
18 October 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

The accuracy and precision of gait spatio-temporal parameters extracted from an instrumented sock during treadmill and
overground walking in healthy subjects and patients with a foot impairment secondary to psoriatic arthritis / Walha, R.;
Lebel, K.; Gaudreault, N.; Dagenais, P.; Cereatti, A.; Della Croce, U.; Boissy, P.. - In: SENSORS. - ISSN 1424-8220. -
ELETTRONICO. - 21:18(2021), p. 6179. [10.3390/s21186179]

Original

The accuracy and precision of gait spatio-temporal parameters extracted from an instrumented sock
during treadmill and overground walking in healthy subjects and

Publisher:

Published
DOI:10.3390/s21186179

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2926114 since: 2021-09-21T18:30:32Z

MDPI



sensors

Article

The Accuracy and Precision of Gait Spatio-Temporal Parameters
Extracted from an Instrumented Sock during Treadmill and
Overground Walking in Healthy Subjects and Patients with a
Foot Impairment Secondary to Psoriatic Arthritis

Roua Walha 1, Karina Lebel 2,3, Nathaly Gaudreault 1, Pierre Dagenais 1, Andrea Cereatti 4 , Ugo Della Croce 5,6

and Patrick Boissy 1,2,*

����������
�������

Citation: Walha, R.; Lebel, K.;

Gaudreault, N.; Dagenais, P.; Cereatti,

A.; Della Croce, U.; Boissy, P. The

Accuracy and Precision of Gait

Spatio-Temporal Parameters

Extracted from an Instrumented Sock

during Treadmill and Overground

Walking in Healthy Subjects and

Patients with a Foot Impairment

Secondary to Psoriatic Arthritis.

Sensors 2021, 21, 6179. https://

doi.org/10.3390/s21186179

Academic Editors: Cosimo Costantino,

Valentina Bianchi

and Giulio Colavolpe

Received: 14 July 2021

Accepted: 10 September 2021

Published: 15 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
Walha.Roua@usherbrooke.ca (R.W.); Nathaly.Gaudreault@usherbrooke.ca (N.G.);
Pierre.Dagenais@usherbrooke.ca (P.D.)

2 Research Center on Aging, CIUSSS Estrie CHUS, Sherbrooke, QC J1H 4C4, Canada;
Karina.Lebel@usherbrooke.ca

3 Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
4 Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy;

andrea.cereatti@polito.it
5 Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; dellacro@uniss.it
6 Biomedical Engineering Department, Catholic University of America, Washington, DC 20064, USA
* Correspondence: Patrick.Boissy@usherbrooke.ca; Tel.: +1-819-780-2220 (ext. 45628)

Abstract: The objectives of this study were to assess the accuracy and precision of a system combining
an IMU-instrumented sock and a validated algorithm for the estimation of the spatio-temporal
parameters of gait. A total of 25 healthy participants (HP) and 21 patients with foot impairments
secondary to psoriatic arthritis (PsA) performed treadmill walking at three different speeds and
overground walking at a comfortable speed. HP performed the assessment over two sessions.
The proposed system’s estimations of cadence (CAD), gait cycle duration (GCD), gait speed (GS), and
stride length (SL) obtained for treadmill walking were validated versus those estimated with a motion
capture system. The system was also compared with a well-established multi-IMU-based system
for treadmill and overground walking. The results showed a good agreement between the motion
capture system and the IMU-instrumented sock in estimating the spatio-temporal parameters during
the treadmill walking at normal and fast speeds for both HP and PsA participants. The accuracy
of GS and SL obtained from the IMU-instrumented sock was better compared to the established
multi-IMU-based system in both groups. The precision (inter-session reliability) of the gait parameter
estimations obtained from the IMU-instrumented sock was good to excellent for overground walking
and treadmill walking at fast speeds, but moderate-to-good for slow and normal treadmill walking.
The proposed IMU-instrumented sock offers a novel form factor addressing the wearability issues of
IMUs and could potentially be used to measure spatio-temporal parameters under clinical conditions
and free-living conditions.

Keywords: wearable systems; IMUs; gait parameters; free-living measures

1. Introduction

Efficient and stable gait is an indicator of autonomy and good health. In some inflam-
matory arthropathies such as psoriatic arthritis (PsA), the frequency and severity of foot
and ankle problems such as synovitis, tendonitis, enthesitis, etc., could result in high levels
of pain, deformities, and a reduced range of motion. Consequently, antalgic gait strategies
may appear and disrupt the cyclical and symmetric process of normal gait. In such cases,
an objective gait analysis enables clinicians and researchers to monitor disease progression
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and patient responses to interventions such as rehabilitation and orthotics. Spatio-temporal
gait parameters, among other variables such as joint kinematics, kinetics, and electromyog-
raphy are usually used to quantify changes/alterations in gait patterns and are key metrics
in gait analysis. The main spatio-temporal parameters including stance, swing, and stride
duration, also named gait cycle duration (GCD), cadence (CAD), stride length (SL), and
gait speed (GS) are important clinical outcomes as they allow the functional status to be
described and adverse health outcomes to be predicted [1]. For instance, a reduced GS is
associated with functional independence [2] and is used as a screening tool for foot pain [3].
SL is also considered as an indicator of foot pain [4] and the severity of rheumatological
and musculoskeletal disorders (associated with a reduction in the ankle, knee, or hip range
of motion) such as osteoarthritis [5]. On the other hand, temporal gait parameters such as
GCD, stance duration, and swing duration are used as indicators of gait instability, risk of
falling, and frailty syndrome [6]. Simple methods such as the stopwatch can be used to mea-
sure basic parameters such as GS in clinical settings. Laboratory-based methods, such as
force platforms, gait mats, and motion capture (Mocap) systems are used as gold standards
to measure spatio-temporal parameters in research settings [7]. Laboratory-based methods
are highly accurate but expensive, may require evaluator expertise, limit the assessment to
short time intervals and to the laboratory space, and thus may not be representative of the
participants’ real-life walking patterns [8]. For these reasons, wearable systems based on
Inertial Measurement Units (IMUs) have been developed and extensively used in the last
two decades for gait analysis both in research and in clinics [9].

