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Scale interaction is studied in wall-bounded turbulence by focusing on the frequency
modulation (FM) mechanism of large scales on small scale velocity fluctuations. Differently
from amplitude modulation analysis, frequency modulation has been less investigated also
due to the difficulty to develop robust tools for broadband signals. To face this issue, the
natural visibility graph approach is proposed in this work to map the full velocity signals into
complex networks. We show that the network degree centrality is able to capture the signal
structure at local scales directly from the full signal, thereby quantifying FM. Velocity signals
from numerically-simulated turbulent channel flows and an experimental turbulent boundary
layer are investigated at different Reynolds numbers. A correction of Taylor’s hypothesis for
time-series is proposed to overcome the overprediction of near-wall frequency modulation
obtained when local mean velocity is used as the convective velocity. Results provide network-
based evidences of the large-to-small FM features for all the three velocity components in the
near-wall region, with a reversal mechanism emerging far from the wall. Additionally, scaling
arguments in the view of the quasi-steady quasi-homogeneoushypothesis are discussed, and a
delay-time between large and small scales very close to the near-wall cycle characteristic time
is detected. Results show that the visibility graph is a parameter-free tool that turns out to be
effective and robust to detect FM in different configurations of wall-bounded turbulent flows.
Based on present findings, the visibility network-based approach can represent a reliable tool
to systematically investigate scale interaction mechanisms in wall-bounded turbulence.

1. Introduction

The characterization and modelling of wall-bounded turbulent flows is of paramount impor-
tance in physics and engineering (Marusic et al. 2010). Organized motions, in particular, play
a crucial role in wall-bounded turbulence analysis, since they are associated to high energy
levels and are directly involved in transport processes, making them preferential targets for
flow control strategies (Jiménez 2018). Coherent streaks are recognized as the dominant
flow structures very close to the wall, and are characterized by a distinctive (inner) peak in
the spectrogram of the streamwise velocity fluctuations, D, within the buffer layer (Jiménez
2018). The investigation of high Reynolds number experiments and simulations also revealed
the formation of large scale motions (LSMs) and very large scale motions (VLSMs) residing
in the log-region (Smits et al. 2011), whose presence is detected by the appearance of
another (outer) peak in the (pre-multiplied) energy spectrogram of the streamwise velocity
fluctuations (Hutchins & Marusic 2007b; Monty et al. 2009; Peruzzi et al. 2020). The wall-
normal location in wall units (i.e., made dimensionless by the mean friction velocity,*g , and
the fluid kinematic viscosity, a), H+ = H*g/a, of the inner peak is conventionally assumed
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Figure 1: (a) Schematic of a wall-bounded turbulent flows in the (G-H) plane, showing three alternating LSM
and VLSM structures of uniform large scale momentum, D!( ≶ 0. Two pairs of time-series of D!( and D((
are also depicted as red and black lines, respectively, at two wall-normal locations (referred to as inner and
outer position). (b) The small scale, D(( , and the large scale, D!( , of streamwise velocity fluctuations at
H+ ≈ 10 are shown as blue and red lines, respectively, where light and dark blue portions of D(( correspond
to intervals of D!( < 0 and D!( > 0, respectively. The velocity series is extracted from an experimental
turbulent boundary layer at Reg = 14750 (Marusic 2020) in the range C*∞/X = 483 − 503, where *∞ and
X are the free stream velocity and boundary layer thickness, respectively. Two intervals of the signal (i.e.,
490 < C*∞/X < 493 and 495 < C*∞/X < 498) in which small scales display enhanced or reduced activity
are also indicated.

to be fixed at H+ = 15, while the position of the outer peak increases with the frictional

Reynolds number, Reg , as H+ ≈ 3.9Re
1/2
g (Mathis et al. 2009a).

