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Beyond-CMOS Artificial Neuron: A simulation-
based exploration of the molecular-FET

Fabrizio Mo*, Graduate Student Member, IEEE, Chiara Elfi Spano*, Yuri Ardesi,
Graduate Student Member, IEEE, Gianluca Piccinini, Mariagrazia Graziano

Abstract—The recent growth of Artificial Neural Networks
fueled the design of numerous Artificial Intelligence (AI) ded-
icated hardware implementations. High power dissipation, com-
putational complexity, and large area footprints currently limit
CMOS based real-time embedded AI applications. In this work,
we design and simulate through SPICE, for the first time, an
artificial analog neuron based on the molecular Field-Effect
Transistor (molFET) technology. MolFETs are described by a
circuital model whose physical characteristics are extracted from
atomistic simulations. The designed neuron is a single column
of a crossbar-like circuit representing a layer of seven parallel
neurons. The drain currents sum up in a soma-like circuit -
modelled through a comparator - and trigger the output pulses.
We demonstrate the advantages of the molFET in terms of area,
power, and speed by comparing it with a conventional MOSFET
implementation. The results confirm the molecular technology is
a promising candidate for accomplishing high neuron throughput
capability and massive redundancy, still providing high energy
efficiency. The obtained results foster further investigation of
molFET technology both at the device and circuit level.

Index Terms—Artificial Neuron, Artificial Neural Networks,
Molecular Electronics, Molecular transistor, Molecular-based
circuit modeling.

I. INTRODUCTION

RECENTLY, Artificial Neural Networks (ANNs) gained
popularity in emergent Artificial Intelligence (AI) appli-

cations such as: computer vision [1], [2], speech recognition
[3], acoustical data processing [4] or, more in general, big
data processing and security [5], sensors and e-noses [6],
[7]. Among the possible types of ANNs, the Spiking Neural
Network (SNN) model was recently exploited to emulate
the human’s brain [8]. The massive amount of data and
large computational effort required by ANN applications pro-
moted the development of algorithms optimized for high-
performance computing [9]–[12] which are still prohibitive
in terms of computational complexity and energy efficiency,
strongly limiting the advancement of innovative applications.
Recently, the scientific community raised the interest for
ANN Application-Specific Integrated Circuits (ASICs) and
accelerators for System-On-Chip (SoC) integration [13], [14].
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Their original parallel processing capabilities favour high
speed, whereas architecture optimization permits low area
and power consumption [15]. Unfortunately, CMOS ANN
dedicated hardware is still above the so-called power envelope
imposed by real-time embedded AI applications [16]. In this
framework, viable solutions came from proposal of artificial
neurons implemented with Beyond-CMOS technologies [17]–
[26]. Among them, the molecular one promises high paral-
lelism and redundancy, keeping high energy efficiency [21].

We envision two approaches in the investigation of artificial
molecular neurons: (1) Consider novel molecular devices that
naturally emulate a neuron or a synaptic network. As an exam-
ple, [21] reports randomly deposited molecule-interconnected
metal nanoparticles forming a synaptic grid; (2) Replacing
CMOS transistors with molecular devices, enabling the re-
use of conventional design principles and circuital architec-
tures and admitting a direct comparison between conventional
electronic implementations and molecular ones. This work is
a pioneering investigation in the latter direction. Even if the
technological state-of-the-art does not allow the prototyping
of complex molecular circuits, the recent developments are
in the direction of massively parallel fabrication of molec-
ular devices [27]. In this context, we investigate through
simulations the molecular Field-Effect-Transistor technology
[28], [29] (molFET) as a candidate for implementing artificial
analog neurons. Indeed, our work is an analysis of molFET
advantages at the circuit level aiming at motivate and justify
future efforts on molecular research. To perform such analysis,
we develop a simple and effective model for the molFETs
circuit simulation, and we use it to design an artificial neuron.
Then, we compare the area, power and speed of the designed
circuit with the same topology implemented with MOSFETs.
To the best of our knowledge, the present work is the first
attempt in demonstrating the advantages of migrating from
standard MOSFETs to molFETs at the circuit level. Our results
show promising advantages in area and power consumption,
while no significant advantages are present regarding speed.
Power and speed strongly depend on the molecule employed.

