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Abstract Nonlinear forced response analyses of
mechanical systems in the presence of contact inter-
faces are usually performed in built-in numerical codes
on reduced order models (ROM). Most of the cases
these derive from complex finite element (FE) mod-
els, resulting from the high accuracy the designers
require in modeling and meshing the components in
commercial FE software. In the technical literature sev-
eral numerical methods are proposed for the identi-
fication of the nonlinear forced response in terms of
a kinematic quantity (i.e. displacement, velocity and
acceleration) associated either to the master degrees-
of-freedom retained in the ROM, or to the slave ones
after having expanded the reduced response through the
reduction matrix. In fact, the displacement is the quan-
tity usually adopted to monitor the nonlinear response,
and to evaluate the effectiveness of a partially loose
friction interface in damping vibrations, with respect
to a linear case where no friction interfaces exist and
no energy dissipation can take place. However, when
a ROM is used the engineering quantities directly
involved in the mechanical design, i.e. the strains and
stresses, cannot be retrieved without a further data pro-
cessing. Moreover, in the case of a strong nonlinear
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behavior of the mechanical joints, the distributions of
the nonlinear strains and stresses over the structure is
likely different than the one obtained as a superposition
of linear mode shapes whose definition require a-priori
assumptions on the boundary conditions at the contact
interface. This means that the mentioned approxima-
tion cannot be used to predict the safety margins of a
structure working in real (nonlinear) operative condi-
tions. This paper addresses this topic and presents a
novel stress recovery algorithm for the identification
of the strains and stresses resulting from a nonlinear
forced response analysis on a ROM. The algorithm is
applied to a bladed disk with friction contacts at the
shroud joint, which make the behavior of the blades
nonlinear and non-predictable by means of standard
linear analyses in commercial FE software.

Keywords Mechanical design · Stress recovery ·
Contact mechanics · Friction damping · Harmonic
balance method · Cyclic symmetry

1 Introduction

Blades are the critical components of turbine and com-
pressor assemblies in aircraft engines.Due to the occur-
rence of severe mechanical and aerodynamical loads in
operative conditions, blades are known to suffer high
cycles fatigue (HCF) damages, which is considered the
major cost, safety and reliability issue for gas turbine
engine [1]. As so much is dependent on the reliability
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1464 G. Battiato, C. M. Firrone

of these components, the tendency of manufacturers
would be to over-design them to largely cope the safety
specifications. On the other hand, limited weights are
necessary to achieve high efficiency in the latest gen-
eration gas turbine engines. This aspect unavoidably
leads to design much slender blades and thinner disks,
making them prone to mechanical vibrations. Such a
conflict requires the best possible trade-off made by
the designers to keep the static and dynamics stresses
within the safety margins. Therefore, a reliable simula-
tive prediction of blades stresses in the design phase is
necessary to prevent structural failures in service and
reduce the maintenance costs.

Industrial practices for the design of a bladed disk
prescribe FE analyses for the stress assessment at
the critical locations of the assembly [2]. A reliable
numerical identification of the stresses requires a deep
knowledge of actual boundary conditions on the real
component, such as the applied loads, the kinematic
constraints, and the presence of contact interfaces for
assembly. Nowadays commercial FE software are flex-
ible enough to handle a wide variety of structural load-
ing and constraints conditions, giving to the designers
the possibility to customize the numerical simulation
according to the actual, or expected, behavior of the
components. However, an unaware usage of the soft-
ware for complex FE analyses could lead to results
whose interpretation might be ambiguous andmislead-
ing. For this reason, on one side industrial practices aim
to be robust, since these must guide the engineers to the
optimum design by providing well-established proce-
dures resulting from the legacy gained in the devel-
opment of similar structures in the past. On the other
side, these become strict, limiting the designers to con-
ventional assessments where the uncertainties on the
boundary conditions are somehow considered in larger
safety factors.

Besides the assessment against static failure, the
design of low-pressure and high-pressure bladed disks
must be verified against HCF. Therefore, designers
must be aware of the static and dynamic loading con-
ditions in order to carefully predict the stress distri-
bution in service. Examples of static loads in bladed
disks are the centrifugal force, the temperature field,
and steady pressure distribution on the blades’ air-
foils. The dynamic loads are instead represented by the
unsteady component of the gas flow resulting in trav-
eling wave engine order (EO) excitation, which are the
major responsible for forced vibrations in blade arrays

Fig. 1 Campbell/Waterfall diagram of a turbine bladed disk: the
disk natural frequencies are plotted as a nearly horizontal lines
whose shape depends on the rotor speed �. This is due to the
blade stiffening effect caused by the increasing centrifugal force.
The straight lines starting from the axis origin denote the EO
traveling wave excitation, which represent the harmonic content
of the unsteady pressure distribution exciting the bladed disk

[3–5]. The occurrence of forced vibrations can be visu-
alized in the schematic Campbell/Waterfall diagram in
Fig. 1.

Among all the crossings between the mode shapes
and the EO lines, the resonance condition occurs if the
following relationship is satisfied:

EO = z · Ns ± h, z ∈ N
∗ (1)

where Ns is the number of disk’s sectors (i.e. the num-
ber of blades) and h is the harmonic index of the mode
shape, i.e. the number of nodal diameters of the excited
mode shape [5]. Although some critical crossings can
be moved outside from the operative range by slightly
modifying the disk design (grey resonances in Fig. 1),
some others cannot be avoided and additional damping
besides the hysteretic one of thematerial is necessary to
mitigate the effects of dangerous vibrations. This prac-
tice is crucial to avoid unacceptable level of dynamic
stresses that would drastically reduce the fatigue life of
the blades.