Besides the effect of the Reynolds number, some differences emerged from the comparison
of different canonical wall-bounded turbulent flows. While near-wall statistics (such as the
mean velocity profile) agree well in channel, pipe and boundary layer flows, the features of
large scales depend on the flow configuration (Monty et al. 2007; Balakumar & Adrian 2007;
Mathis et al. 2009b; Monty et al. 2009; Chernyshenko 2020). In particular, spectral analyses
of internal and external flows have revealed that very-large scales tend to be longer for channel
and pipe flows than boundary layer flows, although they appear to be qualitatively similar
(Balakumar & Adrian 2007; Monty et al. 2009). Such large scale differences are expected to
grow for larger Reynolds numbers as energetic contributions coming from very-large scale
motion increases with the Reynolds number.

The investigation of higher Reynolds number data has progressively opened novel develop-
ments and questions about an interaction between small scale turbulence (whose spectral peak
occurs in the wall proximity) and large scale motions (whose spectral peak resides far from the
wall). First insights on scale interaction were initially reported by Brown & Thomas (1977)
and Bandyopadhyay & Hussain (1984), who observed a modulation mechanism of (near-
wall) small scales by large turbulent scales. Later on, Hutchins & Marusic (2007b) provided
further evidences of a top-down footprint and an amplitude modulation (AM) phenomenon
by the large scale motions residing in the log-region on the near-wall (small scale) dynamics.
Aiming to illustrate such inter-scale mechanism, Figure 1(a) shows a schematic of a wall-
bounded turbulent flow in a streamwise-vertical plane, where uniform momentum regions
due to LSM and VLSM (highlighted as dark and light blue structures) entail large scale
fluctuations, D!( (see red lines). Figure 1(a) is drawn following the current picture of
the kinematics of turbulent scales and their interaction in wall-bounded turbulence (e.g.,
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see Ganapathisubramani et al. 2012; Baars et al. 2017). The turbulent flow field can be
decomposed as D(G, H, I, C) = D!( (G, H, I, C) + D(( (G, H, I, C), where D(( are small scale
fluctuations (see black signals), while G, H, I are the streamwise, vertical and spanwise
directions, respectively, and C is time. Figure 1(a) also highlights the top-down footprint
of large scales, being the two D!( signals (red lines) positively correlated with each other
(eventually accounting for the inclination of large scales (Marusic & Heuer 2007)).
A modulation of the amplitude of the small scales caused by the large scales implies that high
or low values of D!( correspond to (on average) high or low values of D((. This mechanism
can be observed in Figure 1(b), which shows a time interval of D!( and D(( at H+ ≈ 10 in an
experimental turbulent boundary layer. An increase of the local amplitude of the small scale
signal (see dark blue intervals) is discernible during positive large scale velocity fluctuations,
D!( > 0, and, vice versa, a damping of small scale amplitudes (light blue intervals) during
negative large scale velocity fluctuations, D!( < 0.

Mathis et al. (2009a) quantified this amplitude modulation by correlating D!( with
the large-scale-filtered envelope of D(( at different wall-normal coordinates. The authors
evidenced an amplitude modulation (as shown in Figure 1(b)) only close to the wall
(approximatively below the center of the log-region), while a reversed AM mechanism –
i.e., an D(( amplitude increase under D!( < 0 and an D(( amplitude decrease under D!( > 0
– occurs far from the wall. Further studies on turbulent boundary layers have suggested
that a modulation mechanism does actually take place only in the near-wall region, while
different mechanisms occur in the log- and wake regions. In particular, the behaviour
of scale interaction away from the wall has been explained either through a preferential
arrangement of the small scales – i.e., an alignment of the small scale turbulence with
internal shear layers that separate zones of large scale uniform momentum (Hutchins 2014;
Baars et al. 2017) – or as an effect of variations in the mean strain and in the shear-driven
production (Agostini & Leschziner 2019).
Based on the insights from Hutchins & Marusic (2007b) and Mathis et al. (2009a),
AM has been largely investigated for several flow configurations and Reynolds
numbers, both experimentally (e.g., see Mathis et al. 2009b; Schlatter & Örlü 2010;
Guala et al. 2011; Ganapathisubramani et al. 2012; Talluru et al. 2014; Baars et al. 2015;
Duvvuri & McKeon 2015; Squire et al. 2016; Baars et al. 2017; Pathikonda & Christensen
2017; Basley et al. 2018; Pathikonda & Christensen 2019) and numerically (e.g., see
Chung & McKeon 2010; Bernardini & Pirozzoli 2011; Agostini & Leschziner 2014;
Hwang et al. 2016; Agostini et al. 2016; Anderson 2016; Yao et al. 2018; Dogan et al.