Wearable IMUs are miniature movement sensors usually composed of a three-axis
accelerometer and a three-axis gyroscope, often integrated with a three-axis magnetometer.
Several systems using one or more IMUs that can be placed on different body segments
are available for clinical use and research purposes. Among them, the Mobility Lab (ML)
system (APDM®, Portland, OR, USA), uses a set of six IMUs worn on the chest, lower
back, wrists, and feet and comes with software that allows for an automated estimation
of several gait parameters. ML is widely used in clinics and research [10] and has been
validated in healthy [11,12] and pathological populations [13–15]. However, such a system
remains costly and due to the number and placement of IMUs, it is not always practical
and usable in clinics and certainly not for free-living gait recordings.

Independently of their ease of use and accessibility, questions about the accuracy
and precision of the spatio-temporal parameter data derived from IMUs still remain as
they depend on a combination of factors including sensor noise and drift, environmental
perturbations, the type and specific tuning of the orientation’s estimation filter [16], the
positioning and alignment of sensors, as well as the level of complexity of the processed
parameters [9]. Indeed, the accuracy of temporal gait parameters mainly depends on the
ability of the system to accurately detect gait events (GEs). The estimation of the accuracy
of spatial parameters, however, depends upon a series of factors including the accuracy of
GE detection, the accuracy of orientation estimations, and the ability of the algorithm to
correct integration errors. As mentioned above, the first step to estimate spatio-temporal
parameters from IMU recordings requires the accurate detection of GEs specifically, namely
initial contact (IC) or heel strike, and final contact (FC) or toe-off. Several methods based
on angular velocities or accelerations from one or more IMUs have been proposed in the
literature to detect GE and to compute the temporal parameters [9]. However, the accuracy
of the GE detection can vary drastically depending on the sensors used, their placement,
the recording used (e.g., acceleration and angular velocity), the algorithm used, and the
study population. A recent systematic review [9], showed that foot and shank/ankle-
based algorithms have a better accuracy and repeatability than wrist or lower trunk-based
ones and that angular velocity-based algorithms are more accurate than those based on
acceleration signals for GE detection and the estimation of temporal parameters.

Validation studies of foot-mounted IMUs for the measurement of spatio-temporal
parameters have shown varying results [17–19]. For example, a study by Donath et al.
showed a good to excellent intersession reliability and validity for the commercial Rehagait
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system in the estimation of spatio-temporal parameters in a sample of healthy participants
(N = 22) for treadmill walking at different speeds including slow (0.95 m/s), normal
(1.12 m/s), and fast (1.28 m/s) and slopes (0% and 15%). The results showed a lower
reliability and validity for the estimates at slow speeds and a 15% slope; however, the
average relative errors for SL, GCD, and CAD were as small as 2.7%, 0.8%, and 1.5%,
respectively, for all speeds and slopes compared to data from an instrumented treadmill [17].
Rampp et al. also validated a shoe-mounted IMU (Shimmer 2R) in 116 older adults during
overground walking. Their findings showed a good agreement between the IMU system
and an instrumented mat (GAITRite). A mean absolute error (MAE) of less than 33 ms
and 6.3 cm was found for the temporal parameters and SL, respectively [18]. However, in
another study, the findings showed a poor concurrent validity for the Rehawatch system
(foot-mounted IMUs–WS) compared to the instrumented mat in 21 frail older adults,
especially at fast walking [19].

The validity and reliability of several ankle–IMU-based methods have also been stud-
ied and most of the studies reported encouraging results [20–22]. For instance, Trojaniello
et al. proposed and validated a method named the Trusted Events and Acceleration Direct
and Reverse Integration along the direction of Progression (TEADRIP) using two ankle-
mounted IMUs (Opal, APDM) for the determination of the spatio-temporal parameters
in hemiparetic, choreic, and Parkinson’s disease patients and healthy older adults [22].
Compared to the instrumented mat (GAITRite) data, the mean errors in IC detection in
all groups ranged from 0 to 11 ms (MAE: 10 to 17 ms) for normal speed walking, and
from 3 to 22 ms (MAE: 12 to 22 ms) for fast walking. The relative errors in the SL estima-
tion ranged from 1 to 3% in all groups and for both speeds [22]. The TEADRIP was also
validated in a multicenter study in a large number of participants with and without PD
and mild cognitive impairment (N = 236) [21]. The results showed an average delay of
10 ms in IC identification performed by the TEADRIP in all clinical centers and for all
walking speeds. The relative errors for both the temporal and spatial parameters were
below and never over 3%. The accuracy of estimating the temporal gait parameters for this
same method was investigated in the study by Storm et al. for free-living walking using
shank-mounted IMUs in a sample of ten healthy participants [20]. Their results showed
reasonable MAE values of about 9 and 13 ms in stride time and step time estimations,
respectively, but a higher MAE for stance time (37 ms).

