance objectives. The meth-
odological approach and the framework presented in Sec. 2 are
applied to these two uses cases described in Secs. 3.1 and 3.2; the
results are discussed in Secs. 4.1 and 4.2, respectively.

3.1 Primary Flight Control System. The first use case is
the primary flight control system (PFCS) for which we adopted
the configurations discussed by Brière et al. [77]. At system level
on the PFCS, each control surface is moved by two or three actua-
tors, each characterized by a different actuation technology, geom-
etry, attachment characteristics, kinematics, aerodynamic loads,
stroke, speed, etc. In particular, we consider the configuration illus-
trated in Fig. 4, which includes: four aileron actuators (two per sur-
face), four elevator actuators (two per surface), and three rudder
actuators. For the 11 actuators in all control surfaces and allowing
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four technology options for each actuator, the design space includes
at least 411 (in the order of 106) architectures. In addition to the actu-
ation systems, the flight control system includes other components
such as the flight control computers and the power sources, which
increase the number of possible configurations and, in turn, lead
to a large number of candidate architectures. This large number
means that the evaluation and optimization of all of them are prac-
tically not feasible since these are computationally heavy steps.
However, not all the possible combinations are feasible and there

are some constraints on the design problem that can be imposed in
the architecture exploration stage. For the case of the PFCS, we
adopt some of the constraints proposed by Bauer et al. [78]:

• The left and right aileron and elevator must be exactly
symmetrical.

• Each actuator must be connected to the appropriate power
source type: for instance, a SHA must be connected to a
hydraulic power source, an EMA must be connected to an
electric power source.

• Depending on the actuators in the architecture, an appropriate
power source (hydraulic and/or electric) must be generated.

• Each actuator must be connected to at least one flight control
computer and to a maximum of two FCCs.

• Each actuator must be connected to only one control surface;
• The actuators for each primary flight control surface must be of

(at least) two different types.

These constraints allow for the design space to be reduced to the
feasible architectures only, making subsequent evaluation steps
computationally possible. In addition, some of these constraints
are applicable for the second use case of the electrification of a
landing gear brake described in Sec. 3.2.

3.2 Landing Gear Braking System. The type of aircraft con-
sidered for this use case is a short-range, single-aisle aircraft, like
the A320 and the B737. This class of aircraft characteristically
has two main landing gear struts with two wheels in each. Each
of the wheels in the main landing gear includes a brake system.
The brake system includes a stator-rotor assembly usually made
of carbon. They perform the braking function by moving the
stators into the rotors in a linear motion. This motion can be
caused either by hydraulic cylinders or by electric actuators, cur-
rently varying in number from four to eight, see an example of
the actuation architecture of four brakes in Fig. 5. Three technology
choices are considered: SHA, EMA (which are already installed and
flying in commercial aircraft), and an EHA option is also being
explored. Since there are three design options for the actuators
and anywhere from 16 to 32 actuators present in all the brakes, at
least 316 architecture options (in the order of 108) plus several
options for the controllers and the power line choices, the design
space becomes really large as was the case for the PFCS.
Similarly to the preceding use case, many of the potential candi-

date architectures are not feasible or violate regulatory norms. In

order to reduce the design space to a feasible size, the following
constraints are imposed:

• The left and right landing gear systems must be exactly
symmetrical

• Each actuator must be connected to the appropriate power
source type: for instance, an SHA must be connected to a
hydraulic power source, an EMA must be connected to an
electric power source;

• Depending on the actuators in the architecture, an appropriate
power source (hydraulic and/or electric) must be generated;

• Each actuator must be connected to at least one brake control-
ler and to a maximum of two brake controllers

• Each actuator must be connected to only one brake stator.
• Each brake has to include at least four actuators and no more

than eight actuators.
• There has to exist at least two distinct power sources powering

the actuators of a single brake.