2019; Agostini & Leschziner 2019). Furthermore, findings on scale interaction have fostered
the development of predictive models for near-wall turbulence that explicitly account for
the footprint and amplitude modulation by large scales on small scales (Marusic et al.

2010; Mathis et al. 2011, 2013; Baars et al. 2016; Wu et al. 2019). It should be noted that,
although large-scale spectral features do not match between internal and external flows,
similar AM results have been found for channel, pipe and boundary layer flows at similar
Reg values (Mathis et al. 2009b), suggesting a similar scale-interaction mechanism is at play
in all configurations.

Besides amplitude modulation, small scale turbulence has also been found to
change its instantaneous (i.e., local) frequency during intervals of positive or negative
D!(, namely large scales affect the smalls scales through a frequency modulation
(FM) mechanism (Ganapathisubramani et al. 2012; Fiscaletti et al. 2015; Baars et al.

2015). However, much less investigations to quantify FM in wall-bounded turbulence
have been carried out so far (Ganapathisubramani et al. 2012; Baars et al. 2015,
2017; Pathikonda & Christensen 2017; Tang & Jiang 2018; Awasthi & Anderson 2018;
Pathikonda & Christensen 2019) if compared with the vaster literature on amplitude
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modulation and its application into predictive models. One of the main reasons for this
literature imbalance resides on the difficulty to produce robust methodologies to quantify FM
in broadband signals, as well as the difficulty to effectively capture instantaneous frequencies
in a signal.

Aiming to quantify FM in the context of wall-bounded turbulence scale interaction, two
methodologies have been proposed as yet. Ganapathisubramani et al. (2012) proposed a
peak-valley approach, following the idea that local frequency is proportional to the number
of maxima and/or minima per unit length of the series. The peak-valley approach was applied
to streamwise D(( signals from experimental measurements in a turbulent boundary layer
at Reg = X*g/a = 14150 (where X is the boundary layer thickness). Similarly to AM, the
authors found a relevant FM of the small scales in the near-wall region in which higher
frequencies correspond to large (positive) D!( values while lower frequencies correspond to
low (negative) D!( values. However, differently from AM, substantial FM was observed only
up to H+ ≈ 100. As an example of this FM mechanism, in Figure 1(b) a rapidly fluctuating D((
activity can be seen during positive D!( (dark blue intervals) than negative D!( (light blue
intervals). Despite its conceptual simplicity, the main drawback of the peak-valley approach
is the need of a signal discretization into sub-intervals of arbitrary spacing to quantify the
number of maxima and minima within each sub-interval. The choice of the size of the signal
partition into sub-intervals is non-trivial and requires a trade-off between too short or too
large intervals that can affect the results. Moreover, as pointed out by Baars et al. (2015),
the short-time partitioning of the peak-valley approach makes it less applicable if temporal
shifts in amplitude and frequency modulation have to be focused.

