
08 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Simulation and Formal: The Best of Both Domains for Instruction Set Verification of RISC-V Based Processors / Duran,
Ckristian; Morales, Hanssel; Rojas, Camilo; Ruospo, Annachiara; Ernesto, Sanchez; Roa, Elkim. - ELETTRONICO. -
(2020). ((Intervento presentato al convegno IEEE International Symposium on Circuits and Systems (ISCAS) tenutosi a
Virtual Event nel from October 10 to October 21 2020 [10.1109/ISCAS45731.2020.9180589].

Original

Simulation and Formal: The Best of Both Domains for Instruction Set Verification of RISC-V Based
Processors

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISCAS45731.2020.9180589

Terms of use:
openAccess

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2845745 since: 2020-09-15T18:39:16Z

IEEE

Simulation and Formal: The Best of Both Domains
for Instruction Set Verification of RISC-V Based

Processors
Ckristian Duran∗, Hanssel Morales∗, Camilo Rojas∗, Annachiara Ruospo†, Ernesto Sanchez† and Elkim Roa∗

∗ Integrated Systems Research Group - OnChip, Universidad Industrial de Santander - Colombia
†Politecnico di Torino - Italy. e-mail: ckristian.duran@correo.uis.edu.co

Abstract—The instruction set architecture (ISA) specifies a
contract between hardware and software; it covers all possible
operations that have to be performed by a processor, regardless
of the implemented architecture. Verifying the instruction
execution against a golden execution model following the ISA is
becoming a common practice to verify processors. Despite many
potential applications, existing verification frameworks require
an extensive test set to cover most of the processor states. In this
paper, we suggest a verification scheme combining two different
domains, simulation- and formal-verification, establishing a
methodology for exclusive error detection. The first approach
drives automatic program generation using genetic algorithms
to maximize coverage of the test and the contrast against an
instruction set simulator. The second is a formal verification
approach, where an interface carries specific processor states
according to the ISA specification. By combining these two, we
present a reliable way to perform more accurate instruction
verification by increasing processor state coverage and formal
assertions to detect different kinds of errors. Compared to
extensive torture test sets, this approach reaches a more
significant number of internal states by taking advantage of the
exercised abstractions. Among remarkable results to highlight,
the proposed approach detected a RISC-V ISA specification gap
revealing ambiguity from two different verification perspectives.

I. INTRODUCTION

The instruction set architecture (ISA) is the main
specification of any processor implementation, and it contains
detailed information about the instruction execution, the data
registers, and the memory interactions through an external
bus. Processors are commonly described by using a hardware
description language in a register transfer level (RTL). RTL
implementations must be able to execute any instruction
specified in the ISA. To verify the processor against the ISA,
designers and certifiers run a set of tests to verify the processor
by using hardware simulation. Processor architectures must be
verified to give solidness over the instruction execution before
and after the circuit is synthesized in a technology node.

Running an extensive software test set inside a hardware
description simulation is a common approach to perform ISA
verification in processors. This test set is compared to an
execution model, which checks the execution results for each
instruction specified in the ISA. However, guaranteeing an
accurate execution verification model to cover all processor
states is challenging. Moreover, the processor model might not
be accurate enough to perform comparisons against the ISA
specification. A RISC-V case-of-study conduits comparisons

+4

Reg.
file

X

Data
mem.

Fetch Execute Memory &
Writeback

Sign
Ext. Imm

PC

PC

IR

ALU

Mul

ALU

Br.
gen.

Jump
dest.

Comp.

Inst.
mem.

+ CSRExcep.

Fig. 1. Microarchitecture of the processor under verification (PUV). PUV
comprise 3-stage single issue in order pipeline.

to simulation models implementing an evolutionary framework
with a coverage-based optimization function [1]. In order to
verify the instruction simulator, coverage-guided fuzzing may
be performed [2]. Authors in [3], apply a different approach
by using evolutionary algorithms to compare the execution of
two different processors.