II. METHODOLOGY

To implement a neuron, or a layer of neurons, we choose
a molecular technology, proved as promising in Beyond-
CMOS technologies [30]–[32]. We consider the molecular
counterpart of conventional transistors, i.e. the molFET. A
single molecule is placed between two contacts, typically made
of gold, acting as source (S) and drain (D) [28], [30]. Usually,
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the molecule is chemically bonded to contacts through the so-
called anchoring group (often a sulfur atom). The molecular
channel is electrostatically coupled with a third metal gate
electrode through the presence of an insulating gate dielectric
material, as demonstrated in [28]. The current in the channel,
can be modelled using Landauer’s formula [33]:

I =
2q

h

∫ +∞

−∞
T (E) [fS(E)− fD(E)] dE (1)

q is the electron charge, h is the Planck’s constant, T (E) is
the transmission spectrum representing the transmittivity of the
molecular channel, E is the electron energy, and fS and fD are
the S and D contact Fermi-Dirac’s distributions, respectively.
Notice that T (E) includes the number of channel modes. At
zero Kelvin, (1) demonstrates that only the electron states
within the two contact Fermi levels participate in conduction.
At room temperature, more energy levels contribute to the
conduction thanks to the thermal spreading introduced by
the Fermi function “tails”. The energy spacing between the
contact Fermi levels is named bias window (BW) and can be
controlled by the application of a D-to-S voltage VDS . The
application of a gate voltage modulates the current by shifting
up and down T (E) [33]. Moreover, an additional back gate
voltage can be used to improve the conductivity [34].

In this work, we follow a bottom-up methodology, as
depicted in Fig. 1. Firstly, we calculate the I-V character-
istics of the single molFET by employing Semi-Empirical
(SE) QuantumATK physical calculation [35] and applying the
Extended Hückel Theory (EHT) method. Given the molecular
device geometry and the applied voltage values (VDS and
VGS), QuantumATK calculates the current through (1). In
QuantumATK, the transmission function is derived through the
well-established Non-Equilibrium Green’s Function (NEGF)
method [35]–[37]. NEGF allows for calculating the full I-
V characteristics [33], [38]. The Self-Consistent Field (SCF)
loop is enabled to improve the accuracy: the transport (NEGF)
and the electrostatics (Poisson’s equation with boundary con-
ditions: Dirichlet in the transport direction, Neumann at
the metal gate, periodic boundary conditions elsewhere) are
considered self-consistently. The solution converged at 10−5

tolerance over the Hamiltonian variable (Pulay mixing). In
all the examined molFETs, the molecular channel is always
strongly coupled with the electrodes thanks to the covalent
Au-S bond. Consequently, we consider coherent tunnelling
as the primary transport mechanism. Incoherent contributions
are negligible in strong coupling regime [33], [38], [39]. Fig.
1 (a), (b), (c) show the three different molecular transistors
we consider in this work. All of them with (atomistic) gold
FCC (111) S and D electrodes, zirconium dioxide (ZrO2)
gate dielectric (thickness: 5.7 Å) and metal gate supposed to
be a perfect electrical conductor. The devices differ only for
the molecules used as channels, namely: OligoPhenylEthylene
(OPE3), ParaCycloPhane[3,3]-based (PCP), and Hexadecane
DiThiol (HDT); already investigated in literature [40], [41].
We create a new symbol in Cadence Virtuoso associated
to a Look-Up-Table (LUT) and describe each molFET with
VerilogA. The LUT stores the values of the ab-initio calculated
drain current given a certain (VGS , VDS). The LUT data are in-

Fig. 1. Representation of the bottom-up method used in our work. The arrows
indicate the methodological flow. The device geometries are: (a) OPE3-based
molFET, (b) HDT-based molFET, (c) PCP-based molFET. Carbon atoms in
grey, hydrogen in white, gold in yellow, sulfur in green; S and D electrodes are
composed of six gold layers (only three are shown). Notice also the molFET
circuit symbol.

terpolated within the VerilogA description using a third-order
spline function (details in A1). From now on, we refer to this
model as “static LUT-based model”. We use this simple model,
accurate for static and quasi-static analyses, to verify the
designed crossbar from a functional standpoint and estimate
the static power dissipated by the circuit. To evaluate dynamic
power and transients, the static LUT-based model is improved
by introducing molFET electrostatic capacitances and the
intrinsic times τS and τD, i.e. the amount of time required
to move electrons from/toward the molecule toward/from the
S and D. We compute the electrostatic capacitances, starting
from the specific molFET physical and geometrical properties.
The gate capacitance Cg is evaluated from the parallel plane
approximation. Whereas, for the S and D capacitances (Cs,
Cd), we exploit the simplified approach presented in [33],
and the explicit formulae presented in [42]. Notice that, to
estimate Cs and Cd, it is necessary to estimate the quantum
capacitance (Cq) [33], [42]. It measures the amount of charge
that can be moved toward/from the molecule in response to an
external voltage variation. It considers the number of available
electron states within the molecular channel (i.e. its density
of states) also according to Pauli exclusion principle. The
intrinsic times τS and τD are intimately linked to Cq and
can be estimated with the approximated formulae presented
in [42]. The IDS(VDS) slope is locally approximated by
means of Rs = τS

Cq
and Rd = τD

Cq
, that have resistance

dimensions. Finally, we compute the gate resistance Rg as
the total resistance of the gate dielectric. Additional details on
capacitance and resistance calculations are reported in A2. In
the following, we will always refer the results to worst-case
capacitance and resistance values (largest values). We consider
only intrinsic capacitance contributions. Depending on the
specific fabrication process the parasitic (electrode-substrate)
contributions can be negligible or even dominant. Since we do
not refer to a particular fabrication process, we assume them
to be negligible, like typically happens in Self-Assembled-
Monolayer (SAM) based fabrication processes [43]. We embed
all the mentioned device parameters along with the static LUT-
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model to create a new Cadence Virtuoso symbol, by using the
equivalent circuit topology presented in [42]. We refer to this
refined model as “dynamic LUT-based model”, and we use it
to estimate the dynamic power dissipated by the molFETs and
the transient duration.