In the last four decades plenty of research papers
have addressed the problem of the blade’s vibration
mitigation in turbomachinery. The most exploited and
widely accepted solution is the design optimization of
themechanical joints used in the assembly, tomaximize
the friction damping taking place at the contact inter-
faces due to the occurrence of macro and micro-slip
phenomena. Typical applicationswhere such a solution
is successfully applied are the blade root and shroud
joints for rotating bladed disks [6–8], the interlock-
ing and hook joints for stator vane segments [9]. In
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Stress recovery algorithm for reduced order models of mechanical 1465

this regard, linear FE analyses for the prediction of the
static and dynamic behavior of the structure can just be
used to get a general idea on the behavior of the system,
without providing insights on how the actual stress dis-
tribution is effected by the presence of nonlinearities at
the contact interfaces of the joints.

The interaction between two surfaces in contact in
commercial FE software is simulated by means of con-
tact elements implementing specific contact laws, e.g.
node-to-node and surface-to-surface. Contact elements
can be used in static and dynamic FE analyses to esti-
mate the effects of friction on the static and steady-state
response of a structure. In the static analysis the nonlin-
ear deflection as well as the contact status at the joints’
interfaces are identified in a one-shot run, while the
evaluation of a nonlinear frequency response functions
(FRF) requires to solve several time domain analyses
in order to collect the steady-state responses of the sys-
tem for each excitation frequency. To overcome the
expensive computational costs typical of a direct time
integration, the scientific community have developed
advanced numerical techniques, usually implemented
in purposely developed codes, for the prediction of the
nonlinear FRF of structures with friction contact in the
frequency domain [2]. The key idea behind them is the
estimation of the contact forces by means of appro-
priate contact models [10–12] in the time domain and
the solution of a set of nonlinear equations of motion
(EQM) by using Harmonic Balance Method (HBM)
[10] or the Multi-harmonic Balance Method (MHBM)
[7,8]. In order tomake the FRFprediction faster or even
feasible, reduced order methods are used to condense
the dynamics of large FE models (FEM) to few mas-
ter DOFs. This is done by means of user-friendly rou-
tines available in commercial FE software that allow
to extract the reduced order matrices (mass, stiffness
and nodal loads) of the components according to well-
established Component Mode Synthesis (CMS) meth-
ods, e.g. fixed-interface and free-interface methods. If
on one side the solution of the EQM in a reduced
fashion allows to achieve a remarkable reduction of
the computational costs, on the other side the analysis
results can just be obtained in the form of kinematic
quantities (i.e. displacement, velocity, and accelera-
tion) at themasterDOFs,while the response at the slave
DOFs as well as the other engineering quantities (e.g.
the strains and stresses) cannot be directly retrieved
without a further data processing. In this regard, stress
recovery algorithms (SRA) allow to expand the reduced

solution back to the full FEM [13], so that stresses and
strains at the critical locations of the structure can be
retrieved from a nonlinear FRF predicted in the fre-
quency domain on a ROM.

This paper proposes a novel stress recovery algo-
rithm from a reduced nonlinear FRF of a bladed disks
in the presence of friction contacts at the shroud. The
recovered nonlinear stresses distribution at the blade
airfoil is compared to the one of the mode shape result-
ing from a modal analysis where the behavior of the
shroud is linearized assuming the full compatibility of
nodal displacements (i.e. no relative displacements) at
the contact interface. This comparison highlights the
relevance of the proposed methodology for the identi-
fication of the critical location at the blade airfoil, since
it changes with variation of the boundary conditions
occurring at the contact interface.

2 Forced response of shrouded bladed disks

In this section the reduced nonlinear EQM of a bladed
disk in cyclic symmetry (CS) conditions are obtained
from the FEM of the disk’s basic sector. Furthermore,
it will be shown how to compute a nonlinear forced
response in the presence of friction contact assuming
the HBM hypothesis.

2.1 Equations of motion

The design of real engineering structures often requires
the generation of accurate FEMs with a high density
of nodes. Nonlinear forced response analyses on such
structures are usually carried out with in-house devel-
oped codes [2,14–16], which operate on a limited num-
ber of DOFs in order to avoid the expensive computa-
tional costs typical of iterative solution methods (e.g.
theNewton-Raphonmethod (NRM) [17]). Substructur-
ing methods in the class of CMS (e.g. fixed-interface
and free-interface methods [18]) can therefore be used
to export for each FE component the mass and stiffness
matrices, as well as the loads vector, in a reduced form
[19]. In this research the CMS method used to reduce
the matrices of a bladed disk FEM is the well-known
Craig-Bampton (CB-CMS) [20]. The choice is due to
the fact that the CB-CMS method is usually included
in the commercial FE software. However, the study is
not strictly dependent on the chosen reduction method,
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1466 G. Battiato, C. M. Firrone

and other reduction techniques can be used (e.g. Rubin
[21]).

Figure 2 shows the basic sector of a bladed disk. It
consists of two different FE components, i.e. the blade
and the disk sector, that are assembled by enforcing the
compatibility of the nodal displacements at the blade
root joint. Let us denote with x the vector of DOFs,
which consists on all the nodal displacements in the
three directions of a cylindrical reference frame Oρθ z,
having the z-axis coincident to the disk axis and point-
ing as shown in Fig. 2. The DOFs vector x can be par-
titioned as follows:

x =
{
xm
xs

}
(2)

where xm represents the DOFs to retain as a master in
theCB-CMS reduction,whilexs is the set of remaining,
i.e. slave, DOFs. The subscriptsm and s are also used to
denote the size of themaster and slave partitions, which
contain nm and ns DOFs, respectively. For the purposes
of the nonlinear analyses discussed in the following,
the sets of master DOFs can be further partitioned as
follows:

xm =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xcr
xcl
xa
xdr
xdl

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3)

where:

– xcr and xcl are the vectors of nc contact DOFs, at
the right and left shroud interfaces respectively (i.e.
the DOFs corresponding to the green nodes in Fig.
2);

– xa is the vector of na active DOFs, i.e. the DOFs
where the response is monitored in terms of kine-
matic quantities (i.e. theDOFs corresponding to the
red nodes in Fig. 2). Being this set non-uniquely
defined, their number and locations must be care-
fully chosen, because of their influence on the defi-
nition of the fixed-interface normal modes. Thus, it
is suggested to adopt smart selection strategies for
themaster nodes to enhance the agreement between
the ROM and the full FEM [22].