Although a coverage-based optimization aims to envelop
all the processor states, formal verification can explore all
possible states, according to specifications, using assumptions
and checking errors using assertions [4]. For Arm processors,
a specification language named ”architecture specification
language” (ASL) allows any Arm processor to be scaled
in the RTL environment [5]. Arm verifies its processors
in any architectural implementation by extending the
ASL language to include formal properties. A RISC-V
formal verification framework allows the implementation
of verification intellectual property (IP) specified in formal
verification assertions [4]. The test framework may be suited to
several architectural implementations through a RISC-V formal
interface by adding internal processor states.

In this paper, we present a verification scheme that combines
two functional platforms. We implemented a µGP-based
RISC-V program generator, which uses a genetic algorithm to
find the best program that covers most of the processor states.
For every individual generated from the genetic algorithm,
we perform a comparison against a simulation program as
a golden model. Such simulation can be performed by any
RISC-V simulator, but for this paper, we chose the Spike

.asm

.asm

=

Fitness
function

PUV

SpikePop.

Insn.
library

Conf.

Individual

Last best individual

(Bug
detect)

+µGP

Individual Merge +
Generation

Coverage Extraction
and Feedback

PUV Stimulus

Diff.
stack

Fig. 2. Test generation and simulation-based verification methodology for the
PUV a RV32IM based processor.

simulator following the suggestion by the RISC-V foundation
[6]. In addition to the program generator, a second approach
based on formal verification is also utilized. We attached a
set of verification IP with formal properties named RISC-V
formal [4]. This IP compares internal states of the processor
to a formal specification derived from the RISC-V ISA.
We show the detection of induced errors conducted in both
simulation and formal approaches. The framework was capable
of detecting a consistent misunderstanding in the ISA for
asynchronous processor interruptions.

II. CORE VERIFICATION

A. Using Spike and µGP

We established the simulation-based verification framework
on µGP to generate effective test programs [3]. µGP stands on
a test program generation algorithm, handling an evolutionary
core. We compare results from test programs run in both the
processor and a RISC-V instruction simulator. The RISC-
V foundation provides Spike [6], the golden RISC-V ISA
simulator within a functional model for instruction execution.
Spike is compliant with the RV32I or RV64I base ISA,
supporting M, A, F, D, and Q extensions among extra features.

We designed an in-house 32-bit RISC-V ISA based
processor, which is the processor under verification (PUV) in
this framework. The PUV is an ultra-low power consumption
processor intended for low-performance tasks, comprises a
three-stage pipeline single-issue in-order, and is compatible
with I, M, and C RISC-V extensions. Fig. 1 describes the
microarchitecture of the PUV.

Fig. 2 summarizes the methodology for simulation-based
verification used in this work. µGP automatically generates
a set of programs called individuals by using a constrained
genetic algorithm. According to the feedback (the fitness
function computed by the collecting coverage metrics), the
best programs are improved, and µGP aims to increase
the covered code while reaching more states on the PUV
hardware. µGP is formally described in [7]. In the current
experiments, µGP uses the evolutionary standard setup
provided by the tool.

The framework loads the programs directly into the
simulated memory. The PUV and Spike execute the individuals

FETCH EXEC WB

0x100000000x00000000

mem

In
st

.
de

co
.

RS
1

st
at

us

RS
2

 st
at

us

RD st
at

us

Differentiation logger

PUV

Execution log

FETCH / EXEC / WB

mem

In
st

.
de

co
.

RS
1

st
at

us

RS
2

st
at

us

RD st
at

us

Spike

Execution log

Unused Evolved function address Clint Unused

0x20000000 0x30000000

Fig. 3. Parallel execution on the PUV and Spike using the same memory
model. The execution is logged from the states of each model.