Summarizing, we use the static LUT model to perform
functional verification and static power estimation of the
designed crossbar arrays, while the dynamic one permits the
dissipated dynamic power and transient analysis. The LUT-
based circuit modelling adopted in this work is widely used in
literature to simulate circuits based on emerging technologies
lacking compact circuit models [44], [45]. Indeed, it is simple,
accurate, and computationally efficient, especially if compared
to SCF [46] or SPICE-like models [47], even if it loses, at run-
time, any link with the physics of the devices.

Since the molFETs are field-effect devices, the circuit de-
sign principles are similar to those used for MOSFETs. Thus,
the crossbar design is performed using conventional methods
and criteria by employing the mentioned circuit models. In
particular, the threshold voltage of the comparators, the pull-
up resistances and the gate and supply voltage values should
ensure the correct behaviour of the neuron (details in III).

Finally, to highlight the advantages of the molFET imple-
mentation w.r.t. the MOSFET one, the artificial neuron is also
designed with MOSFET devices. A 32 nm technological node
is chosen to make the comparison more meaningful with the
single-gate molFET devices considered in this work since it
still corresponds to planar devices. For MOSFET technology,
this work uses the Generic PDK BSIM4 (v.4.5) [48].

III. CIRCUITAL CHOICE

Four parts mainly constitute a neuron [49]: (1) the soma is
the core of the neuron which generates the action potential
if the weighted sum X of its input signals xi overcomes
a certain threshold Vth; (2) the dendrites, tree-like receptive
terminations which carry the input signals xi into the soma;
(3) the axon propagates the neuron action potential toward
other neurons through (4) the synapses. Two operators are
required to emulate the basic behaviour of a biological neuron:
the weighted sum over all xi and the possibility to emulate
a threshold mechanism. The step function can implement
the simplest threshold mechanism: y(X) = 0 if X < Vth,
y(X) = 1 if X ≥ Vth. Fig. 2(a) shows a single neuron
circuital implementation. It is a column of a crossbar array,
commonly used for neuromorphic applications [50], [51]. The
single neuron is constituted by: (1) seven molFETs emulating
the dendrites; (2) a pull-up resistance RPU ; (3) a voltage
comparator. The operation of the sum is performed by ex-
ploiting Kirchhoff’s Current Law. The threshold mechanism
is created through a voltage comparator. Fig. 2(b) shows the
complete 7x7 crossbar array. The proposed circuit emulates
a neural layer of 7 parallel analog neurons sharing the same
input lines (i.e. the same dendrites). The redundancy created by
seven neurons working in parallel emulates biological neuron
parallelism. A squared crossbar is chosen for simplicity. A
neuron with seven dendrites is chosen to ease the design
procedure. An odd number of inputs allows to easily determine

Fig. 2. (a) A single column of a crossbar array terminated by the comparator
emulating a single neuron. The common drain line performs the operation of
the sum over all the input signals coming from the dendrites, whereas the
comparator emulates the threshold mechanism. (b) The complete schematic
of the 7x7 crossbar array structure. On the left side, there are the inputs
(generators) on transistor gates, while on top the supply line along with pull-
up resistances. The drain lines are fed with a suitable VDD supply voltage.

TABLE I
DESIGNED COMPONENT VALUES

MOSFET HDT OPE3 PCP-LP PCP-HP
VDD (V) 1 1 1 1 1.3

VGS,ON (V) 1 -2 -1 2 2
VGS,OFF (V) 0 0 1 -2 -2
W (nm) 250 10 10 10 10
RPU (kΩ) 1 100 100 100 100
Vth (mV) 585 928.5 576.6 718.4 879.6