An alternative approach to quantify FM and effectively account for time shifts was then
proposed by Baars et al. (2015), who exploited wavelet analysis to extract from the velocity
time-series a new signal that is representative of the local frequency variations at the small
scales. The authors performed a time-frequency analysis of the streamwise velocity, in which
a time-series – representative of the small scale instantaneous frequency – was obtained
by evaluating the first spectral moment of the wavelet power spectrum, namely an average
energetic contribution at each time coming from the range of (high) frequencies pertaining the
small scales (Baars et al. 2015). The first spectral moment was eventually long-wavelength
pass filtered to retain only its large scale component, and correlated with D!( to quantify FM
(similarly to the AM technique proposed by Mathis et al. (2009a)).
The wavelet-based procedure was applied to experimental streamwise velocity time-series
measured at different wall-normal locations from a turbulent boundary layer at Reg =

14750 (Baars et al. 2015). The authors showed positive correlations up to the center of
the log-region, meaning that higher and lower frequencies in D(( are detected under D!( > 0
and D!( < 0, respectively. Almost zero correlations were observed, instead, for higher wall-
normal locations up to the boundary layer intermittent region, where negative correlation
values were detected. The near-wall FM found by Baars et al. (2015) is in accordance
with the outcomes from Ganapathisubramani et al. (2012), but the H+ coordinate above
which FM was found to be almost absent is larger by using the wavelet-based approach
(H+ ≈ 470) than the peak-valley approach (H+ ≈ 100), although the Reg values were
rather similar. Furthermore, a phase lead of the small scale amplitude and frequency was
found in the near-wall with respect to the large scale signals, and – in accordance with
previous studies (Bandyopadhyay & Hussain 1984; Guala et al. 2011) – a much larger lead
was detected for small scale amplitudes than for frequency. Although the FM has been
accepted as a near-wall mechanism, it is still not fully clear the interaction mechanism in
terms of FM between small and large scales in the log- and wake regions, in particular what
is the precise wall-normal coordinate at which small scale frequency is no longer affected by
large scales.
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So far, the wavelet-based technique by Baars et al. (2015) has been exploited as the
main tool to quantify FM in wall-bounded turbulence. Different flow configurations
have been explored in terms of FM, such as experimental smooth-wall turbulent
boundary layers via hot-wire measurements (Baars et al. 2017) and particle image
velocimetry (Pathikonda & Christensen 2019), experimental boundary layers in presence of
wall roughness (Pathikonda & Christensen 2017; Tang & Jiang 2018), as well as large eddy
simulation of a turbulent channel flow with spanwise heterogeneity (Awasthi & Anderson
2018). These works highlighted that – despite the specific quantitative differences – near-wall
FM is present both for smooth- and rough-walls, as well as for several Reynolds numbers.
However, despite its preferred employment for quantifying FM, the wavelet-based approach
presents some criticalities. First, as discussed by Baars et al. (2015), the choice of the
mother wavelet can have an impact on the results since different frequency resolutions
are gained from different mother wavelets. Moreover, the procedure necessitates multiple
filtering operations that demand the choice of an appropriate frequency filter value. In
particular, a frequency threshold is required both in the computation of the first spectral
moment of the wavelet power spectrum (that involves a numerical integration), and in the
long-wavelength pass filtering of the first spectral moment. Therefore, differently from the
peak-valley approach by Ganapathisubramani et al. (2012) – in which maxima and minima
are counted – the wavelet-based approach intrinsically requires several procedural steps and
assumptions that need to be carefully handled.

In this work, a novel approach to study FM in wall-bounded turbulence is put forward
with a twofold aim: (i) to propose a non-parametric and robust methodology to extract
local frequency changes in a signal, and (ii) to show its effectiveness for two wall-bounded
turbulence configurations, also reporting novel insights that can help to further shed light on
large-small scale interaction. Our methodology relies on the natural visibility graph (NVG)
approach proposed by Lacasa et al. (2008), which is used to map a signal into a network by
exploiting a geometrical criterion. Thanks to its simplicity of implementation, the NVG has
been widely employed in a large variety of research areas such as, among many others, econ-
omy, biomedicine, geophysics (Zou et al. 2018). In particular, visibility-based investigations
have been carried out in fluid mechanics to study jets and fires (Charakopoulos et al. 2014;
Murugesan et al. 2019; Tokami et al. 2020), wall-bounded turbulent flows (Liu et al. 2010;
Iacobello et al. 2018b), passive scalar plumes (Iacobello et al. 2018a, 2019a), and turbulent
combustors (Murugesan & Sujith 2015, 2016; Singh et al. 2017).