Spike

Test program

PUV

To fitness
function

Detailed
execution

Fig. 4. Simplified block diagram of the code coverage extraction processes
using Cadences tools.

simultaneously, and the execution states are compared to find
discrepancies in the ISA interpretation. Figure 3 shows the
state comparison using an execution log. The PUV simulation
logs the execution by each clock cycle. This log is compared
on valid states with the execution in the Spike simulator. We
compare the execution state in the program counter and the
register states from all the pipeline stages.

We extracted coverage metrics from the execution of the
test program in the PUV using commercial tools. In this
case, we employed the NCSim simulator and the incisive
comprehensive coverage (ICCR), the latter a code coverage
analysis tool, as described in Fig. 4. Metrics coverage data
is related to the percentage of executable statements during
the simulation, the percentage of the Boolean expression
evaluated, among others. Finally, the extracted coverage is
used to compute the fitness value that is fed back to µGP,
guiding the test program generation until one of the stop
conditions triggers.

B. Using RISC-V formal

RISC-V formal is a non-invasive processor-independent
formal verification description of RISC-V based processors
[4]. It consists of a processor-independent formal description
of the RISC-V ISA and the specification for the RISC-V formal
interface (RVFI) among additional features. This interface
transmits the execution status of the current instruction when
the calculation is ready for all the internal registers. The
current version of the interface allows us to verify against
general-purpose registers, the program counter (PC), fetched

PUV

PC

Reg
file

CSR

PC

Mem
gen

PC

R
IS

C
-V

 F
or

m
al

 In
te

rf
ac

e
(R

V
FI

)

Inst

Fetch Exec MEM
&WB

Reg
file

CSR

Inst

Instruction check

Formal
properties

Instruction
specification
(RV32IMS)

Additional checks

Liveness

RISC-V Formal Environment

Casual

Unique Registers

Fig. 5. Simplified block diagram of an interconnection using a RISC-V formal
interface.

instructions, a generalized memory interface, control and
status registers (CSR), and some internal processor flags.

Fig. 5 exhibits a simplified diagram of the interconnection
using the RISC-V formal interface (RFVI) to verify a processor
formally. The RVFI must carry the final state of execution of
any instruction to a formal environment. In the processor, we
took all the necessary signals from any stage of the processor
architecture to the write-back stage (MEM & WB). In this way,
the formal properties inside the RISC-V formal environment
compare the instructions specifications against the internal
finish-states of the processor.

The processor formal verification scheme performs tests
over the CSRs, but there are no tests available for the behavior
of a RISC-V processor based on external interruptions.
The RISC-V specification has three kinds of interruptions:
external, software and timer. Depending on the processor
mode, different flags should be triggered, and the processor
should jump to the exception vector in the CSR. We observed
that there is no precise specification about the interruption flag
sequence to change the internal processor flags and the PC.
Moreover, the RISC-V privileged ISA specification does not
specify the execution status of the processor when an external
interruption occurs.

III. INTERRUPTION SPECIFICATION ABSENCE

The RISC-V interruption specification does not give details
of how an interruption must be performed [8]. This description
absence is related to the sequence in which a processor
performs an interruption. That absence opens up different ways
to implement an interruption depending on the core designer.
Fig. 6 presents a waveform that compares the interruption
procedure in the PUV and Spike. Both execute the main
program (in blue) until the interruption is triggered. Once
the interruption triggers the PUV, its control unit immediately
stores the actual PC into the CSR and flushes the execution
and write-back stages corresponding to the flushed PC. After
storing the PC, the processor sets the PC to the interruption
handler code (in red). Later, the last instruction of the trap-
handler program reaches the write-back stage, and the PC

Fl.=Flush Main Program Trap Handler Program

clk

reset

Machine Interrupt

IF_PC B50 B54 CD0 CD4 B54 B58 B5C B60

EX_PC B4C B50 Fl. CD0 CD4 B54 B58 B5C

WB_PC B48 B4C B50 Fl. CD0 CD4 B54 B58

PC B50 B54 CD0 B58

P
U

V
S

p
ik

e

Fig. 6. PUV and Spike waveforms describing the internal state interaction on
the interruption trigger.