the threshold. Indeed, the threshold is overcome (i.e. the output
of the single neuron should be activated) if at least four
molFETs are turned ON. The neuron does not fire if three (or
less) molFETs of the same column (i.e. neuron) are ON. Table
I reports designed gate voltage values enabling the transistor to
be in ON (VGS,ON ) and OFF (VGS,OFF ) states, supply voltage
(VDD), pull-up resistance (RPU ), comparator threshold (Vth)
and channel width (W ). The mentioned values are designed to
meet the following conditions: (a) If all molFETs on the same
drain line are switched off, there is ideally no voltage drop
across RPU . Notice that the drain line and the input voltage
of the comparator (on the negative terminal) are connected to
VDD: small leakages of molFETs and comparator introduce a
small voltage drop on RPU . (b) If less than four molFETs are
switched on by input spikes, a current flows through them. As
a result, there is a significant voltage drop on RPU w.r.t. the
condition (a), and the comparator input voltage is reduced.
A large number of molFET in the ON state increases the
voltage drop on RPU , eventually reducing the comparator
input voltage. The reduction must be lower than the threshold,
thus the output of the comparator remains stuck at ground. (c)
If four or more than four molFETs are in ON state, the voltage
drop on RPU must reduce the comparator input voltage above
the threshold. Consequently, the output of the comparator rises
at VDD (ON output). All component values are designed to
have the specific structure correctly working (additional details
in A3). If the number of input dendrites is modified, the
design should be repeated. Nevertheless, if the number of
inputs of the single neuron is maintained fixed, many neurons
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can be cascaded without the burden for re-designing. Two
different design solutions are investigated for the PCP-FET: an
High Performance (HP) and a Low Power (LP) version. We
assume ideal voltage comparators, behaviourally described in
Virtuoso with functional blocks. They are aimed in verifying
the functionality of the designed synaptic neural layer, which is
essential for neuromorphic computation. Similarly, authors in
[19] focused on the performance of a crossbar based on carbon
nanotube transistor technology, leaving the op-amps, the soma-
like circuit and the (off-line) weight updating to an external
unit (PC) suitably connected to the crossbar. We postpone the
molFET-based voltage comparator design to future works.

The advantages of the proposed neuron are the simple den-
drite topology, the good threshold emulation and operability
also in analog spiking regime.

Neuron weights

So far, the proposed neuron consider all the inputs having
the same weight. To implement weights, we connect more
transistors in parallel to shared input line, as depicted in
Fig. 4(b). Mentioned transistors can be dynamically connected
or disconnected to the input line through switches that are
controlled by proper command signals. If more than one input
parallel transistor is connected to the line, the total current
flowing in RPU due to that specific input spike is multiplied
by the number of connected transistors, providing input pulse
weighting capabilities. We tested the crossbar circuit with 2
and 3 transistors per input (i.e. 98 and 147 transistors in total),
and we verified its correct functional behaviour (Fig. 4). Notice
that this weighting method permits discrete weights only (i.e.
the number of transistors connected to a given input line). The
method easily enables real-time online training, yet it requires
a complex feedback network for handling the weights. Fig.
6(c)) shows an external control unit, placed in feedback to the
layer of neurons, providing the command signals for weight
updating. The control unit is not designed with molFETs and
is not optimized since it only aims at verifying the functional
behaviour of the overall closed-loop system (details in A4).

Another possible solution to implement weights is to exploit
a back-gate electrode. It enables the modulation of the molFET
conductance, permitting current modulation and thus run-time
weighting. Nevertheless, this solution would require detailed
device engineering to effectively implement the back gate,
which is out of the scope of this work, thus postponed to
future works. This work aims at comparing the MOSFET and
molFET technologies. In the following section, we analyse
the neuron performance by considering equal input weights.
Indeed, the performance ratio between the two technologies is
unchanged depending if weights are considered or not.

IV. RESULTS

According to the methodology described in section
II, we first characterize the molFETs in QuantumATK.
Fig. 3(a),(b),(c) show the current IDS(VDS) of the three
molFETs at fixed VGS . The considered gate voltages corre-
spond to the molFET ON and OFF states: VGS,ON , VGS,OFF .
Our results for PCP- and OPE3-molFET with null VGS are