In spite of its simplicity, the NVG approach (defined in § 2.1) has been shown to
be a powerful tool in capturing important features of the mapped signal (such as the
occurrence of extreme events) and a reliable indicator of the transition between different
flow dynamics (Iacobello et al. 2021). Here we show that the degree centrality – which is
one of the simplest network metrics – is much more sensitive to the small scale spectral
energy variations than the large scale counterpart (2.2). Accordingly, the network degree is
viewed as a metric that is able to inherit the local frequency variations in a signal (2.3),
without any a priori assumption (e.g., signal filtering). Therefore, the NVG approach can be
directly used to study the full velocity signals rather than the small scale component.

The proposed NVG approach is used to analyse time-series (§ 3.2) from an experimental
smooth-wall zero-pressure-gradient turbulent boundary layer (Reg = 14750, Marusic 2020),
and spatial-series – namely 1D signals along spatial transects at fixed time (§ 3.1) – from
two direct numerical simulations (DNSs) of smooth-wall incompressible turbulent channel
flows (Reg ≈ 5200 and Reg = 1000, Lee & Moser 2015; Graham et al. 2016). In this
regard, for simplicity, we refer to as FM to indicate both temporal and spatial frequency (i.e.,
wavenumber) modulation, where the former applies to time-series while the latter to spatial-
series. A comparative FM analysis is performed by highlighting differences and similarities
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between outcomes from the two wall-bounded turbulence setups for the streamwise velocity
(§ 4.1). In particular, the effect of different Reynolds numbers is examined, and the application
of Taylor’s hypothesis to time-series is discussed by proposing a convection velocity that
compensates for overprediction of modulation in the near-wall region. Moreover, FM results
are examined in the view of the quasi-steady quasi-homogeneous theory, in terms of degree
centrality scaling with respect to large scale velocity values (§ 4.2). The analysis is then
extended to the wall-normal and spanwise velocities of the channel flow (§ 4.3), and time
and space shifting are eventually investigated for all the three velocity components (§ 4.4).
Finally, we provide a discussion on some general features of the visibility approach (§ 5) as
well as concluding remarks (§ 6).

2. Visibility-based analysis of frequency modulation

2.1. Definition of visibility graph

Visibility graphs represent a widely employed technique to map a discrete signal in a network.
The idea behind the visibility graph approach is to assign a node of the network to each datum
in the signal, and activate a link between two nodes if a geometrical criterion is satisfied.
The main variant is the natural visibility graph (NVG), which is based on a convexity
criterion (Lacasa et al. 2008). Geometrically, two nodes in an NVG (corresponding to two
points in the signal) are linked if the straight line connecting the two points lies above
any other in-between data. Figure 2(a, lower diagram) shows an example of a short series,
B8 ≡ B(j8), for the independent variable j8 (i.e., a time or space coordinate), comprising
# = 20 observations, illustrated as vertical bars. Nodes and links in Figure 2(a) are depicted
as filled circles at the tip of each bar and green straight lines, respectively. A representative
node is highlighted in red and its links are reported in orange.
The NVG criterion applied to a generic signal, B(j), can be formally written as:

B(j=) < B(j 9 ) +
(
B(j8) − B(j 9 )

) j 9 − j=

j 9 − j8
, 8, 9 = 1, . . . , #, (2.1)

for any j= (i.e., time or space coordinate) such that j8 < j= < j 9 (Lacasa et al. 2008).
The corresponding visibility network is represented through the adjacency (binary) matrix
G, whose entries are �8, 9 = 1 if the inequality (2.1) is satisfied for the node pair (8, 9 ) with
8 ≠ 9 , and �8, 9 = 0 otherwise. For example, in Figure 2(a), the node 8 = 8 is connected (i.e.,
�8, 9 = 1) to nodes 9 = {1, 2, 3, 4, 5, 7, 9}, as highlighted by the orange links. By definition,
visibility networks are connected (i.e., each node 8 is linked to at least one other node 9 ,
e.g., 9 = 8 + 1 or 9 = 8 − 1) and undirected (Newman 2018), namely the adjacency matrix is
symmetric (�8, 9 = � 9,8).