– xdr and xdl are the vectors of nd DOFs, at the right
and left disk frontiers for the application of cyclic
symmetry constraints (i.e. the DOFs corresponding
to the orange dashed lines in Fig. 2).

Note that for a reliable application of the CS con-
straints all the DOFs at the disk frontiers have to be

Fig. 2 Basic sector of a shrouded bladed disk and master nodes
definition for CB-CMS reduction

retained as a master, while the definition of the sets xcr ,
xcl and xa might be arbitrary and depends on the appli-
cation. For instance, a good reduction practice would
require to define xa by choosing few active nodes on
the model so that the overall kinematics could be iden-
tified with sufficient accuracy. Similarly, assuming the
hypothesis of conforming meshes at the contact inter-
face, if the number of contact DOFs is particularly
large, xcr and xcl might be defined by selecting homol-
ogous nodes at the right and left shroud interface in
regions where the contact is expected. Otherwise, all
the contact DOFs at the shroud could be retained as a
master and further reduction methods might be used to
approximate the contact DOFs by means of few inter-
face modes [23,24].

According to the CB-CMS method, the full vector
of FE DOFs in Eqn. 2 can be approximated as follows:

x =
{
xm
xs

}
≈ RCB

{
xm
ηk

}

= [
� �

]{xm
ηk

}
=

[
Imm 0mk

�sm �sk

] {
xm
ηk

}
(4)

where RCB = [
� �

]
is the CB-CMS reduction basis,

� = [
Imm �T

sm

]T is the matrix of constraint modes,

� = [
0mm �sk]T

]T is the reduced matrix of nk � ns
fixed interface normalmodes, andηk is the reducedvec-
tor of modal coordinates corresponding to the reduced
set of fixed-interface normal modes �sk . If the CB-
CMS reduction is carried out with a commercial FE
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Stress recovery algorithm for reduced order models of mechanical 1467

software, the complete transformation matrix RCB is
computed and stored for a further stress recovery [19],
and the CB-CMS reduced matrices and load vector
are finally obtained applying the following transfor-
mations:

MCB = RT
CBMRCB KCB = RT

CBKRCB

fCB = RT
CBf (5)

Forced responses in bladed disks occur in the formof
traveling waveforms excited by traveling engine orders
(EO). The number of waves of the response at res-
onance denotes the harmonic index h of the excited
mode shape. As a consequence, the DOFs at the disk
frontiers vibrate with a phase shift ϕh that is known as
inter-blade phase angle and is defined as:

ϕh = 2π

Ns
h (6)

This involves to express the motion of one fron-
tier in terms of the displacements occurring on the
other. Assuming as independent the set xdr , xdl can
be expressed as:

xdl = xdr e
iϕh (7)

Eqn. 7 represents the so-called CS constraints and
allows the exact representation of all the mode shapes
with h nodal diameters for the full bladed disk, even if
these are just applied to the sector frontiers. Moreover,
it can be noted that CS constraints perform a further
model order reduction that halves the number of DOFs
at the disk frontiers (usually very large) from 2 × nd
to nd . By applying the CS constraints of Eqn. 7 the
CB-CMS reduced vector can be written as:

xCB =
{
xm
ηk

}
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xcr
xcl
xa
xdr
xdl
ηk

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Icc 0cc 0ca 0cd 0ck
0cc Icc 0ca 0cd 0ck
0ac 0ac Iaa 0ad 0ak
0dc 0dc 0da Idd 0dk
0dc 0dc 0da Iddeiϕ 0dk
0kc 0kc 0ka 0kd Ikk

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xcr
xcl
xa
xdr
ηk

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=TCS x̄CB

(8)

where the bar symbol denotes the CS quantities. When
the number of DOFs at the independent disk’s frontier

is particularly large, it could be convenient to apply an
interface reduction method to operate a further reduc-
tion of the set xdr . If�i i is a basis of ni interfacemodes,
which are computed for instance by using the GSI [23]
or Tran [25] method, the CB-CMS vector in CS condi-
tions becomes:

x̄CB ≈ diag
(
Icc Icc Iaa �i i Ikk

)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xcr
xcl
xa
ηi
ηk

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= R
 x̂CB (9)

where the hat symbol denotes the array that describes
the kinematics of the frontier in terms of modal dis-
placements. The mass and stiffness matrices as well as
the load vector in the final reduced form can be finally
obtained as follows:

M̂ = RT

T

T
CSMCBTCSR


K̂ = RT

T

T
CSKCBTCSR


f̂ = RT

T

T
CS{ fCB} (10)

Note that the order reduction in Eqn. 10 is effective
if ni � nd . In the following, the reduced matrices of
Eqn. 10 will be used to build the nonlinear EQM of the
bladed disk with shroud contact, and the hat symbol
will be omitted for brevity.

The nonlinear reduced EQM of a bladed disk with
shroud contacts can be written as:

Mẍ(t) + Cẋ(t) + Kx(t) = f(t) − fc(t, x(t), ẋ(t))

(11)

whereM,K and f are defined inEqn. 10, fc(t, x(t), ẋ(t))
is the vector of nonlinear contact forces acting of the
physical partitions xcr and xcl , while C is the struc-
tural damping matrix obtained by applying the inverse
modal transformation to the modal damping C̃:

C̃ = �̂TC�̂ = diag
(
2ζ jωn j

)
, j = 1, . . . , nT OT

(12)

where �̂ is themodalmatrix resulting from the solution
of the eigenproblem associated to the homogeneous
part of Eqn. 11, while ωn j and ζ j are the eigenvalue
and modal damping corresponding to the j-th mode
shape.