similar to the SAM-based experimental ones reported in
[40]. To ease the comparison with results in [40] we report
such output characteristics in semi-logarithmic scale in Fig.
3(f). Fig. 5 reports additional device level plots of the three
molFETs. In this work we exploit the HOMO-type conduction
(equivalent p-type) for the HDT- and the OPE3-molFETs,
whereas the LUMO-type conduction (equivalent n-type) for
the PCP-based one. We choose different molFET polarity to
maximize ION/IOFF in all cases. For HDT-FET only HOMO
conduction is possible since transmittivity of LUMO peaks is
at higher energies than the interval within the BW (Fig. 5
(a)). The application of VGS perturbs the channel Molecular
Orbitals (MOs), i.e. the probability density per unit volume
to find an electron in a given spatial region. In particular, a
suitable VGS,ON supports the electron delocalization in the
channel, which, in turn, promotes the S-D electron tunnelling.
T (E) is thus enhanced, increasing the current. As a case
of study, we consider in detail the PCP-FET. Fig. 3(d), (e)
report its Lowest Unoccupied Molecular Orbital (LUMO) for
VGS,ON and VGS,OFF . When the VGS,OFF is applied at the
gate terminal, the LUMO is extremely localized on the left
side, Fig. 3(e), creating a barrier on the left phenyl ring
preventing electrons from moving from LUMO, i.e. the S
(right electrode), to D (left electrode), thus lowering T (E)
and the currents. In confirmation of this, Fig. 3(g) shows
the potential energy along the channel. The dashed circle
highlights a small potential barrier for electrons on the phenyl
ring close to the D, further enhancing the S-to-D barrier. We
believe this barrier be intimately linked with the LUMO shape
at VGS,OFF in that region, as we confirm in the following.
The situation changes when considering VGS,ON , Fig. 3(d).
The LUMO well delocalizes along the channel, supporting
the electron tunnelling mechanism. To better understand the
transmission and confirm what said so far, we analyze the main
transmission eigenstate (TE) within the bias window when the
PCP-FET is ON. Fig. 3(h) shows a real space projection of
the TE corresponding to the maximum transmission coefficient
(eigenvalue). Along with all the others, such a TE contributes
to the final transmission function in the energy domain T (E).
The main TE resembles the LUMO when VGS,ON is applied,
apart from a small phase -colour- mismatch, confirming that
the main tunnelling path is through the LUMO, and the
previous considerations are confirmed. Further confirmation
of the channel left-side barrier modulation using the gate
voltage is possible through Mulliken’s population analysis:
a measure of the electronic charge distribution among the
system atoms. When VGS,ON is applied, Mulliken’s charge
increases on the left phenyl ring atoms, especially for the
left anchoring group (sulfur). The larger number of electrons
populating that region indicates a decreased potential energy
barrier. In summary, the gate voltage modulates the channel
potential barrier not only for the specific case of the LUMO
(i.e. the main tunnelling path), but for all the MOs, as a
general property of the system. Moreover, it causes a charge
redistribution in the channel, as mentioned in section II. The
mentioned current modulation enabled by the gate voltage
is similar to traditional MOSFETs. We use input pulses on
gates to enhance the molFETs T (E) for a limited time, with
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Fig. 3. (a), (b), (c) Output characteristics for VGS,ON (blue) and for
VGS,OFF (red) of HDT, OPE3, PCP -FETs respectively; (d), (e) PCP-FET
LUMO at fixed VDS = 1V (i.e. the maximum operating value in the crossbar
circuit) for VGS,ON and VGS,OFF respectively (colour indicates the phase);
(f) Output characteristics for VGS = 0 V in semi-logarithmic scale for OPE3,
PCP -FETs, respectively. (g) 1D potential energy along the device transport
direction z. The geometry of the PCP molecule is superimposed to the curve
to note the molecule position on z. The potential barrier in correspondence of
the left phenyl ring is highlighted with a dashed circle; (h) Main transmission
eigenstate of the T (E) LUMO peak, when the PCP-FET is in ON state.

a consequent current increase. The IDS is then converted into
a voltage drop on RPU . This mechanism well fits with the
neuron concept we described in section III and guarantees that
the neuron input and output are voltage signals with desired
values. In particular, we verify the correct neuron behaviour
in the spiking analog regime by performing DC and transient
simulations. We analyse the circuit by using the described
LUT models. For functional verification, we use the static
model. Hence, we apply slow input spikes (1ms rise/falling
edge, 8ms of width), to ensure no transient effects affect the
final result. Fig. 4(a) reports the functional verification for
unitary neuron weights. The neuron behaves as expected. Fig.
4(c) reports an example of functional verification for different
neuron weights (1ms rise/falling edge, 4ms of width). Again,
the neuron behaves as expected. This result is also confirmed
for all the possible weights values. In the following we report
the neuron performance analyses.

A. Area

The main advantage of molecular electronics is the area
reduction, which is gained thanks to the intrinsic nanometric
size [30]. This work quantitatively compares the transistor area
occupied with molecular and CMOS technologies. We neglect

Fig. 4. (a) Neuron functional verification with unitary weights: the seven
input spikes are the dashed lines, the comparator input is the solid green line,
and the comparator output is the solid blue one. The neuron output is active
when at least four of the seven neuron inputs are active simultaneously. (b)
Sketch of the discrete implementation of neuron weights. Molecular transistors
in parallel can be connected or disconnected to a single input through the
switches. Switches are controlled by proper command signals provided by a
properly designed control unit for weight updating (see A4). (c) Functional
verification with discrete weights: the red input weight is 2, all the others 1.
The output is active when two inputs in addition to the red one are active.

the area occupied by lines, comparators, and pull-up resistors.
Indeed, comparators and RPU are supposed to be implemented
with the same technology and interconnections are supposed
to be effectively scaled without heavily impacting on parasitic
resistances (e.g. by acting on innovative low resistive materials
or interconnection processes), thus the proportion between
areas are essentially unchanged. The analysis is meant to be
the first attempt at a quantitative comparison, not a precise
estimation of the layout area.