Spike

Trap Handler
Execution Ends

Jump to trap
handler code

before the MEM &
WB stage

PUV

EX

EX MEM
&WBFE

EXFE

EX MEM
&WBFE

PC

PC+4 PC

MTVEC
(MEPC =

PC+4)

After the execution of
the trap handler, the

return PC will be PC+4 FLUSHED PC

EX

EX

PC

PC+4

MTVEC
(MEPC =

PC+8)

After the execution of
the trap handler, the

return PC will be PC+8
instead of PC+4

Jump to trap
handler code after

writing memory
and registers

b)

a)

MEM
&WB

Interrupt

Interrupt

Main
Program

Main
Program

Trap Handler
Execution Ends

Fig. 7. Different interpretations of the RISC-V ISA interruption procedure.

returns to the stored value in the CSR, as depicted in Fig.
7(a).

At the lower edge of Fig. 6, the Spike approach of the
interruption sequence is presented. Spike waits until the
previous instruction (in blue) to the interruption is finished
when the interruption occurs and stores the next PC into the
CSR. Then, the PC jumps to the interruption handler program
(in red). After the trap handler program execution ends, the
PC returns to the stored value in the CSR, as shown in Fig.
7(b).

In some instances, the Spike approach in a real processor
implementation may cause a delay in trap handler program
execution. For example, in multi-cycle operations such as
multiplication, the trap handler program waits to be executed
until the multiplication ends. This strategy is more efficient in
the sense that it does not need to flush the pipe. However, it
could affect critical applications requiring a fast response to an
interruption. The PUV approach reduces the execution latency
of an interruption trap handler program. Furthermore, it avoids
inconsistencies with instructions that may change the internal
status of the memory or internal registers (such as CSRs and
system bus requests).

TABLE I
ERROR DETECTION IN THE VERIFICATION MODELS.

Inserted
error

µGP-Spike
(450 Indiv.)

RISC-V formal
(RV32IM)

ALU misbehaviour 256 Detected Detected
Wrong comparison 1 Detected Detected

Data hazard 1 Detected Not detected
Interruption execution 306 Detected Not detected

IV. THE BEST OF BOTH DOMAINS

We combine the process of verification of the implemented
RISC-V processor using the Spike and µGP simulation
comparison, and the description of the RISC-V specification
using formal verification with Yosys [9]. We compared
the internal states of the processor with the verification
environment. Each one of the verification covers most of the
cases according to the processor architecture. To reach the
most cases possible, µGP maximizes the coverage metrics,
and Yosys evaluates the assumptions and assertions in each
simulation step using boolean satisfiability (SAT).

We introduced some flaws inside the datapath of the PUV
to verify the correct operation of the frameworks. Table I
presents the detection over the µGP and RISC-V formal
of different inserted errors inside the processor. The ALU
misbehavior was tested by changing one bit to the final result,
affecting the multiplexer order, and adding a segmentation
stage. This misbehavior is detected in both frameworks– more
than half of the µGP tests. The faulty comparison introduces
a misinterpretation of the signed comparison by using the
30th bit as the sign instead of the 31st bit. RISC-V torture
does not detect this flaw, and the detection probability on
the simulation-based framework is minimal, making formal
verification suitable to find these kinds of errors. The data
hazard removes detection when writing a register to be used
in the next instruction. Software tortures are more suitable for
data hazard detection. Finally, it is relevant to highlight that
the interruption execution issue described in section III was
detected by the proposed simulation-based approach.