The steady state response of the system can be
obtained solving the EQM in the frequency domain
using the Harmonic BalanceMethod (HBM) [10]. Due
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1468 G. Battiato, C. M. Firrone

to the periodicity of the EO excitation, the displace-
ments and the nonlinear contact forces at the shroud
can be approximated as the sum of nh harmonic terms:

x(t) = �
( nh∑

f =0

X( f )ei f ωt
)

fc(t, x(t), ẋ(t)) = �
( nh∑

f =0

F( f )
nl ei f ωt

)
(13)

where X( f ) and F( f )
nl represent the f -th order com-

plex amplitudes of the displacements and contact forces
respectively, ω the circular frequency and nh the num-
ber of retained harmonics. The substitution of Eqn. 13
into the differential EQM in Eqn. 11 leads to the fol-
lowing set of nonlinear, complex, algebraic equations:

D(ω)( f )X( f ) =F( f ) − Fnl
(
X

)( f )
, for f =1, . . . , nh

(14)

whereD is the f -th order dynamic stiffnessmatrix, and
the coefficientsF( f )

nl , which are typically obtained from
the time domain contact forces, depend on the complex
amplitudesX( f ) for f = 1, . . . , nh . For the purposes of
this research the system of EQM 14 can be truncated
to the 1-st order (HBM) without loosing the general
validity of the method for a MHBM case. Therefore,
assuming the HBM approximation the residual vector
becomes:

r = D(ω)X − F + Fnl
(
X

)≈ 0 (15)

with the superscript (1) omitted for sake of clarity. Note
that the solution for the unknown amplitudes X cannot
be foundanalytically due to the nonlinear nature ofEqn.
14. The norm of the residual vector r has therefore to
be minimized numerically by using iterative solution
schemes such as the NRM.

2.2 Contact forces prediction

The problem of modeling periodical contact forces
and the implementation in numerical solvers has been
addressed by several authors. In the past years sev-
eral node-to-node contact models for the evaluation of
the contact forces between two nodes in contact have
been proposed [26]. The choice of the contact element
depends on the kinematics of the pair of nodes in con-
tact. Being the shroud interface characterized by a 3-D
periodic relative displacement, a contact element able

Fig. 3 1-D contact model with normal load variation

to capture the normal load variation has to be preferred
[27]. In order to well capture the 2-D trajectory of the
relative displacement on the contact plane, two differ-
ent modeling approaches are available. The first con-
siders to combine two 1-D contact elements with nor-
mal load variation [12,28], whose tangential directions
(i.e. the directions parallel to the contact surface) are
orthogonal to each other. In this way the 2-D in-plane
trajectory can be projected onto the two directions. The
second accounts for using a 2-D contact element with
normal load variation [29], for which the two orthogo-
nal components of the tangential relative displacement
on the contact plane are mutually coupled. In general,
the projection of a 2-D in-plane trajectory onto two lin-
ear trajectories involves an underestimation of the fric-
tion damping [26]. Therefore, although less precise, the
first modeling technique is more conservative from the
point of view of the dynamic design, since it would lead
to predict larger vibration amplitudes.

In this paper the 1-D contact element with normal
load variation is used to compute the periodic contact
forces for a given periodic relative displacement. The 1-
D contact elementmodels three different contact states:
stick, slip and separation. Figure 3 gives a schematic
representation of the contact model, where the two
dimensional relative displacement is decomposed into
two perpendicular directions: one in-plane tangential
components denoted by the node-to-node relative dis-
placement u and the slider’s displacement w, and one
out-of-plane normal component v.

The contact model’s parameters are represented by
the tangential and normal contact stiffnesses kt and kn ,
the coefficient of friction μ and the normal preload n0
(see Fig. 3).
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Stress recovery algorithm for reduced order models of mechanical 1469

At every time instant the normal contact force fn(t)
is defined as:

fn(t) = max
[
n0 + kh · v(t), 0

]
(16)

If n0 is positive, the bodies are in contact before vibra-
tion starts, while if an initial gap g0 is assumed, a cor-
responding negative n0 can be calculated as n0 = − g0

kn
.

In the tangential direction the contact force is defined
as:

ft =

⎧⎪⎨
⎪⎩
kt (u − w) stick

μ fnsgn(ẇ) slip

0 separation

(17)

The stick, slip and separation states alternate each other
during the vibration period according to the transition
criteria reported in [11].

The contact models works only in the time domain,
but the Fourier coefficients of the contact forcesFnl par-
ticipate to the dynamic equilibrium that is written in the
frequency domain (i.e. Eqn. 11). Therefore, according
to the Alternating Frequency Time (AFT) method [30],
the inverse Fourier transform is used to recover the con-
tact nodes displacements in the time domain from the
Fourier coefficients X. Then, the time history of the
tangential and normal relative displacements are used
as inputs for the contact model in order to compute the
time history of the contact forces. Finally, the Fourier
coefficients of the contact forces are computed by using
the Fast Fourier transform (FFT) and substituted into
Eqn. 15.

The previous considerations on the contact force cal-
culation hold for a pair of nodes sharing the same geo-
metric location. In the case of a blade shroud, the con-
tact is at the interface between two sectors, and the
displacements used in the contact model belong to two
adjacent sectors. When a single sector is used for the
simulation in CS condition, the displacements of the
pair of nodes of two adjacent sectors can be calculated
by using the displacement of one single sector. Given
a pair of homologous nodes Nl and Nr at the left and
right shroud interface, having coordinates (ρl , θl , ζl)

and (ρr , θr , ζr ), it holds that:

ρl = ρr , θr − θl = θs ζl = ζr (18)

being θs the sector angle. In this case the relative dis-
placement to feed into the contact model must be com-
puted using CS constraints similar to that of Eqn. 9. In
particular, being x(s) the reduced vector of DOFs for
the s-th sector treated in CS conditions (see Eqn. 9),

Fig. 4 Cyclic symmetric shrouded bladed disk: sectors order
convention (a), shroud displacements and contact forces for the
(s)-th and (s + 1)-th sector (b)

the vector of DOFs for the sector s + 1 can be found
as:

x(s+1) = x(s)e−iϕh (19)

Therefore, the relative displacement has to be com-
puted between the node located at the right interface of
the s-th sector and the node at the left interface of the
(s + 1)-th sector (Fig. 4):

xrel = x(s)
cr − x(s+1)

cl (20)

where:

x(s+1)
cl = x(s)

cl e
−iϕh (21)