The area of the whole crossbar array is computed as W ·L ·
N , where W is the gate width, L is the channel length, and N
is the number of the transistors in the circuit. The molecular
channel length is measured directly in QuantumATK as the
molecule extension along the transport direction, excluding
the electrodes. L results to be: 2.45 nm for OPE3, 2.60 nm
for HDT, and 2.44 nm for PCP molecule. For all molFETs,
we consider a standard width of 100 Å for the gate terminals.
The MOSFET channel length is assumed to be 32 nm and its
width 250 nm (typical design value for 32 nm n-MOSFET).
The results in table II exhibit the advantage of migrating from
conventional MOSFET to a molFET technology. More than
four orders of magnitude in area reduction can be achieved,
enabling more devices to be packed in the same area, favouring
redundancy and enhancing the parallelism per unit area.

B. Average power

This work compares both the static and the dynamic average
(active) power dissipated by the overall circuit. We consider
only the contributions of the transistors and the pull-up re-
sistors. The static power is estimated in static conditions (i.e.
crossbar fed by DC generators and all transient extinguished)
as V · I , where V is the voltage drop across the component
(VDS for the transistor, VR for the pull-up resistors) and I
the current flowing in the component (IDS for the transistor,
IR for the pull-up resistors). This single power contribution
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TABLE II
LIST OF RESULTS

Technology A (nm2) Pleak (nW) Ptot,OFF (nW) Ptot,ON (µW) Ptot,dyn (pW/pulse) τ (ps)
MOSFET 392000 68.00 68.60 4542.5 3.334 1.155

OPE3-FET 24.54 10660.00 13110.00 36.59 0.798 1.168
HDT-FET 26.50 2.67 2.77 6.96 0.636 2.212

PCP-FET(LP) 26.19 21.34 21.35 27.73 3.927 3.046
PCP-FET(HP) 26.19 424.51 424.73 32.52 3.762 1.751

is then multiplied by the number of transistors N and pull-
up resistors M to evaluate the total dissipated static power as
N(VDS ·IDS)+M(VR·IR). Table II reports the total dissipated
static power Ptot,OFF , evaluated when the circuit is in an idle
state (i.e. all the 49 transistors are OFF, all molFET current
contributions correspond to leakages), and the dissipated static
power Ptot,ON when all transistors are in the ON state. The
dissipated dynamic power is estimated as the energy provided
to charge/discharge the device electrostatic capacitances over
the time required to carry out the commutation. The total
exchanged energy per commutation for a molFET (for a single
charging or discharging phenomenon of device electrostatic
capacitances) is computed as:

E =
1

2
CgV

2
G +

1

2
CsV

2
dot +

1

2
Cd(VDS − Vdot)2 (2)

VG is the voltage drop across Cg , whereas Vdot computed
as VDS · Cd/(Cs + Cd) is the voltage drop across Cs (Fig.
6(a)). The obtained results show that migrating from the
MOSFET to the molFET technology generally reduces the
static and dynamic power. However, for the static power,
the OPE3-FET presents a considerable leakage current IOFF ,
w.r.t. to HDT and PCP molFETs and also, surprisingly, w.r.t.
MOSFETs. This strongly impacts on Ptot,OFF . The large
leakage is due to the weak electrostatic control of the VGS
on the molecular channel, which obstructs the OPE3-FET to
switch OFF correctly. Fig. 3(b) shows the ON current is only
about six times the OFF one. The situation is different for the
PCP-FET (LP) and the HDT-FET, thanks to the previously
discussed effective gate modulation. The PCP-FET (LP, HP)
presents a slightly larger dynamic power w.r.t. MOSFET. This
deterioration is due to its large gate voltage swing (twice the
molecular ones and quadruple w.r.t. MOSFET one) and its
slightly larger capacitance w.r.t other molFETs.

C. Speed

The LUT-based dynamic model permits estimating the
minimum reliable intrinsic time τ , that we assume to be seven
time the exponential transient time constant. Such an intrinsic
time τ is a device figure of merit, and it differs from the
contact intrinsic time mentioned in section II, which in turns
is a measure of the contact-molecule interface quality. We
compute τ as follows. A single device is considered, in the
same topology as it is placed in the designed crossbar (Fig.
6(b)). It is thus connected to a RPU with the same value of
the one in the crossbar, and it is fed by the design VDD.
Then an ideal step is applied in input on its gate. The drain
node is monitored, and the transient time constant is evaluated

starting from the Cadence simulated data through the well-
known circuit theory graphical method. Then, τ is assumed
to be the transient duration, i.e. seven times the estimated
time constant (worst case). Table II reports the intrinsic time
for each considered technology. The testing topology and
examples of simulation results are reported in Fig. 6.