In addition to these feasibility constraints, one practical commer-
cial consideration is added: the brakes for all the wheels of the same
kind of airplane should be identical. Brakes have to be replaced often
due to wear and as such if the brakes are distinct, maintenance oper-
ations become much more expensive as several different part
numbers have to be in stock. This consideration effectively reduces
the problem to a single brake system design but its impact at the air-
craft level is amplified because of the multiple instances of it.
The set of design options and the constraints imposed define the

design space to be explored in the first step of the methodology and
subsequently evaluated and optimized as explained in Sec. 2. Each
of the use cases has a set of candidate architectures, and the results
at each step of the methodology that will be detailed in Sec. 4.

4 Results
In this section, the results for both use cases described previously

are presented. For the case of the PFCS, a more detailed description
of the implementation of the methodology and its results are given.
The same methodology is also applied to the landing gear case, the
discussion on the second use case focuses on demonstrating that the
same methodological framework can be used for different
problems.

Fig. 4 Primary Flight Control actuators configuration for the
A320

Fig. 5 Braking system actuation case study setup
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4.1 Primary Flight Control System. As described in Sec. 2,
the first steps in the method are the exploration of the feasible archi-
tectures in the design space and then their evaluation according to
their performance at the aircraft level. In the first step, the PFCS
architecture design space is reduced from a design space of at least
411 (in the order of 106) to a design space in the order of 103.
Figure 6 illustrates the results obtained after these first two steps;
the architectures are plotted in the 3D space of performance indica-
tors (weight, fuel burn, and power extracted). All the results are pre-
sented as percentage change with respect to the baseline to measure
the impact of a technology decision on the current configuration.
There are thousands of architectures evaluated, but due to the size
and impact of the system, a lot of their internal differences are
nearly negligible at the aircraft level and there are segregated group-
ings. Significant changes among these architectures are major design
choices like the actuators being different technology types or a signif-
icant enough change in the number of control computers or power
connections used, for the most part, the difference among the archi-
tectures chosen are slight changes in routing from the architectures to
the controllers and the power sources that constitute a change in the
architecture but have a small impact at the aircraft level (i.e., EMA1 is
connected to FCC1 and FCC2 or to FCC1 and FCC3).
For the K-means algorithm, one of the input parameters is the

number of clusters to identify. The number of clusters is not
known a priori. In 3D result space (Fig. 6), the data can be visual-
ized and a first estimate of the number of clusters can be determined
through direct observation. However, for higher dimensionality
problems, the visualization of the results is difficult, and the clusters
cannot be easily visualized and identified. To overcome this limita-
tion, the K-means algorithm adopted for our studies iterates over
different number of clusters (Sec. 2.3). The starting point of the iter-
ation is the minimum given by the number of technology options,
which is K0= 4 (SHA, EHA, EBHA, EMA). The iteration proceeds
to the next integer until the number of clusters K satisfies the
requirements about in-cluster similarity computed in terms of sum
of distances; this requirement on the sum of distances is set at
0.001. Each of the clusters defined by the K-means algorithm con-
tains a subset of the original architectures with similar perfor-
mances. Figure 6 depicts the cluster centroids and the assignment
of the architectures to each cluster.

A summary of the results of the different clusters can be found in
Table 1; we can observe that not all clusters have the same cardinal-
ity or the same average distance. There is one cluster, ID# 8, which
has a single member: this is the baseline architecture. The baseline
architecture significantly differs from all the others such that if it
were to be included into a different cluster, the sum of distances
of that cluster would go over the desired limit. Once the clusters
are defined, the number of solution candidates is reduced to
cluster centroids; having the baseline in a separate cluster makes
it coincident with its cluster centroid and includes it in the set of
candidate solutions explored during the search for the optimal one.
Figure 7 depicts the results of the optimization process emphasiz-

ing the Pareto front of non-dominated cluster centroids. For this
case, the front includes four cluster centroids, one of which is the
baseline point at the (0, 0, 0) point in the graph.
The resulting cluster centroids do not necessarily represent real