The vector xrel, where the relative displacements u
and v for each contact element are stored, must be used
in the contact model so that the contact force f (s)cr =
−f (s+1)

cl is found. Finally, the contact forces at the left
interface of the (s + 1)-th has to be shifted back in
order to be applied at the left interface of the basic
sector according to the following equation:

f (s)cl = f (s+1)
cl eiϕh (22)

3 Stress recovery from the nonlinear forced
response on the reduced order model

The nonlinear forced response of a bladed disks with
shroud contacts is found by solving the EQM in the
formof the residual function r, for eachω in a given fre-
quency range [ωi , . . . , ω j , . . . , ω f ]. For the j-th fre-
quency, the solutionX j satisfying Eqn. 15 can be writ-
ten as:

X j = �{
X j

}+i�{
X j

}
(23)

123



1470 G. Battiato, C. M. Firrone

Fig. 5 Typical stick-slip phenomenon in the frequency domain:
an increase of the static preload n0 makes the contact interface
increasingly tight. This involves an increase of the resonance
frequency from the free to the full-stick condition

being �{
X j

}
and �{

X j
}
the real and imaginary part

of the X j . The shroud effectiveness in terms of fric-
tion damping provided to the structure can be assessed
in Fig. 5, where a typical nonlinear forced response is
plotted together to the two extreme linear cases result-
ing from the linear behavior of the shroud.

For a given amplitude of the excitation, an increase
of the preload n0 at the shroud has the effect of shifting
the resonant frequency towards higher values, mov-
ing from the free to the full-stick condition. The free
condition corresponds to the absence of contact at
the shroud interfaces, while the fully-stuck conditions
occurs when the DOFs at the shroud interface are
assembled by mean of the local tangential and nor-
mal contact stiffnesses kt and kn . Note that the relative
displacement at the contact interface can be fully pre-
vented if the CS constraints of Eqn. 7 are applied also
to the shroud DOFs as follows:

xcl = xcr e
iϕh (24)

This condition, which is here referred to as tight con-
dition, differs from the full-stick one for the total lack
of local compliance at the contact interfaces. Nonlin-
ear forced responses with a behavior close to the free
and fully-stuck conditions can be found respectively
for large negative and positive n0. A large negative n0
would lead to an initial gap g0 that never closes during
the oscillation cycle.On the contrary, a large positive n0
would prevent the occurrence of separation and sliding
at the contact interface.

From the behavior associated to the forced response
in Fig. 5 important considerations can be inferred for

two different aspects: the mechanical design of bladed
disks and the identification of dynamic stresses on
experimentally tested components. First, due to the
absence of a source of friction damping, the prediction
of dynamic stresses on the basis of the linear responses
(either free or full-stick) is certainly conservative. If
on the one side this implies the design of more robust
structures due to the over-sizing of the components, on
the other side it would involve a considerable increase
in the weights, with a consequent loss of efficiency.
Second, for the experimental identification of dynamic
stresses on the structure, an easy and fast approach con-
sists in the scaling of a measured quantity (e.g. the dis-
placement) bymeans ofmodal quantities obtained from
a FE modal analysis. For instance, if uP is the phys-
ical displacement measured at a point P of the blade
airfoil, the distribution of the physical stresses ς on the
structure can be computed as:

ς = K ς̃ (25)

where the ς̃ is the vector of modal stresses and K is a
scaling factor defined as:

K = uP

ũP
(26)

This approach, hereafter denoted as a linear-mode scal-
ing, can also be used in numerical simulations: a critical
stress can be calculated even if it is not directly asso-
ciated to the retained nodes in the ROM by scaling the
simulated displacement in an active node. In this case
K is calculated as the ratio of the simulated quantity
divided by the correspondingmodal quantity.However,
scaling the stresses as in Eqn. 25 leads to assume for
the operative deformed shape the stress distribution of
the predominant linear mode shape. This assumption
is acceptable if the Q-factor of the experimental forced
response is consistent to the material damping, while it
fails in the case of an evident nonlinear behavior of the
joints. To overcome the mentioned limitation, a stress
recovery algorithm (SRA) for the identification of the
stress distribution on a bladed disks showing a nonlin-
ear behavior of the partially loose shrouds is proposed.
The SRA involves the re-expansion of the reduced non-
linear response at resonance to all the structure’s DOFs,
and allows the calculation of the corresponding stresses
by means of static analyses performed in a commercial
FE software.

Let X̂res be the reduced nonlinear solution of Eqn.
15 at the resonance frequency fres = ωres/(2π) (Fig.
6).
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Fig. 6 Resonance frequency for a nonlinear forced response

The vector of complex amplitudes of all the master
DOFs retained in the CB-CMS reduction can be recon-
structedby combining the transformation and reduction
of Eqs. 8 and 9 respectively:

XCB = TcsRγ X̂res (27)

Being X̂res ∈ C
(2×nc+na+ni+nk ), XCB is Eqn. 27 is a

complex vector of size 2× (nc +nd)+na +nk , mean-
ing that the real and imaginary part of the expanded
response to all the DOFs in the full FE model can be
obtained using the transformation of Eqn. 3:

�(X) = RCB�(XCB), �(X) = RCB�(XCB) (28)

Given the real (imaginary) part of the expanded
response X at all the nodes of the FEM, the real
(imaginary) displacement U = [UPρ ,UPθ ,UPz ]T =
U(P, ωres) at a particular point P can be calculated
using the shape functions η(P) for displacements [31],
so that:

U(P, ωres) = η(P) · X(ωres) (29)

Under the hypothesis of a linearly elastic material,
the strains ε(P, ωres) depends linearly on the displace-
ments U (P, ωres) through the strain operator S:

ε(P, ωres) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ερρ

εθθ

εzz
γρθ

γρz

γθ z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= SU(P, ωres)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂/∂ρ 0 0
0 ∂/∂θ 0
0 0 ∂/∂z