In terms of intrinsic time (i.e. speed), migrating from
MOSFETs to molFETs does not present benefits. The OPE3-
FET and PCP-FET (HP) are only slightly slower than MOS-
FET due to their significant ON currents. The OPE3-FET is
not wholly switched OFF in the circuit. Hence, it can be
switched ON rapidly w.r.t. other molFETs, but even slower
than the MOSFET. Whereas, HDT-FET and PCP-FET (LP)
show a relevant reduction of the maximum achievable speed. A
different molFET operating point may be used to tune the per-
formance and satisfy possible design constraints (in analogy
with MOSFETs), as confirmed by the notable improvement
obtained with the PCP-FET HP w.r.t. the LP one.

V. CONCLUSIONS

We implement a simple and effective LUT-based model for
molFETs, and we use it to design an analog artificial neuron.
We design and functionally verify a molFET-based neural
layer composed of seven artificial analog neurons sharing
the same inputs. The neuron performance is compared to a
conventional MOSFET implementation to highlight the ad-
vantages of molFET technology. From our results, the gain in
performance obtained migrating from MOSFETs to molFETs
generally depends on the specific molecule used as channel.
HDT molecule reduces dissipated leakage power by a factor
of 22 (68 nA vs. 2.67 nA), and the dissipated ON static power
by a factor of 650. Even the dynamic power per pulse is
reduced by about a factor of 5. In terms of area, the advantage
is remarkable and independent of the molecule. Four orders
of reduction can be achieved (392 000 nm2 vs. 25 nm2). The
drawback regards the speed of molFET devices: Because of
small ON current, the intrinsic time of HDT-FET and PCP-
FET (LP) are respectively the double and the triple w.r.t.
MOSFET. We believe that the MOSFET-molFET comparison
carried out in this work can be generalized to any architecture
besides the neuromorphic ones, leading to similar advantages.

An important outcome of our work is that the molFETs
present significant performance variations depending on the
considered molecule. This work motivates further investiga-
tions, at the device level, to find the best molecule for a given
application (e.g. low power/high speed). For speed require-
ment, we believe a suitable molecule can be used to improve
the performance, at the cost of dissipated power, in analogy to
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what happens for MOSFETs. Moreover, depending again on
the molecule, molFETs may present exclusive features, like
the Negative-Differential-Resistance (NDR) trend in the output
characteristics of the PCP-FET (Fig. 3(c)). We believe NDR
can be exploited in novel circuit topologies, implementing
standard or innovative functionalities. For example, the NDR
peak over a VDS sweep resembles the typical neuron action
potential. We postpone to future works the investigation of the
NDR for molFET neuromorphic circuits.
To sum up, because of all these reasons, our results are
promising in motivating future investigations on molecular-
based circuits, both at technological and system levels.

VI. APPENDIX

A1. LUT-based models. The model to which we refer with
static LUT-based model consists on the following VerilogA
file that simply calls a LUT.txt file which collects the values
of drain current per pair of driving voltages (VGS , VDS)
(simulated a priori only once with QuantumATK), and
interpolates them by means of a third order spline function
with the command at line 12:

1 ‘include "constants.vams"
2 ‘include "disciplines.vams"
3 module molFET(D,G,S);
4 input G;
5 electrical G;
6 inout D;
7 electrical D;
8 inout S;
9 electrical S;

10 analog
11 begin
12 I(D,S) <+ $table_model(V(G,S), V(D,S),

"LUT.txt", "3L,3L");
13 end
14 endmodule

A2. Capacitances modeling and evaluation for molFETs.
The gate capacitance is calculated by exploiting the parallel
plate approximation as Cg = (Area ·εR ·ε0)/tOX ; where tOX
is the gate oxide physical thickness, ε0 the vacuum permit-
tivity, εR the gate dielectric relative permittivity (ZrO2). The
gate resistance is evaluated as Rg = (ρ · tOX)/Area, ρ is the
ZrO2 resistivity. Source and drain capacitances are calculated
by using the model presented in [42]. They represent the
(average) channel charge modulation in response to an applied
voltage and account for the molecule state filling (i.e. the
quantum capacitance Cq). The equilibrium Cq is evaluated
from the definition [33], [42]: Cq = q2DOS(EF ); q is the
elementary charge, DOS(E) the molecular channel Density
of States, EF the Fermi level. The non-equilibrium Cq was
evaluated with the same formula, yet the DOS is averaged
over the BW range of energies (arithmetic mean). In the purely
ballistic transport, the channel is modelled as a node of an
electrical network, leading to the model of Fig. 6(a). From
which the (average over space) potential energy modulation
of the molecular channel changes due to external voltages is:

δUtot,AV = −q Cg
CES + Cq

δVGS − q
Cd

CES + Cq
δVDS (3)

Where CES = Cg+Cs+Cd. Starting from simulated output-
and trans-characteristics the capacitive ratios can be derived.
By knowing Cg and Cq and assuming symmetric coupling
(Cs = Cd) the source and drain capacitances are known:

δUtot,AV

δVGS

∣∣∣
VDS=0

= −q Cg
CES + Cq

⇒ Cg
CES + Cq

δUtot,AV

δVDS

∣∣∣
VGS=0

= −q Cd
CES + Cq

⇒ Cd
CES + Cq

(4)