architectures that can be physically implemented. Therefore, we
need to refine the selection to a real set of architectures identified
by the architecture exploration step. A possible solution to this
problem is to substitute the cluster centroids with the closest real
architecture in the performance space and compute the optimal
set (the Pareto front) over the real candidates. In this case, the set
of optimal architectures in the Pareto front are real solutions and
can be traced back in the original design space.
A drawback with this approach is that, although the closest point

to the centroid is the most representative of the whole cluster, it
might not be the overall optimum. Within the same cluster, there
might be a point that has better performance with regards to the
objectives. Figure 8 illustrates an example of this distribution occur-
ring within a cluster. Depending on the point in the design process,
the two solutions (optimal and closest) might be the same for the
designer, because they both include the same combinations of tech-
nologies at the top level, and they only differ in small connections or
slight geometrical differences. A designer at the conceptual design
stage might not have the visibility and the granularity with regards
to his/her knowledge of the integration in the aircraft. In this case,
the choice of the real solution closest to the centroid represents
the most efficient approach. In contrast, if that level of detailed
knowledge is available, an extra discrete optimization loop to iden-
tify the best solution within the cluster is appropriate. In this paper,
we demonstrate the latter approach. For the clusters in the optimal

Table 1 PFCS cluster characteristics

Cluster ID# 1 2 3 4 5 6 7 8 9 10
Cardinality 100 1000 1000 100 1000 10 1000 1 10 10
Sum of distances 8.18E−7 1.06E−6 2.33E−6 5.23E−7 7.10E−7 9.04E−8 7.50E−7 0 8.83E−9 6.61E−6

Fig. 6 Feasible PFCS architecture 3D space and cluster
centroids

Fig. 7 Pareto front of cluster centroids for PFCS
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set, we run internal optimization tasks to identify the optimal archi-
tecture within each cluster, except for the baseline architecture that
constitutes a dominant cluster by itself. The baseline architecture is
part of the optimal set because the hydraulic actuators are lighter
than all electrical actuator options, and the all-hydraulic architecture
is, therefore, lighter overall and dominates along the direction of the
weight objective.
The performance of the optimal architectures is presented in

Fig. 9. If the only objective was minimizing the weight, the baseline
remains the optimal option. However, if the objective is to minimize
either the power extracted or the fuel burn, the Pareto 3 architecture
dominates other points, even though it is over 1.5% heavier than the
baseline. Taking the objectives as equally weighted and ignoring
the baseline solution, Pareto 2 is the optimal overall architecture
since the weight penalty is not so severe as for Pareto 3 and
largely offset by the reduction in the power extracted from the
engine. The increase in engine efficiency means that the total fuel
burn for the aircraft in this specific mission is slightly reduced;
this reduction is relatively small as the performance estimates for
the models are conservative in nature, and the benefit from the per-
formance is offset by the increase in weight due to the actuators
themselves as well as the increase in the mass of the electrical
system. Details about what technology choices are included in
each Pareto front architecture are listed in Table 2. Even if
these technology choices belong to the optimal solution within
each of the clusters, the technology solution of the rest of the archi-
tectures in the same cluster is very similar, only with slight changes
in the location of the actuator or the routing of the power
distribution lines.

Table 2 presents the details of the configuration of the three archi-
tectures in the Pareto front. The optimal architecture (Pareto 2) is a
combination of EMA and EHA actuators in an all-electric actuation
configuration for the main wing. The main wing all-electric config-
uration allows all the hydraulic lines feeding the actuation along the
length of the wing to disappear and be replaced by wires which
offsets the penalty in weight from the heavier actuators, whereas
the hydraulic lines cannot disappear completely as they run the
length of the fuselage because of the presence of the APU, and
therefore, the benefit of an all-electric horizontal tail actuation
system is reduced. Including all technology options allows for tech-
nology differentiation, a feasibility requirement, and provides a
balance between the heavier but more power-efficient EMA and
EHA, and the lighter SHA. For Pareto 3, the weight penalty in
the electric actuators is too high to justify the increase in power effi-
ciency and fuel burn with the current weights, and Pareto 1 includes
SHAs to mitigate the weight penalty but are penalized for their
lower power efficiency and the presence of hydraulic lines along
the wing.
This solution only applies to the particular use case presented