In summary, one can presume that foot and shank/ankle-based methods have compa-
rable accuracy and reliability and amongst the different methods, the TEADRIP method
applied to ankle IMUs seems to be robust for the calculation of spatio-temporal parameters
and so far, it is the only method that has been validated in a large number of participants
and different populations such as healthy, Parkinson’s disease, hemiparetic, and choreic
patients. However, this method, or any other IMU-based method, has never been assessed
in patients with foot impairments secondary to PsA for whom the presence of foot pain
may result in a specific antalgic gait pattern different from that observed in neurological
conditions. Moreover, in terms of usability, the studies suggest that shank-mounted IMUs
could be less cumbersome and be preferred over foot-mounted ones, which is an important
consideration for long and free-living gait recordings [23,24]. Advances in the miniatur-
ization and packaging of IMUs and their integration in garments (or the so-called smart
textile systems) could offer solutions to enhance the wearability and comfort of IMUs while
allowing them to stay close to the skin with a relatively fixed position [25]. Among them,
a low-cost system consisting of an instrumented sock including an ankle-mounted IMU
(Sensoria ®) is now available on the market [26].

The purpose of this study was to assess and compare the accuracy (concurrent validity)
and precision (intersession reliability) of the spatio-temporal parameters estimated with
the proposed system applying the TEADRIP algorithm to the above mentioned IMU-
instrumented sock recordings in HP and PsA patients with foot problems.



Sensors 2021, 21, 6179 4 of 17

2. Materials and Methods
2.1. Subjects

Twenty-five healthy participants (HP) were recruited (10 males, 15 females). The mean
age and body mass index of the HP were 31.08 ± 10.15 years and 24.6 ± 4.3, respectively.
The inclusion criteria included those aged 20 years or older. The exclusion criteria included
those suffering from lower limb pain or any musculoskeletal, rheumatological, or neuro-
logical disease that could affect normal gait patterns. Twenty-one PsA patients (5 males,
16 females) with a mean age of 53.9 (8.9) years, a BMI of 29.3 (4.5), and a mean disease du-
ration of 11.5 years (10.2) were consecutively recruited from the rheumatology out-patient
clinics at the Hotel Dieu University Hospital CHU of Sherbrooke (CHUS). The inclusion
criteria were as follows: aged between 20 and 70 years, a confirmed diagnosis of PsA by a
trained rheumatologist, moderate to severe and recurrent foot pain, and stable medication
over three months preceding the recruitment. The exclusion criteria included patients with
diabetes, neurological disease, or any musculoskeletal disease that could impact normal
gait patterns. The study was approved by the CIUSSS de l’Estrie-CHUS ethics committee,
and all the participants gave their informed consent.

2.2. Study Design

This study is part of a quasi-experimental trial that aims to explore the effectiveness of
custom-made foot orthotics on pain, function, and clinical and ecological gait parameters
in PsA patients.

Two walking conditions, treadmill and overground walking, were considered (Figure 1a).
An optical motion capture system was used to obtain spatio-temporal parameter values
to be used as the gold standard for treadmill walking, while for overground walking,
reference values for the spatio-temporal parameters were obtained from the Mobility Lab
system (APDM Wearable Technologies, Portland, OR, USA). HP attended two measurement
sessions that were one week apart, while PsA patients attended one measurement session.
The measurement sessions were conducted in the biomechanical laboratory at the research
center on aging. The treadmill tests consisted of three 2 min walking trials performed at
slow, normal, and fast speeds and recorded using the motion capture system, the IMU-
instrumented sock, and the ML system. For HP, slow, normal, and fast speeds were set
at 0.45, 1.12, and 1.6 m/s, respectively. For PsA patients, the slow speed was fixed at
0.45 m/s while the normal and fast speeds were determined through a trial-and-error
approach where the normal and fast speeds were fixed for each participant as the most
comfortable and the fastest possible walking speed, respectively. The overground walking
consisted of three trials of the timed 10 m walking tests (10 MWT), a well-known clinical
test [27]. The gait data were recorded using the IMU-instrumented sock and the ML system.
A stopwatch was also used to record the walking time to compute a clinical standard value
of GS.

2.3. Measurement Systems

Figure 1b illustrates the measurement systems used for data acquisition. The motion
capture system used in this study is composed of eight Optitrack Prime 13W cameras
(NaturalPoint, Corvallis, OR, USA). The cameras were calibrated before every data collec-
tion using the CWM-125 calibration wand. A computer-controlled treadmill was placed
in the center of the volume captured by the cameras. Participants were instrumented
using 16 passive markers and a conventional lower body model was used for analysis.
Spatio-temporal parameters from the kinematic data were calculated by first identifying
GE from the horizontal position of the heel marker as described in [28]. CAD is defined as
the number of steps per minute, GCD as the time elapsed between two consecutive heel
strikes (HS) of the same foot, SL as the distance between two consecutive HS of the same
foot, and GS as SL divided by GCD. Based on these definitions, the average temporal and
spatial parameters were then calculated.



Sensors 2021, 21, 6179 5 of 17
Sensors 2021, 21, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 1. Conditions and measurement systems used for data acquisition. (a) Participants performed three 2 min treadmill 
walking trials at slow, normal, and fast walking speeds and three 10 m overground walking trials at a self-selected com-
fortable speed. (b) A motion capture system was used as the gold standard to validate the estimations of the spatio-tem-
poral parameters for treadmill walking based on the IMU-instrumented sock and the Mobility Lab system. 