Table II provides an implementation cost for µGP and
RISC-V formal. µGP needs a simulation environment for the
processor to be implemented, which uses a log to display the
current status of the processor. RISC-V formal has a wrapper
environment where the RVFI is required. µGP requires more
software binding due to the need to push programs directly in
RAM, and only a per-cycle hardware logging. RISC-V formal
needs more hardware binding to connect and transform all
signals to the RVFI. An additional setup is needed for the
µGP in contrast with the RISC-V formal. The execution time is
configurable for µGP, lasting 90 minutes for 450 individuals.
The runtime for the 51 tests for the formal approach always
run for 45 minutes using multi-threads.

V. CONCLUSIONS

We presented a verification framework combining two
different verification approaches. The first one excites PUV

TABLE II
IMPLEMENTATION COSTS BETWEEN µGP AND RISC-V FORMAL

µGP-Spike RISC-V formal
Processor

output Output simulation log. RVFI RTL port.

Testbench RAM capability to insert
external programs. Provided. Connect RVFI.

Scripts
Adaptation needed. Build

assembly and format
to simulated memory.

Provided. Enable or disable
flags for verification.

Exec. Time
Intel-i7 9750 ∼90m for 450ind. 1-core ∼45m for RV32IM 8-cores

and a golden RISC-V ISA simulator with a set of automatically
generated tortures. Using a genetic algorithm called µGP,
µGP drives the generation of testing programs following
an maximization process over the coverage metrics, then
a comparison is performed using the internal states of the
processor with a execution model. The latter, RISC-V formal,
defines a set of formal properties that follow the RISC-V ISA
specification, through using open source formal verification
tools, the behavior for each instruction is verified on the PUV
against the set of formal properties.

If the verification implementation is accurate according to
the specification, these two approaches must thoroughly verify
the instruction set of RISC-V based processors. Unfortunately,
most of the verification errors may be caused by insufficient
coverage of all the cases. By using Spike (the golden model)
chose to compare in the framework, exposed in Fig. 2 detects
at most one out of 450 executed tests for comparator flaws
and data hazards. The formal properties specified in the RTL
help to detect certain behavioral flaws according to the ISA
specification. Thanks to the combination of the verification
schemes, we detected an absence in the processor interruption
state change, which the RISC-V ISA does not specify.

REFERENCES

[1] P. D. Schiavone et al., “An Open-Source Verification Framework
for Open-Source Cores: A RISC-V Case Study,” in 2018 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC),
Oct 2018, pp. 43–48.

[2] V. Herdt et al., “Verifying Instruction Set Simulators using Coverage-
guided Fuzzing*,” in 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2019, pp. 360–365.

[3] F. Corno, E. Sanchez, and G. Squillero, “Evolving Assembly Programs:
How Games Help Microprocessor Validation,” IEEE Transactions on
Evolutionary Computation, vol. 9, no. 6, pp. 695–706, Dec 2005.

[4] Symbiotic EDA, “RISC-V Formal Verification Framework,”
https://github.com/SymbioticEDA/riscv-formal, 2019.

[5] A. Reid et al., “End-to-End Verification of Arm Processors with Isa-
Formal,” in Proceedings of the 2016 International Conference on
Computer Aided Verification (CAV’16), ser. Lecture Notes in Computer
Science, S. Chaudhuri and A. Farzan, Eds., vol. 9780, no. 9780. Springer
Verlag, July 2016, pp. 42–58.

[6] RISC-V Foundation, “Spike RISC-V ISA Simulator,”
https://github.com/riscv/riscv-isa-sim, 2019.

[7] E. Sanchez, M. Schillaci, and G. Squillero, Evolutionary Optimization:
the µGP toolkit. Springer Science & Business Media, 2011.

[8] A. Waterman et al., “The RISC-V Instruction Set Manual Volume
II: Privileged Architecture Version 20190608-Priv-MSU-Ratified,” EECS
Department, University of California, Berkeley, Tech. Rep., Jun 2019.

[9] C. Wolf, “Yosys Open SYnthesis Suite,” http://www.clifford.at/yosys/.