here, with the system models for each of the technology solutions
fixed at certain conservative performance thresholds and the
power platform adjusted for the particular aircraft performing a par-
ticular mission. Therefore, this specific solution cannot be extrapo-
lated to other aircraft or other cases. However, the method can be
applied to other technology solutions, expanding the design space
to include other considerations such as maintenance and cost or it
can be reformulated for the primary flight control distribution of
other aircraft, considering their particular characteristics, and
further trade studies can be carried out utilizing the same method.
This study demonstrates the capability of our methodology to

perform an efficient selection of the optimal architecture from an
initial set of design candidates in the order of 106 architectures. In
particular, the optimal architecture outperforms the baseline with
regards to power and fuel burn. In other studies, several architec-
tures might be equally optimal depending on the importance of
the objectives, but this framework is conceived to incorporate this
flexibility and provide the necessary visibility to track which tech-
nology choices determine the optimal architectures. The framework
also permits to manage system models characterized by different
levels of fidelity and incorporates enough flexibility to provide solu-
tions for similar problems but in different aircraft systems, different
aircraft, or different missions.

4.2 Landing Gear Braking System. The brake system archi-
tecture design space is reduced from a design space of at least 316 (3
actuator options, 16 actuator locations), in the order of 108 architec-
tures, to a brake design space in the order of 102 just in the first step
of the methodology, the architecture exploration step. The hundreds
of candidate architectures are then evaluated and visualized accord-
ing to the KPIs given through the use of the same evaluation plat-
form as described in the previous use case. Similarly to the PFCS
use case, the architectures present in Fig. 10 are tightly grouped
due to the limited impact of a small change in the braking system
in the overall aircraft performance space.
Following the same process as for the PFCS, the architectures are

then grouped in 13 clusters of similarly performing architectures.
This number of clusters is reached after setting the iterative
K-means to iterate until the similarity metric, sum of distances, is
less than 0.001 as in the case of the PFCS. Figure 11 illustrates
the resulting performance space. We can distinguish three broad
groups of clusters in the space of KPIs (indicated with circles):
(1) the baseline that constitutes a single point cluster; (2) another
group formed by architectures with higher number of actuators
and more traditional actuator technology options; (3) a third
group of better performing clusters that is composed of architectures
with a smaller number of actuators but more changes in the technol-
ogy options of the actuators. The Pareto front of non-dominated
architecture cluster has also been calculated and illustrated in

Fig. 9 Performance of the architectures on the PFCS Pareto
front

Fig. 8 Cluster internal structure example
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Fig. 11 with a linear surface interpolating between the four Pareto
cluster centroids. Two other architecture cluster centroids in the
third group are very close to the Pareto front but are dominated
by the Pareto points.
The clusters in the Pareto front are further subject to the internal

optimization process, as done for the PFCS use case, and the
optimal architectures within them are selected as representative
Pareto front architectures. The technology choices present in each
of them are detailed in Table 3. All the architectures in the Pareto
front presented in Table 3 are hybrid architectures as the compound

benefits of eliminating the hydraulic power system from the aircraft
are not considered for this study.
Figure 12 presents the performance of each of these architectures.

The architectures in the Pareto front perform better than the baseline
for power extracted and fuel burn; two of them (Pareto 1 and 2) are
also lighter. Even though the electric actuators are heavier than the
original hydraulic, the reduction in the size of the hydraulic sys-
tem offsets this increase in weight and actually produces weight
benefits when only one electric actuator is present. As expected,
upon the results observed for the flight control case study
(Sec. 4.1), the power performance of the electric actuators is better
than for the hydraulic, with the EMAs outperforming the EHAs.
Still, the EMA improvement in performance is enough to provide
benefits with regards to fuel burn even with its larger weight,
although the improvement in terms of fuel burn is less than 0.1%
and therefore, largely negligible. This is due to the fact that, unlike
the PFCS, the braking system is only active in the ground por-
tions of the mission, and the only operation point where its power
consumption is significant is during landing. This means that the
penalty for carrying extra weight affects the whole mission
whereas the benefit of the lower power consumption is only
present for the small window of time during landing, showing how
for this application the framework assists the designer in informing
their choices earlier in the design process.