2.3. Measurement Systems 
Figure 1b illustrates the measurement systems used for data acquisition. The motion 

capture system used in this study is composed of eight Optitrack Prime 13W cameras 
(NaturalPoint, Corvallis, OR, USA). The cameras were calibrated before every data collec-
tion using the CWM-125 calibration wand. A computer-controlled treadmill was placed 
in the center of the volume captured by the cameras. Participants were instrumented us-
ing 16 passive markers and a conventional lower body model was used for analysis. Spa-
tio-temporal parameters from the kinematic data were calculated by first identifying GE 
from the horizontal position of the heel marker as described in [28]. CAD is defined as the 
number of steps per minute, GCD as the time elapsed between two consecutive heel 
strikes (HS) of the same foot, SL as the distance between two consecutive HS of the same 
foot, and GS as SL divided by GCD. Based on these definitions, the average temporal and 
spatial parameters were then calculated. 

The IMU-based system used for this study was the Mobility Lab (ML) system (APDM 
Wearable Technologies, Portland, OR, USA), a research-grade system widely used by re-
searchers and clinicians for gait and balance analysis. ML is composed of a set of one to 
six IMUs (Opal, a three-axis accelerometer, a three-axis gyroscope, and a three-axis mag-
netometer), an Access Point for wireless data transmission and synchronization, and soft-
ware that provides the estimation of several spatio-temporal parameters including CAD, 
GCD, GS, and SL. Details on the calculation of the spatio-temporal parameters with the 
Mobility Lab system are provided in [29]. In this study, we used a setup of six IMUs placed 
on both wrists, the feet, the lower back, and the chest, as recommended. The sample rate 
frequency was set at 128 Hz. 

The IMU-instrumented sock was manufactured by Sensoria (Sensoria Inc, Redmond, 
WA, USA) and included an IMU positioned about 5 cm above the lateral malleolus  
(Figure 1b). To ensure acceptability and limit the potential discomfort due to wearing the 
sock, participants wore only one IMU-instrumented sock on the right foot during the ex-
periments. Moreover, the IMU’s sampling frequency was limited at 50 Hz to extend the 
battery life. The IMU data was transferred via Bluetooth to a smartwatch (Apple Watch, 
series 3), stored, and transferred to a PC via Wi-Fi. The recordings were then processed 

Figure 1. Conditions and measurement systems used for data acquisition. (a) Participants performed three 2 min treadmill
walking trials at slow, normal, and fast walking speeds and three 10 m overground walking trials at a self-selected
comfortable speed. (b) A motion capture system was used as the gold standard to validate the estimations of the spatio-
temporal parameters for treadmill walking based on the IMU-instrumented sock and the Mobility Lab system.

The IMU-based system used for this study was the Mobility Lab (ML) system (APDM
Wearable Technologies, Portland, OR, USA), a research-grade system widely used by
researchers and clinicians for gait and balance analysis. ML is composed of a set of one
to six IMUs (Opal, a three-axis accelerometer, a three-axis gyroscope, and a three-axis
magnetometer), an Access Point for wireless data transmission and synchronization, and
software that provides the estimation of several spatio-temporal parameters including
CAD, GCD, GS, and SL. Details on the calculation of the spatio-temporal parameters with
the Mobility Lab system are provided in [29]. In this study, we used a setup of six IMUs
placed on both wrists, the feet, the lower back, and the chest, as recommended. The sample
rate frequency was set at 128 Hz.

The IMU-instrumented sock was manufactured by Sensoria (Sensoria Inc, Redmond,
WA, USA) and included an IMU positioned about 5 cm above the lateral malleolus
(Figure 1b). To ensure acceptability and limit the potential discomfort due to wearing
the sock, participants wore only one IMU-instrumented sock on the right foot during the
experiments. Moreover, the IMU’s sampling frequency was limited at 50 Hz to extend the
battery life. The IMU data was transferred via Bluetooth to a smartwatch (Apple Watch,
series 3), stored, and transferred to a PC via Wi-Fi. The recordings were then processed
with a Matlab implementation of the TEADRIP algorithm for the detection of gait events
and the estimation of the spatio-temporal parameters [22]. The IMUs were first calibrated
to minimize any noise that may affect the detection algorithm. The TEADRIP algorithm,
originally developed for bilateral IMUs, was slightly modified to operate on a single IMU
to first identify time intervals of interest, corresponding to a first approximation of the
swing and stance phases of each step, based on an analysis of the variation in angular
velocity. A further analysis of the angular velocity within these specific time intervals
identifies the gait events (HS and TO). Specifically, HS corresponds to the local minimum
of the medio-lateral angular velocity preceding maximum antero-posterior acceleration.
TO is located at the absolute minimum in antero-posterior acceleration occurring prior to
the last maximum in antero-posterior acceleration within the specified research window.
Using these GEs, the temporal parameters can be obtained. Spatial parameters require the
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estimation of a change in position. This is performed using a direct and reverse double-
integration principle on linear acceleration over the direction of progression. With SL
assessed, GS can be estimated in a continuous matter.