Differently from other techniques developed to transform a signal into a network (Zou et al.

2018; Iacobello et al. 2021), the visibility algorithm does not require any a priori parameter.
Given a signal, a unique visibility network is obtained in a straightforward way by applying the
convexity criterion in (2.1) for each pair of data. Another feature of NVGs is the invariance
under affine transformations of the mapped signal, namely translation and rescaling (i.e.,
multiplication by a positive constant) of both horizontal and vertical axes (Lacasa et al.

2008). This implies that two signals with the same temporal (or spatial) structure but with
different mean values (i.e., vertical translation of the series) and standard deviations (i.e.,
vertical rescaling of the series) are mapped in the same visibility graph.

In the present work, we exploited the NVG approach to study turbulent velocity signals from
wall-bounded turbulence, both as time-series (from the boundary layer, § 3.2) and spatial-
series (from the channel flow, § 3.1). We note that this is the first time the NVG is employed



7

s
i

Time or space index, i

1  2   3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

k
i

9 10 

7 7 8 8 8 8 8
6

4 4 4 4 4 45 5 6

3

(a) (b)

10–2

10–4

10–6

10–8

101 102 103 104 105

P
D

F

L+

Figure 2: (a) The lower diagram shows an example of a signal, B8 ≡ B(j8 ), and the corresponding visibility
network, where nodes are depicted as black filled circles and links as green lines. In particular, the node
8 = 8 and its links are highlighted in orange. The degree values for each node, :8 , are also shown in the
upper diagram. (b) PDF of the link length evaluated on the network built from streamwise velocity, D(G),
in a turbulent channel flow at Reg ≈ 5200. The link-length is expressed in wall-units as L+ = |8 − 9 |ΔG+,
where 8 and 9 are the indices of two connected nodes and ΔG+ = 12.7 (see § 3.1).

for studying wall-bounded turbulence by focusing on spatial-series rather than time-series.
An optimized code for computing the NVG (either for spatial- and time-series) was provided
by Iacobello (2020), where the possibility to account for spatial-series periodicity is also
implemented.

One remarkable feature of NVGs from signals referring to physical phenomena with a
wide range of different scales (such as in turbulence) is the infrequent appearance of long-
range links. In fact, the presence of fluctuations of different amplitude in the signal prevents
the possibility that a node is visible by other distant nodes (Zhuang et al. 2014). To grasp
the concept, the probability density function (PDF) of the link length in D(G) signals from
a turbulent channel flow (Reg ≈ 5200, see § 3.1) is shown in Figure 2(b), evidencing that
long-range links are very unlikely to occur (the increasing PDF for large L+ values is due to
signal periodicity in the G-direction).

The capability of visibility graphs to capture the temporal (or spatial) structure of a signal
by means of a convexity-based geometrical framework, hence, turns out to be a key feature
to study the occurrence in time (or space) of specific events (Iacobello et al. 2018a, 2019a).
In this work, we take advantage from the features of visibility networks to detect frequency
modulation of large scales on small scales.