5 Conclusions
This paper proposes a procedure to assist the system optimization

at early design stages accounting for significant changes in technol-
ogy at the system level and their impact on aircraft performance.
The process was demonstrated for the electrification of the PFCS
and the braking system of a short-range aircraft. The impact of
the different technological options at aircraft level is measured in
terms of changes in empty weight, fuel burn, and power extracted
(KPIs) with respect to the conventional architecture. The process
presented in this paper is extendable to a broad spectrum of
similar problems requiring an early assessment of system technol-
ogy impact on aircraft configuration and performance.

Table 2 Optimal PFCS architecture technology solution

Architecture Aileron in Aileron out Elevator in Elevator out Rudder up Rudder mid Rudder down

Pareto 1 SHA SHA EHA EMA SHA SHA EMA
Pareto 2 EMA EHA SHA EHA EMA EHA EMA
Pareto 3 EMA EMA EHA EHA EMA EHA EMA

Fig. 10 Braking system feasible architecture 3D space

Fig. 11 Pareto front of braking system architecture clusters

Table 3 Optimal landing gear braking actuation architecture
technology solution

Architecture Brake top Brake right Brake left Brake bottom

Pareto 1 SHA SHA EHA SHA
Pareto 2 SHA SHA EMA SHA
Pareto 3 SHA SHA EMA EMA
Pareto 4 SHA EMA EMA EMA

Fig. 12 Performance of the brake architectures on the Pareto
front
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The procedure combines a first-level filtering (that sensitively
reduces the number of possible solutions) with an architecture local-
ization process (that further reduces the cardinality of the solution
candidates). The methodology follows three steps, each reducing
the number of candidate architectures of several orders of magni-
tude. The cardinality of the design options is reduced from 106 to
103 in the exploration phase, then to 101 in the clustering stage,
and eventually to the single best architecture picked in the Pareto
front according to the designer’s objective prioritization. The incre-
mental approach to architecture screening leads to a reduction in the
overall computational time associated with the optimization task (as
less architectures have to be analyzed) and permits to allocate a
larger time budget for analysis and simulation (for the use of higher-
fidelity models). The overall framework permits the traceability of
the performance of all the results back to the original requirements
and technology choices and allows the decision-maker to prioritize
objectives according to their needs.
The process was demonstrated for the electrification of the PFCS

and the braking system of a short-range aircraft. The impact of the
different technological options at aircraft level is measured in terms
of changes in empty weight, fuel burn, and power extracted (KPIs)
with respect to the conventional architecture. The general method
proposed in this paper can be extended to design problems account-
ing for a broader spectrum of KPIs including cost, reliability, main-
tainability, and manufacturing ease. This requires additional
specific model libraries to be added to the modeling platform. For
instance, reliability assessment requires fault hazard analyses to
be conducted for each candidate configurations; cost considerations
require models that often rely on proprietary information of the
manufacturers and that can be included as black boxes or historical
estimates. Future avenues of development would include a broader
set of KPIs, the integration of surrogate models in the later optimi-
zation steps along with further strategies to intelligently manage
variable fidelity in the models at different stages in the process.
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Nomenclature
ACARE = Advisory Council for Aeronautics Research in

Europe
AEE = architecture enumeration and evaluation
APU = auxiliary power unit

EBHA = electric backup hydrostatic actuator
EHA = electro-hydrostatic actuator
EMA = electro-mechanical actuator
KPI = key performance indicators
LG = landing gear

MBSE = model-based system engineering
MDO = multidisciplinary design optimization

MISSION = ModellIng and Simulation tools for Systems
IntegratiON on Aircraft

PFCS = primary flight control system
SHA = servo-hydraulic actuator
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