2.4. Acquisition Protocol

Participants performed three walking trials on the treadmill while simultaneously
wearing the IMU-instrumented sock, the ML system IMUs, and the motion capture system’s
retroreflective markers. Trials were two minutes long and were carried out at slow, normal,
and fast speeds as described previously. The speeds were administered in a balanced order
across participants using a Latin square design table. A 30 s warm-up period was given to
the participants at the beginning of each trial. All participants performed three trials of the
10MWT wearing the IMU-instrumented sock on the right foot with the sensor positioned
above the lateral malleolus and the ML system IMUs. Participants were asked to walk
at a comfortable speed along a 14 m straight walkway. To exclude the acceleration and
deceleration phases at the beginning and the end of the trial, only the data recorded while
walking in the central 10 m of the walkway were considered.

The 10MWT and the treadmill walking tests were repeated at two measurement
sessions a week apart for the HP, and only once for the APSO. Data acquisition was
performed by the same evaluators within and between the measurement sessions.

2.5. Statistical Analysis

The results are reported as means and standard deviations when applicable.
The independent t-test was used to assess the differences in the spatio-temporal parameters
measured for overground walking between healthy and PsA participants. The accuracy
(concurrent validity) of the gait spatio-temporal parameters estimated with the TEADRIP
method using data from the IMU-instrumented sock recordings and those estimated with
the ML system were evaluated against the motion capture system estimates using the
Bland–Altman plots. The mean differences between the systems were calculated, were
referred to as the bias, and the 95% limits of agreement were determined. The MAE and
relative errors (%) derived from the TEADRIP estimations applied to the IMU-instrumented
sock recordings and from the ML system estimations were calculated and compared using
a two-factor ANOVA for repeated measures and Bonferroni post hoc tests were computed
when main effects were detected. A two-way ANOVA was conducted to examine if the
effect of the systems on MAE (instrumented sock vs. Mobility Lab) differed between the
groups (HP vs. PsA). The precision (intersession reliability) of the TEADRIP estimations
from the IMU-instrumented sock recordings and the estimations from the ML system was
calculated with Intra Class Correlation Coefficients (ICCs) using a two-way mixed-effects
model for absolute agreement (ICC (3, 1)). ICCs values of less than 0.5, between 0.5 and
0.75, between 0.75 and 0.9, and greater than 0.9 were considered as indicators of poor,
moderate, good, and excellent reliability, respectively. Statistical analyses were performed
under SPSS Version 26 (IBM statistics Corporation, Armonk, NY, USA).

3. Results

Cadence, GCD, GS, and SL estimated with the TEADRIP algorithm applied to the
IMU-instrumented sock and those estimated with the Mobility Lab system for over-
ground walking were statistically different between the groups (Table 1). PsA patients
had a lower CAD, GS, and SL and a higher GCD compared to the healthy participants
(p < 0.05). For treadmill walking, the mean normal and fast speeds in PsA patients were
1.01 m/s (0.17) and 1.31 m/s (0.21) vs. 1.12 m/s and 1.6 m/s in the HP.
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Table 1. Descriptions of the spatio-temporal parameters and the comparison between healthy and
PsA patients.

Variables Systems
Healthy Participants PsA Patients

p
Mean ± SD Mean ± SD

CAD (steps/min) IMU-instrumented sock 116.45 ± 7.25 109.05 ± 7.79 0.002
Mobility Lab 117.18 ± 7.23 107.14 ± 10.94 0.001

GCD (s) IMU-instrumented sock 1.04 ± 0.06 1.11 ± 0.08 0.002
Mobility Lab 1.03 ± 0.07 1.14 ± 0.14 0.003

GS (m/s) IMU-instrumented sock 1.46 ± 0.16 1.18 ± 0.22 <0.001
Mobility Lab 1.34 ± 0.14 1.04 ± 0.23 <0.001

SL (m) IMU-instrumented sock 1.46 ± 0.13 1.13 ± 0.24 <0.001
Mobility Lab 1.37 ± 0.12 1.14 ± 0.18 <0.001

Standard deviation (SD), Cadence (CAD), gait cycle duration (GCD), gait speed (GS), and stride length (SL).

• Treadmill walking:

Bland–Altman plots showing the mean differences and the limits of agreement of the
TEADRIP estimations from the IMU-instrumented sock recordings and the estimations
from the ML system of CAD, GCD, GS, and SL for all speeds combined for HP (Figure 2)
and PsA patients (Figure 3), are presented below. Figure 2 includes the data from sessions
one and two and the observations (50 observations in total). Although some outliers are
present, the results show a good agreement between the two IMU-based systems and the
gold standard as the biases are close to zero in the HP and PsA patients. No systematic
biases were observed for either system in estimating the spatio-temporal parameters at
slow, normal, and fast speeds in both groups.

In HP, the biases of the temporal parameter estimations from the IMU-instrumented
sock were higher than those obtained from the ML system while those of the spatial
parameter estimations were lower. In PsA patients, the biases of the temporal and spatial
parameters from the IMU-instrumented socks were both lower than those obtained from
ML. However, 95% limits of agreement around the difference between the motion capture
system and the ML system estimates were narrower than those between the motion capture
system and those based on the IMU-instrumented sock.