2.2. Node degree in relation to small scale signal features

The degree centrality (or, simply, degree) of a node, 8, is defined as the number of neighbours

of 8, that is the number of nodes linked to 8,

: 8 ≡

#∑

9=1

�8, 9 , (2.2)

where # is the total number of nodes, corresponding to the number of sampled values of the
signal (Newman 2018). The top panel in Figure 2(a) shows the sequence of degree values
for the example of signal, B8 , shown in the bottom of Figure 2(a); for instance, the degree
of node 8 = 8 (highlighted in red) is :8 = 7 since it is connected to seven other points
(links are highlighted in orange). By averaging over all nodes, a representative degree value



8

y+

0.07
3.95
50
1000
5180

λ+
x

105101 102 103 104

100

10–2

10–4

10–6

LSSS

huui
t,x,z

κ
x
ϕ
uu

(a) (b) (c)

u

u
SS

40

35

30

25

20

15

hKi

y+

10–1 100 101 102 103 104

λ+
x

105

102

103

104

y+
10–1 100 101 102 103

huui
t,x,z

κ
x
ϕ
uu

0.25

0.2

0.15

0.1

0.05

0

Figure 3: (a) Pre-multiplied energy spectral density, qDD , from a turbulent channel flow at Reg ≈ 5200
(see § 3.1), normalized by the streamwise velocity variance, 〈DD〉C ,G,I . The horizontal dashed line indicates
the value of spectral filter, while vertical dashed lines highlight five representative H+ coordinates. (b) Pre-
multiplied energy spectral density for the five selected H+ locations in (a). (c) Wall-normal behaviour of the
average degree centrality, 〈 〉, for NVG built from the full streamwise velocity, D(G8) (black curve), and
from the small scale streamwise velocity, D(( (G8) (red curve), obtained through a spectral decomposition.
Angular brackets in 〈 〉 indicate averaging over the (homogeneous) spanwise direction, I.

for the network (i.e., for the whole signal) is obtained as  =
∑

8 : 8/# . It should be noted
that the degree, : 8, provides a measure of the extent to which a single node 8 belongs to a
convex interval in the signal, but it is not directly able to quantify whether the properties
of node 8 (e.g., its importance in the network) are similar or not to the properties of other
nodes. Instead, this issue can be tackled through assortativity measures, which can be used
to assess similarities among nodes (e.g., in terms of their importance in the network through
degree-degree correlation) (Newman 2018).

Recalling that long-range links unlikely appear in visibility graphs (Figure 2(b)), the main
contribution to degree values is due to short-range links, making the degree a metric that
is typically sensitive to the local structure of the signal. Rapidly fluctuating signals are then
expected to show lower degree values, : 8, and in turn a lower average degree (Zhuang et al.

2014). Since rapid variations in the local structure of turbulent signals are mainly governed by
high frequencies (i.e., low wavelengths), a relation should exist between the average degree,
 , and the high-frequency spectral energy (that produces the local variations in the turbulent
signals).

With the aim to explore this relation, we report in Figure 3(a) the energy spectral density
of the streamwise velocity, qDD , pre-multiplied for the wavenumber, ^G = 2c/_G , from a
turbulent channel flow at Reg ≈ 5200 (see § 3.1). Notice that qDD is normalized by the variance
of the streamwise velocity fluctuations, 〈DD〉C ,G,I (here angular brackets indicate the average
over time, C, and homogeneous directions, G, I). In Figure 3(a) it is easily distinguishable
the spectral peak separation between small and large scales, as well as the spectral filter
adopted in this work, marked as a horizontal dashed line. Five curves of the spectrum at five
representative H+ coordinates (highlighted as dashed vertical lines in Figure 3(a)) are also
shown in Figure 3(b).
The rationale behind the normalization of the spectrum through the variance is twofold: on
the one side, the streamwise energy density at each H+ is accentuated, thus emphasizing the
occurrence of the two spectral peaks and, on the other side, this normalization permits a
congruent comparison with the degree behaviour computed on visibility networks (which
are insensitive to different variance levels, i.e., on signal rescaling). Moreover, due to the
variance normalization, the area under each curve in Figure 3(b) is equal to unity, so that
the integral of curves in Figure 3(b) in a given range of _G represents the fraction of total
energy pertaining that scale range. In this way, Figure 3(b) elucidates the redistribution of
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the spectral energy density over scales, _+G , at different H+ coordinates (a log-log plot in
Figure 3(b) is shown with the aim to highlight the behaviour at small _+G values).