∂/∂θ ∂/∂ρ 0
∂/∂z 0 ∂/∂ρ

0 ∂/∂z ∂/∂θ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎨
⎩
UPρ

UPθ

UPz

⎫⎬
⎭ (30)

Using the strain of Eqn. 30 and the constant material
matrix E, the stresses in P can be computed as:

σ(P, ωres) = E · ε(P, ωres) (31)

If Eqn. 31 is applied for all the nodes coordinates in the
FE model, the real and imaginary nodal stress compo-
nents are found, and the global vector of complex nodal
stresses can be finally obtained as follows:

σ(P, ωres) = �{
σ(P, ωres)

}+i�{
σ(P, ωres)

}
(32)

From a practical point of view, thismethodology can
be implemented in many ways. Since the FE software
are graphically optimized to manage large FE mod-
els and offer functions to accurately plot and visualize
detailed information related to themesh, a goodbalance
between custom and commercial FE software’ features
has to be found. In this study, thework flow for the iden-
tification of the stress distribution corresponding to a
nonlinear response of the bladed disk at resonance is
summarized in the following step-by-step procedure:

– Mesh the bladed disk sector and extract the reduced
CB-CMSmass matrixMCB , stiffness matrixKCB ,
and nodal force vector fCB (Eqn. 5. This step is
performed in a FE software (e.g. Ansys APDL),
so that the bladed disk superelement is created for
further solution expansion and the reductionmatrix
RCB stored.

– Import the CB-CMS ROM into a Matlab-based
code (or equivalent), and apply the CS constraints
and the interface reduction method as in Eqs. 8
and 9. Note that the CS constraint can be applied
in the FE environment before performing the CB-
CMS reduction. In the first case, the reduced matri-
ces have a more general form and are suited to be
treated with different CS constraint as required by
the user. In the second case, the reduced matrices
are specifically ready to be used with a specific har-
monic index h, but other CB-CMS reductions are
needed if the CS constraints must be updated for a
different h.

– Define the contact parameters and compute the non-
linear forced response on the ROM of Eqn. 11.
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– Expand the nonlinear displacements at the reso-
nance frequency fres to all the master DOFs, as
in Eqn. 27.

– Apply the complex displacements at the master
nodes into the superelement model, and solve a FE
harmonic analysis for the resonance frequency fres ,
assuming a null dampingmatrix. Note that this step
just allows to transfer the complex amplitudes of
the master DOFs to the CB-CMS superelement’s
master nodes.

– Expand the real and imaginary parts of the solution
separately to all the nodes of the full FEmodel using
the transformation of Eqn. 28.

– Given as inputs the real and imaginary displace-
ments computed at the previous step, perform two
static analyses in order to compute the real and
imaginary stresses (see Eqs. 29, 30 and 31).

The SRA is here presented assuming the first-order
approximation for the contact displacements and con-
tact forces aswell (Eqn. 15).When using theMHBM, it
would be necessary to implement the SRA for each har-
monic component retained in the approximation. The
actual real stress is represented by the maximum stress
value resulting from the superposition of the harmonic
stress components using the inverse Fourier transform.

4 Application

In this section the SRA is used to recover the stresses
froma set of nonlinear forced responses of a bladeddisk
for different values of the static preload n0. The Modal
Assurance Criterion (MAC) for complex vectors [32]
is used to compare the shape of the nonlinear stress
distributions with a linear one, obtained by preventing
the relative displacements at the shroud nodes in a CS
modal analysis (full-stick case). Furthermore, the Von
Mises stresses are computed in order to keep track of
the critical location at the blade airfoil for each n0.

The bladed disk has Ns = 112 identical sectors,
each of which consists on a shrouded blade and a
disk sector assembled at the blade root joint (Fig. 7).
Due to the limited friction occurring at blade root it
was decided to neglect the damping effects caused by
such joint on the nonlinear forced responses. There-
fore, the total compatibility of nodal displacementswas
enforced in the FE model so that no relative displace-
mentmight occur at the contact interfaces between disk
and blade. The sector representative of thewholewheel

Fig. 7 Bladed disks sector and master nodes location. The cir-
cled accessory node at the blade trailing edge is chosen for the
nonlinear forced response monitoring (Fig. 9)

Table 1 Size of the master DOFs partitions retained in the CB-
CMS reduction of the fundamental sector

DOFs partition Size

xcr 189

xcl 189

xa 78

xdr 4458

xdl 4458

ηk 200

geometry was created in ANSYS APDL, adopting the
10-node tetrahedral element and the standard material
properties of steel (Young’s modulus E = 210 GPa,
Poisson’s ratio ν = 0.33 and density ρ = 7800 kg/m3).
The resulting FEmodel consists of 38614 elements and
71575 nodes.

The CB-CMS ROM of the fundamental sector was
created in the ANSYS environment performing a clas-
sic substructuring analysis. The size of the master
DOFs partitions retained in the CB-CMS reduction are
given in Table 1:
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Table 2 Size of the master DOFs partitions for the final ROM

DOFs partition Size

xcr 189

xcl 189

xa 78

ηi 50

ηk 200

Fig. 8 Bending mode shape in the free (a) and tight (b) con-
ditions. It can be noted that in the free condition the maximum
vibration amplitude occurs at the mid-airfoil, while the shroud
participation is less important. This leads to a frequency shift
between the two modes of ∼ 10% (Fig. 9)

CS constraints were applied to the {xdl } and {xdr }
for the harmonic index h = 12 (Eqn. 7), and a basis of
ni = 50 GSI modes [23] was used to further reduce the
physical displacements at the independent disk fron-
tier. The reduction process led to a highly compressed
ROM, whose first 10 natural frequencies differ for less
than 0.05% with respect to the natural frequencies of
the full FEmodel solved inANSYS for the same h. The
size of the DOFs partitions for final ROM are listed in
Table 2.

The nonlinear forced responses were performed
assuming all the shroud nodes in contact. The fre-
quency range was chosen in order to excite a bending
mode in both the free and tight conditions shown in
Fig. 8.