We compared the mean absolute errors (MAE) derived from the IMU-instrumented
sock to those from the ML system in HP and PsA patients using a two-way repeated-
measures ANOVA (Figure 4). The results presented in Figure 4a,b shows that compared
to the motion capture system, the MAE and the relative errors in the estimations of CAD
from the TEADRIP applied to the IMU-instrumented sock were <1 step/min (0.82%) in
HP, and <1.86 step/min (1.62%) in PsA patients, respectively, across all walking speeds.
For GCD, the MAE and relative errors were <0.01 s (1.1%) and <0.033 s (2.26%) in HP
and PsA patients, respectively. The findings also show slightly but statistically significant
higher errors in the estimations of CAD with the IMU-instrumented sock than with the ML
system for all the speeds in HP. The same results were obtained for GCD, but the differences
were not statistically significant. GS and SL estimated with the TEADRIP applied to the
IMU-instrumented sock recordings were more accurate than those obtained with the ML
system in both healthy and PsA participants, as the mean absolute errors were statistically
lower except for SL at a fast speed in the PsA group, where no differences between the two
systems were found. There were no significant interaction effects between the groups and
systems on MAE across all variables and speeds. The precision (intersession reliability) was
assessed only in HP. The intraclass correlation coefficients (ICCs) for intersession reliability
are presented in Table 2. At slow speeds and for all the parameters, both systems exhibited
moderate to good reliability: 0.625 < ICC < 0.798. At normal speeds, ICC was good except
for GS and SL obtained from the IMU-instrumented sock recordings. Excellent reliability
coefficients were observed at fast speeds for both systems when measuring CAD, GCD,
GS, and SL.
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Figure 2. Concurrent validity. Bland–Altman plots of the differences between (a) the TEADRIP
algorithm applied to the IMU-instrumented sock recordings and the Mocap system, and between
(b) the Mobility Lab system and the Mocap system during two-minute treadmill walking at different
speeds in HP (n = 25, 2 sessions). Cadence (CAD), gait cycle duration (GCD), gait speed (GS),
stride length (SL), and Motion capture system (Mocap). The solid lines indicate the mean test-retest
differences (bias) and the dashed lines indicate the upper and lower 95% limits of agreement (1.96 SD
of the bias). Dashed green, red, and blue squares represent the observations for slow, normal, and
fast speeds, respectively.
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Figure 3. Concurrent validity. Bland–Altman plots of the differences between (a) the TEADRIP algorithm applied to the
IMU-instrumented sock recordings and the Mocap system, and between (b) the Mobility Lab system and the Mocap system
during two-minute treadmill walking at different speeds in PsA patients (n = 21, one session). Cadence (CAD), gait cycle
duration (GCD), gait speed (GS), stride length (SL), and Motion capture system (Mocap). The solid lines indicate the mean
test-retest differences (bias) and the dashed lines indicate the upper and lower 95% limits of agreement (1.96 SD of the bias).
Dashed green, red, and blue squares represent the observations for slow, normal, and fast speeds, respectively.
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Figure 4. Accuracy comparison between the TEADRIP algorithm applied to the IMU-instrumented sock recordings and the
Mobility Lab system estimations of the spatio-temporal parameters in (a) healthy and (b) PsA participants. Mean absolute
errors and relative errors (%) in CAD, GCD, GS, and SL estimations obtained from the IMU-instrumented sock and the
Mobility Lab system during 2 min treadmill walking at different speeds. Cadence (CAD), gait cycle duration (GCD), gait
speed (GS), stride length (SL), Psoriasic arthritis (PsA). *: p < 0.05.
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Table 2. Intersession reliability of the spatio-temporal parameters estimated by the TEADRIP algorithm applied to the
IMU-instrumented sock recordings and those estimated by the Mobility Lab system for treadmill walking in HP. Intra Class
Correlation Coefficient (ICCs) and their 95% CI for the treadmill 2MWT at slow, normal, and fast walking speeds.

Parameter System Speed

Slow (0.45 m/s) Normal (1.12 m/s) Fast (1.6 m/s)
CAD IMU-instrumented sock 0.712 (0.34 to 0.88) 0.88 (0.72 to 0.95) 0.934 (0.85 to 0.97)

Mobility Lab 0.734 (0.40 to 0.88) 0.88 (0.7 to 0.95) 0.938 (0.86 to 0.97)
GCD IMU-instrumented sock 0.755 (0.44 to 0.9) 0.902 (0.76 to 0.96) 0.936 (0.85 to 0.0.73)

Mobility Lab 0.778 (0.5 to 0.9) 0.891 (0.725 to 0.95) 0.935 (0.85 to 0.972)
GS IMU-instrumented sock 0.625 (0.14 to 0.84) 0.657 (0.2 to 0.85) 0.719 (0.4 to 0.88)

Mobility Lab 0.746 (0.41 to 0.089) 0.835 (0.62 to 0.93) 0.757 (0.44 to 0.89)
SL IMU-instrumented sock 0.633 (0.2 to 0.84) 0.681 (0.5 to 0.92) 0.914 (0.757 to 0.97)

Mobility Lab 0.798 (0.54 to 0.91) 0.874 (0.7 to 0.95) 0.916 (0.8 to 0.97)

Cadence (CAD), gait cycle duration (GCD), gait speed (GS), and stride length (SL). Data is presented as Intraclass correlation coefficients
(ICCs) and lower and upper 95% confidence limits.