The symbol δ indicates a deviation from the DC operating
point. A wide voltage variation can be seen as a sequence
of small perturbations. The maximum obtained capacitance
value can be then used in the LUT model in the worst-case
approximation. The source and drain “dynamic” resistances
measure the transferred charge from/toward the contacts to-
ward/from the molecule in the unit time. They are related to the
IDS(VDS) slope, and they depend on the quantum capacitance.
The source contribution to current is:

IS =
q

τS

∫ +∞

−∞
DOS(E−Utot,AV )[fS(E)−f(E,EFdot)]dE

(5)

≈ Cq

τS

EFS − EFdot
q

⇒ Rs =
τS
Cq

=
~

Cq(ESSD −HSD)

SSD, HSD are the source-device overlap and coupling
Hamiltonian matrixes. Analogous equations hold for drain.

A3. Neural layer design. The design was performed by maxi-
mizing the ON current of the molFET in order to maximize the
voltage drop across RPU when the input is active. This allows
to have the maximum separation in terms of comparator input
voltage (called local field). The NDR trend in molFETs must
be accounted for in this process: Depending on how many
inputs are simultaneously active, the drain voltage and the
current change (the output characteristics are not flat). Thus,
one can choose RPU to have a maximum IDS (at VDS = 1.1V
in the PCP-molFET case) when 4 over 7 inputs are active. This
leads to a maximum variation on the local field when 3 or 4
inputs are active, i.e. maximum noise margins. In formulae,
the comparator input voltage is equal to the molFET VDS :

VDS = VDD −RPU

[∑
ON

IDSON
+
∑
OFF

IDSOFF

]
(6)

In the design, once the ON and OFF working points are
chosen (ON and OFF gate voltages and relative current
values are fixed), the VDD and RPU are fixed to have
the desired VDS when a desired number of transistors are
active. In the aforementioned example it is 1.1 V when 4
PCP-molFETs are ON (HP case). In this way, the neuron
behaves at its best when 4 inputs are active, i.e. around its
threshold, in the condition in which it must discriminate
between ON and OFF states. The behavior in the other cases
will be “less ideal”. The cases of 3 and 4 ON inputs can
then be considered. The comparator threshold can be fixed to
be the mean between the two (to maximize the noise margins).

A4. Feedback control unit for weight updating. We con-
nected more transistors in parallel to the same input line
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Fig. 5. Additional device level plots. (a) Transmission spectrum at equilibrium of the three molFETs. Energy is in absolute values, the Fermi level is at
−9.5 eV in these plots. (b) Transmission spectrum at VGS = 0V as a function of VDS and energy. For the PCP-molFET, for an applied drain bias above
1 V, the LUMO level is shifted outside the bias window, thus leading to less transmission and less current. This explains the NDR behaviour (dashed red
circle). Large drain voltage makes shift more evident. (c) Transcharacteristics IDS(VGS) of the three molFETs at fixed VDS = 0.1V and VDS = 1V .

Fig. 6. (a) Capacitive model of molFETs. (b) Circuit topology used for time
constant evaluation. (c) The block Neuron Layer is the artificial neuron layer
presented in this work, Weight Adjust is the control unit placed in feedback for
weight updating; in1 to in7 are the neuron inputs, out1 to out7 are the neuron
outputs, w1 to w7 are the switch control signals. (d),(e),(f),(g) Examples of
transient simulations for time constant evaluation for the three molFETs. The
topology tested is the one shown in (b); the interpolations are performed in
MATLAB; the red circles highlight the intercept from which the intrinsic
times are estimated as seven times the decay interval.

to implement the weights. The transistors are dynamically
connected or disconnected to the input line through switches
(Fig. 4(b)). The switches are controlled by command signals
provided by an external control unit. The weight is encoded
in the output current collected in the common drain line.
Thus the number of connected parallel transistors encodes

(discrete) weights. As proof of concept, and in order to verify
the functional behavior of the system, we designed, by means
of a VHDL description, a digital control unit to activate the
switches. It is placed in a feedback loop to the 7-input neuron
as sketched in Fig. 6(c). The control unit is able to provide
the command signals to the neuron and so update the weights
according to Hebb’s rule. In particular, it has an asynchronous
(event-driven) interface, and it oversamples the neuron inputs
and output at a much shorter clock period than the supposed
spike duration. It counts the number of asynchronous events
happening at the neuron inputs and output, and increases the
weight of a synapse (i.e. connects more parallel transistors)
if that input is active when an output is produced. Moreover,
it reduces the weights of the unused inputs. The number of
input events that trigger an output event before the weight is
updated was arbitrarily set to 3, 5, 7 and 10. In all cases,
the control unit correctly increased/decreased the weights of
active/inactive inputs as soon as the output resulted active.
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