The contact stiffnesses kt and kn were set in order to
be close to natural frequency of the mode with a fully-
stick shroud, to that of the FE model where the CS

Fig. 9 Free and full-stick linear FRF (blue and red dashed plots),
andnonlinear FRFs for differentn0 at the shroud contact interface
(continuous plots). The vibration amplitudes and the frequency
range are normalized with respect to the peak and the resonance
frequency ( fres ) of the full-stick response

constraints were also applied to the contact interfaces.
The friction coefficient μ and the modal damping ratio
ζ were assumed to be equal to 0.5 and 0.002 respec-
tively. The magnitude of the reduced vector of nodal
forces was tuned to get realistic vibration amplitudes
for the linear response, i.e.∼ 10−4m 0-peak at the node
where the maximum displacement occurs for the mode
shape with shroud in full-stick condition.

Being p0 the reference static preload corresponding
to the design interference at the shroud, the nonlinear
analyses were performed for each of the following n0:

From the point of view of the numerical simulation
p0 is the average preload obtained by solving a FE non-
linear contact analysis where the design interference is
implemented as a compenetration of the shroud inter-
faces.

Figure 9 shows the complete set of nonlinear forced
responses (continuous line plots) as well as the free
and full-stick linear responses (dashed line plots) for
the accessory node shown in Fig. 7, in the tangential
direction. Note that the linear cases were obtained by
performing linear forced response analyses and are here
reported to better understand the nonlinear behavior of
the blade caused by the shroud.

It can be observed that for a fixed external load
an increase of the static preload n0 has the effect to
increase the frequency of the resonance peak (Fig. 10),
moving from a contact condition where sliding occurs
(curve close to the free case), to a condition where
smaller relative displacements at the shroud take place
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Fig. 10 Resonance frequency versus the static preload n0

Fig. 11 Nonlinear FRFs for different n0 at the shroud contact
interface

(curve close to the full-stick case) because of the finite
local compliance of the contact.

Besides the changing in the resonance frequency,
which suggests a variation of the joint stiffness, varying
n0 involves a change in the amount of friction damping.
In particular, a decrease of n0 from the largest positive
value (i.e. n0 = 10 · p0) up to the largest negative value
(i.e. n0 = −10· p0), makes the joint increasingly loose,
with a consequent increase of slippage that involves two
different trends (Fig. 11).

First, decreasing n0 from 10 · p0 down to p0 corre-
sponds to decrease the vibration amplitude at resonance
in a significant manner, (i.e. -89.9%). This is due to the
increasing effectiveness of slippage in the generation
of friction damping. Second, once themaximumdamp-
ing effectiveness is achieved, a further decrease of n0
let the relative displacements at the contact interface
increase. In this region the slippage is large because
the vibration amplitude is increasing too, and the joint

Fig. 12 Q-factor versus the static preload n0

Table 3 n0 values for each nonlinear FRF (NFRF)

no. NFRF n0

1 −10 · p0
2 −7.5 · p0
3 −5 · p0
4 −2.5 · p0
5 p0

6 2.5 · p0
7 5 · p0
8 7.5 · p0
9 10 · p0

becomes less effective as a source of friction damping.
These observations are confirmed by the Q-factor plot
in Fig. 12.

Here it can be observed that the highest values cor-
respond to the largest preloads, while the minimum
occurs for n0 = p0.

For each n0 the nonlinear response at resonance was
expanded to the full FE model by following the work-
flow described in Sect. 3. The real and imaginary parts
of the solutions were exported in terms of equivalent
Von Mises stress for all the nodes at the blade airfoil.
The resulting nonlinear, complex stress distributions
were then compared to the corresponding complex lin-
ear stress distribution obtained from themodal analysis
in tight condition. The term “corresponding” is used to
highlight that the same set of shroud nodes was used
as a contact set for the nonlinear forced response, and
as a coupling set for the modal analysis. An equiva-
lent comparison could be performed for a smaller set
of shroud nodes detected from a nonlinear static anal-
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Fig. 13 Trend of theMAC between themodal stress distribution
obtained with the shroud in tight condition and all the expanded
nonlinear forced responses

ysis, where the blade is loaded by the rotational speed,
the steady pressure, the thermal loads, and the design
interference at the shroud [33].

The comparison was carried out using the MAC for
complex eigenvectors [32], which is here re-arranged
for the purposes of the current comparison as follows:

MAC = |σ T
p j

σ̃t |2
(σ T

p j
σp j )(σ̃

T
t σ̃t )

(33)

where σp j is the complex vector of physical Von
Mises stresses expanded from the forced response cor-
responding to the j-th static preload (Table 3), while
σ̃t is the complex vector of modal Von Mises stresses
obtained with the shroud in tight conditions. Figure
13 shows the MAC evolution due to the n0 variation,
while Fig. 14 shows a qualitative comparison between
the map of the reference Von Mises modal stress σ̃t
(Fig. 14a), and the stress maps of the expanded non-
linear Von Mises stresses σp1 , σp5 and σp9 (Fig. 14b, c
and d respectively).

From Fig. 13 it can be noted that for 2.5 · p0 ≤
n0 ≤ 10 · p0 the MAC gets close to the unity, meaning
that the shape of the excited nonlinear mode is close
to that of the eigenvector obtained for tight conditions
at the shroud. For n0 < 2.5 · p0 the nonlinear mode
drastically changes its shape, and the corresponding
MAC suddenly drops to ∼ 0.27 when n0 decreases
down to −2.5 · p0. Finally, for large negative n0s the
MAC slightly increases, approaching to the value of
∼ 0.39, which corresponds to the MAC between the
FE stress eigenvectors obtained for the free and tight
conditions at the shrouds. Furthermore, the change in

Fig. 14 Von Mises stress distributions at the blade airfoil corre-
sponding to themodal tight CS eigenvector (a), and the expanded
nonlinear forced responses corresponding to the 1-st (b), 5-th (c)
and 9-th (d) n0 (Table 3). For each stress map the location where
the maximum stress occurs is circled in red

Fig. 15 Evolution of the critical location at the blade airfoil
for each nonlinear forced response. The colored circles denote
stress concentration at specific airfoil locations: lower fillet (blue,
critical location N1), mid-airfoil (green, critical location N2) and
upper fillet (red, critical location N3)

the shape of the excited mode leads in general to a
different locationwhere themaximumVonMises stress
occurs. In particular, let σ r

Nc
be the absolute value of

the Von Mises stress at the critical location Nc for the
r -th expanded forced response:

σ r
Nc

=
√(�{σ r

Nc
})2+(�{σ r

Nc
})2 (34)

The positions of σ r
Nc

for all the expanded solutions are
shown in Fig. 15, where the critical locations N1 (blue
circle) and N3 (red circle) are the same identified for
the linear modes obtained for the shroud in free and
tight conditions respectively.