• Overground walking:

The Bland–Altman plots of the averages and differences between the estimations of the
spatio-temporal parameters obtained from the IMU-instrumented sock and those obtained
from the ML system are presented in Figure 5a,b. The results show a good agreement be-
tween the two systems across all parameters when healthy and PsA participants performed
the 10MWT at a self-selected comfortable speed. The biases were lower in PsA patients
(Figure 5b) compared to HP (Figure 5a). However, the limits of agreement were narrower
in HP. The ICCs presented in Table 3 show good to excellent intersession reliability for all
the measurements obtained with the two systems (Table 3). In the same table, the results
show a good but lower reliability coefficient (ICC = 0.77) of the stopwatch measurement of
gait speed. The Bland–Altman plots of the agreement between the two systems and the
10MWT in healthy and PsA participants (Figure 6a,b) show a good agreement between
both systems and the values of GS obtained from the stopwatch. However, the estimation
of GS obtained by the IMU-instrumented sock had a lower bias than that from the ML
system (−0.02 vs. 0.15 in HP, and −0.03 vs. −0.14 in PsA participants, p < 0.0001).

Table 3. Intersession reliability of the spatio-temporal parameters estimated by the TEADRIP algo-
rithm applied to the IMU-instrumented sock and those estimated by the Mobility Lab system for
overground walking. Intra Class Correlation Coefficient (ICCs) and their 95% CI for the 10MWT.

Parameter System Mean (CI)

CAD (STEP/MIN) IMU-instrumented sock 0.918 (0.817 to 0.964)
Mobility Lab 0.927 (0.834 to 9.68)

GCD (S) IMU-instrumented sock 0.892 (0.754 to 0.952)
Mobility Lab 0.903 (0.779 to 0.957)

GS (M/S) IMU-instrumented sock 0.802 (0.558 to 0.912)
Mobility Lab 0.832 (0.617 to 0.926)

IMU-instrumented sock 0.772 (0.492 to 0.899)

SL (M) IMU-instrumented sock 0.830 (0.621 to 0.925)
Mobility Lab 0.827 (0.694 to 0.924)

Cadence (CAD), gait cycle duration (GCD), gait speed (GS), and stride length (SL).
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Figure 5. Agreement between the TEADRIP applied to the IMU-instrumented sock recordings and the Mobility Lab
system. Bland–Altman plots of the differences between the IMU-instrumented sock and the Mobility Lab system in the
spatio-temporal estimations measured for overground walking in (a) healthy and (b) PsA participants. The solid lines
indicate the mean test-retest differences (bias) and the dashed lines indicate the upper and lower 95% limits of agreement
(1.96 SD of the bias).
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Figure 6. Agreement and Bland–Altman plots of the differences between the TEADRIP algorithm applied to the IMU-
instrumented sock recordings and the stopwatch, and between the Mobility Lab system and the stopwatch in GS estimations
for overground walking in (a) healthy and (b) participants.

4. Discussion

In this study, we assessed the accuracy and precision of a new wearable system
in healthy participants and PsA patients with foot impairments. The proposed wear-
able system applies the TEADRIP algorithm to the recordings of an IMU-instrumented
sock (Sensoria®) to obtain estimations of the spatio-temporal gait parameters in clinical
and eventually, in free-living conditions. The system was validated against a motion
capture system that is considered as a gold standard (Optitrack®) for treadmill walking
and compared to a wearable multi-IMU-based system (Mobility Lab, APDM®) for over-
ground walking. We also assessed the reliability of the TEADRIP algorithm applied to the
IMU-instrumented sock recordings and the Mobility Lab over two measurement sessions.
For treadmill walking, our findings showed a good agreement between the estimations of
the spatio-temporal gait parameters obtained from the motion capture system and those
obtained from the IMU-instrumented sock in healthy and PsA participants. A good agree-
ment was also found between the spatio-temporal estimations by the Mobility lab system
and those estimated by the IMU-instrumented sock for overground walking in both groups.
Although the spatio-temporal parameters were significantly different between the group
(i.e., a different gait pattern), there were no interaction effects between group and system
on MAE which means that the effects of the systems on MAE were the same in healthy and
PsA participants. Compared to the motion capture system, the MAE and relative errors
in CAD estimated by the IMU-instrumented sock in healthy and PsA participants were
≤1 step/min (0.8%) and <1.86 steps/min (1.62%), respectively, across all walking speeds.
For GCD, the MAE and relative errors were <0.01 s (1.1%) and <0.03 s (2.26%) in healthy
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and PsA participants, respectively, which is an excellent result. In a previous study, Donath
et al. demonstrated similar relative errors of 1.5% in CAD estimations and lower errors
(0.8%) in GCD estimations obtained from a foot-mounted IMU (Rehagait system) [17].
Salarian et al. estimated GCD with an error of 2% and in the study of Trojaniello et al.,
the errors were about 1% for the same variable. Rampp et al. showed a similar MAE in
GCD estimations (0.03 s) compared to those demonstrated in our PsA group when they
compared a foot-mounted inertial sensor system (Shimmer 2R IMU placed laterally on
the shoe below each ankle joint) against the GAITRite system in a sample of 101 geriatric
patients for normal walking [18].

For gait speed estimation, the TEADRIP algorithm applied to the IMU-instrumented
sock performed better than ML in terms of accuracy in both healthy and PsA participants.
However, we reported large errors especially at slow walking speeds (relative errors:
for the IMU-instrumented sock and ML were 24.7% and 31% in HP, and 19.45% and 27.36%
in the PsA group, respectively). This result could be explained by the very low speed we
administered (0.45 m/s) that might have been slow enough to drastically alter the kine-
matics of the lower limbs making the computation of the spatial parameters from the IMU
difficult. Moreover, the absolute errors found in the present study were below the minimal
clinically important difference (MCID) reported in [30] for gait speed (MCID = 0.20 m/s).
We also found larger errors in the estimated values of SL (2.41% < relative errors < 23.1%
in HP and 6.05 < relative errors < 18.32 in PsA participants) compared with the study
of Trojaniello et al. where the relative errors in stride length estimation were <3% [22].
Rampp et al., also found a smaller MAE in SL estimations (6.26 cm compared to 22 cm,
9 cm, and 4 cm in HP, and 16 cm, 8 cm, and 8 cm in PsA participants at slow, normal, and
fast walking speeds as found in our study) [18]. The improved accuracy achieved in the
latter studies may be related to the fact that they used two IMUs versus one monolateral
IMU in our study. Besides, the low sampling frequency we used in this study may have
affected the resolution of GE detection which in turn could have affected the estimation of
the spatio-temporal gait parameters. Since our eventual aim is to use the IMU-instrumented
sock for free-living and long-term recordings, we chose to set the instrumented sock’s
IMUs at a low sampling frequency for usability reasons and to ensure a longer battery
life. The differences could also be explained by the different experimental conditions
used in our study, as we only assessed the accuracy of the IMU-instrumented sock for
treadmill walking at imposed walking speeds while in the other studies, it was assessed
for overground walking. Treadmill walking is known to alter foot biomechanics including
foot striking patterns which could make it harder for inertial sensors to estimate specific
gait parameters accurately [31,32].

With regards to reliability, the ICCs for intersession reliability showed that the ML
system exhibited better reliability than the IMU-instrumented sock especially for the
computation of spatial parameters when the participants walked on the treadmill at slow
and normal walking speeds. The slow walking speed we administered in this study was
extremely low (0.45 m/s) and may have caused the participants to undertake different
compensatory walking strategies at each testing session. As the ML system uses six
IMUs, this could play a major role in the better reliability achieved with the latter system.
Moreover, the Mobility Lab system excludes extreme values which could explain the better
reliability achieved with this system.

During overground walking (10MWT), there was a good agreement between the
IMU-instrumented sock and the Mobility Lab across all the parameters in both groups.
There was also a good agreement between both systems and the stopwatch estimations
of gait speed. However, errors in the GS estimations from the IMU-instrumented sock
were lower than those from the Mobility Lab. Moreover, the TEADRIP applied to the
IMU-instrumented sock exhibited a better reliability in estimating the spatial parameters
and the ICCs were comparable with those obtained with the ML system. In a previous
study, the authors found higher ICCs than those obtained in this study, but using different
configurations of the ML system, one based on foot-mounted IMUs and the other based on
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ankle IMUs [11]. However, the authors did not report the confidence intervals around the
ICCs. Moreover, they did not specify if their data were normally distributed. If not, this
may have caused an overestimation of the ICC values.

Overall, our findings support the claim that ankle-mounted IMUs are at least as good
as foot-mounted IMUs for estimating the temporal gait parameters in healthy and PsA
patients with moderate to severe foot pain. In the previous studies, ankle IMUs have
always been attached above the ankle with straps or tapes which is not practical for use in
free-living conditions, and does not guarantee a consistent placement of the unit over time.
The IMU-instrumented sock offers an alternative which is easy and comfortable to wear in
daily life.

There are some limitations to this study. First, we assessed the validity of the IMU-
instrumented sock versus the motion capture system for treadmill walking and used a
different reference system for overground walking. However, using the treadmill enabled
us to analyze a large number of steps, and the two reference systems were compared on
treadmill trials to minimize this impact. Second, only averaged spatio-temporal parameters
were estimated and compared between the systems while it would be relevant to consider
the step-by-step accuracy. Finally, we did not include turns in our experimental settings;
only straight forward walking was considered. Nevertheless, free-living walking includes
some deviations such as turns and stair climbing. Thus, it would be interesting to validate
the IMU-instrumented sock system for these conditions.

5. Conclusions

We proposed a system to determine the spatio-temporal parameters of gait based
on an easy-to-use non-cumbersome sock system that could be worn with all shoe types.
These characteristics are very important for a wearable system to be used in a free-living
environment and for a long period of time. The proposed system has been proven to be
accurate for the estimation of temporal gait parameters and had better accuracy than a
system commonly used in clinical applications (Mobility Lab) in estimating spatial param-
eters. The IMU-instrumented sock systems could potentially be used for the estimation
of the spatio-temporal parameters of gait in clinical settings and in free-living conditions,
but the data should be interpreted with spatial precautions in patients with severely re-
duced gait speed. Further studies are needed to validate the system in different conditions
and populations.

Author Contributions: Conceptualization, P.B., R.W. and K.L.; methodology, P.B. and R.W.; software,
K.L.; validation, P.B., R.W. and K.L.; formal analysis, R.W. and P.B.; investigation, R.W.; resources,
P.B.; data curation, R.W.; P.B.; writing—original draft preparation, R.W.; writing—review and editing,
P.B., R.W., K.L., N.G., P.D., A.C. and U.D.C.; visualization, R.W.; supervision, P.B.; project administra-
tion, R.W.; funding acquisition, P.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by The CANADIAN MSK REHAB RESEARCH NETWORK,
CFI-148081.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of the CIUSSS de
l’Estrie-CHUS (3181-2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy and ethical restrictions.

Acknowledgments: The authors would like to thank Mathieu Hamel and Antoine Guillerand,
Research center on aging of Sherbrooke, for their technical support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Sensors 2021, 21, 6179 16 of 17

References
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