From Fig. 15 it can be noted that N1 and N3 are
located at the lower and upper fillet of the blade airfoil
respectively. This result is somehow expected for dif-
ferent reasons. First, the fillets are machined to avoid
high stress concentrations due to a sudden variation of
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the blade geometry, as would be the case for the bound-
aries blade platform-airfoil (lower fillet) and airfoil-
shroud (upper fillet). Nevertheless, such boundaries
still remain critical from the stress concentration per-
spective. Second, the blade with the shroud in free
conditions behaves as a clamped-free beam (Fig. 8a),
which leads to expect higher stresses close to the clamp,
i.e. at the blade root, where the blade is clamped to the
disk and the moment due to bending is higher. Third,
the blade with shroud in tight conditions behaves as
a clamped-clamped beam (Fig. 8b), where the higher
stress due to bending is expected close to one of the
clamps (either lower or upper fillet), depending on the
geometry of the fillets.

It can also be noted that the critical location N3

for the expanded nonlinear response, remains the same
identified for the linear mode in tight conditions, until
the corresponding MAC in Fig. 13 remains close to the
unity (cases 6 to 9). For lower MACs the critical loca-
tion changes aswell, moving from the upper fillet (criti-
cal location N3) to the lower fillet (critical location N1),
passing by the mid airfoil for n0 = p0 (critical loca-
tion N2). The latter case corresponds to aMAC slightly
less than 0.7 (Fig. 13), which suggests the occurrence
of a nonlinear stress distribution significantly different
from the ones obtained for the two extreme linear cases,
i.e. blade with tight shroud (MAC close to unity) and
blade with free shroud (MAC close to∼ 0.39). For this
reason, it could be expected to find a critical location
different than N1 and N3 as actually happened.

The change in the MAC as well as in the critical
location makes the linear-mode scaling described in
Sect. 3 (Eqn. 25) no more valid in general. In fact,
although Eqn. 25 can be applied to identify the stresses
for all the nonlinear shapes having MAC close to the
unity, it does not hold for the cases with low MACs
and different critical location with respect to that of the
linear mode. For instance, if the 5-th forced response
is considered, from Fig. 15 it can be noted that the
critical location at the blade airfoil does not coincide
to that of the linear tight mode (critical location N3). If
σ 5
N3

is the stress at the location N3 (i.e. at the critical
location for the tight mode shape) for the 5-th forced
response, it occurs that σ 5

N2
/σ 5

N3
= 1.22. Meaning that

if Eqn. 25 is used to scale the modal stresses of the
tight linear mode using the K factor obtained as the
ratio between the maximum displacement at a certain
accessory node and the corresponding (tight) modal

displacement at the same node, the maximum stress
would be underestimated of the ∼ 22%.

5 Conclusions

The application presented in the previous section high-
lights the need to adopt a SRA for the stress identi-
fication in a nonlinear forced response. In the tech-
nical literature the performance of a friction joint on
the dynamic response of a structure is usually assessed
by monitoring the maximum vibration amplitude at a
specific, given location. However, a robust mechanical
design against HCF requires the prediction of the static
and dynamic stresses, in order to define the working
point on a Haigh diagram for the identification of the
safety factor.

Although the static stress assessment might be car-
ried out by just solving a static analysis in commercial
FE software, the evaluation of dynamic stresses for a
nonlinear contact problem is not straightforward. In
fact, due to the convenience to solve the reduced non-
linear EQM in the frequency domain, the solution, usu-
ally expressed in terms of kinematic quantities at the
master DOFs, has to be re-expanded to the FEmesh for
the stresses calculation. This practice allows to detect
the actual stress distribution on the structure, and over-
comes the limitations related to the unreliable scaling
of the modal stresses in the case of a pronounced non-
linear behavior of the joint. In particular, it can be noted
that scaling the modal stresses holds when a weak vari-
ation of the joint stiffness occurs. In fact, for the forced
responses 6, 7, 8 and 9, which are close to the full-
stick forced response, the resonance frequency does
not change significantly, and the shape of the stress
distribution still remains similar to that of the tight lin-
ear mode shape. Instead, for the 4-th forced response,
although slight variation of the resonance frequency,
the MAC drops to 0.27. This result suggests an impor-
tant modification of the mode shape as well as of the
critical location, which moves from the upper fillet to
the lower fillet of the mid airfoil, passing by the mid
trailing edge (Fig. 15). Therefore, as previously shown
in Sect. 4, besides the wrong identification of the criti-
cal location, scaling the modal stresses would have led
to a non-negligible underestimation of the maximum
stress.

123



Stress recovery algorithm for reduced order models of mechanical 1477

Finally, the SRA, if embedded into the design pro-
cess, can provide qualitative and quantitative indica-
tions on the changing of the stress distribution due to the
loss of contact interference and variation of n0. In fact,
the frictional joint does not maintain the same assem-
bly interference in operation due to the occurrence of
wear due to fretting [34,35]. Therefore, predicting the
evolution of the critical locations might improve the
mechanical design in order to ensure safety operative
conditions for all the loading cases.

Due to the large employment of frictional joints in
a wide variety of mechanical systems, the presented
methodology is suitable not only for turbomachinery
applications, but also for many other engineering fields
where the nonlinear dynamic behavior of the structure
is usually predicted in the frequency domain on aROM.
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