Focusing on the small scales (say, _+G < Reg ≈ 5200) in Figure 3(b), we observe that
by moving from very close to the wall (H+ ≈ 0.07) up to H+ ≈ 4 there is a small decrease
in the (normalized) energy content, then an increase of the (normalized) spectral energy
occurs from H+ ≈ 4 up to the beginning of the log-layer (H+ ≈ 50), and lastly a persistent
decrease happens up to the channel centreline (H+ ≈ 5200). A reduction or a growth of
the (normalized) spectral energy at small scales indicates that the signal tends to be locally
smoother (i.e., slowly-varying, without rapid low-intensity fluctuations) or more irregular
(i.e., rapidly-varying), respectively. Recalling that the mean degree,  , is sensitive to the
local structure of the signal, an increase of the degree values is then expected for locally
smoother signals (i.e., low spectral energy at local scales), and vice versa. Figure 3(c) shows
the wall-normal behaviour of the mean degree,  , of networks built from the full streamwise
velocity, D(G8) (black line), in the channel flow setup. As expected, the H+-trend of  for
the full signal closely follows the behaviour of the small scale spectral energy density as
described above, where the degree growth is faithfully related to the small scale spectral-
energy decrease, and vice versa. In particular, we point out that the value of  at each H+

is associated to an integral effect of all wavelengths in the signal, so that  (H+) is due to a
cumulative effect of different spectral-energy levels.
Figure 3(c) also shows the H+-behaviour of the mean degree of networks built from D(( (G8)
(red line), namely, in which the large scale component is removed. The values and the trends
of  from the full and the small scale velocity signals are very close, and a slight difference
appears only very far from the wall. Note that a similar behaviour of  as that shown in
Figure 3(c) for the channel case is also found for the turbulent boundary layer case. It should
be noted that, since very long-range connections are unlikely to appear (Figure 2(b, they only
barely contribute to the average degree,  , which instead is mainly related to shorter links.

The very good agreement between  (H+) for the full D signal and the H+-variations in the
small scale spectral energy (corroborated by the similarity of  (H+) for D and D(() indicates
that the network degree is able to capture the features of the small scale turbulence directly
from the full signal, i.e. without the arbitrary requirements of filtering operations. These
features will be exploited in the next Section 2.3 to provide a metric which is able to quantify
frequency modulation. We notice that, to the best of our knowledge, this is the first time
that insights from the visibility graph approach are directly related to spectral properties of
a signal.

2.3. FM detection via degree centrality

The aim of this section is to provide a degree-based metric able to quantify FM from full
velocity signals. With this aim, in Figure 4(b) we show a short representative interval of
the streamwise velocity series reported in Figure 4(a), which is extracted from the turbulent
channel flow at H+ ≈ 10. The corresponding NVG is then built from the short signal in
Figure 4(b), and the links activated by two representative nodes, 8 = {19, 49} (highlighted as
red dots in Figure 4(b)), are shown as green arcs in Figure 4(c). Node 8 = 19 clearly displays
more connections than node 8 = 49 (i.e., :19 > :49), since node 8 = 19 is in a larger convex
interval than 8 = 49; in other words, the signal around 8 = 49 varies more rapidly than around
8 = 19. Therefore, although the degree, : 8, represents a pointwise value because : 8 refers to a
single coordinate 8, the information enclosed in : 8 originates from the surroundings of 8. The
degree : 8 can then be interpreted as a measure of the instantaneous period (or instantaneous

wavelength) at the temporal (or spatial) coordinate C8 (or G8), in analogy with the concept of
instantaneous frequency used in signal analysis (Huang et al. 1998; Boashash 2015). Larger
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Figure 4: (a) An interval of the streamwise velocity, D, and its large scale component, D!( , extracted along
the streamwise direction, G, of the turbulent channel flow at H+ ≈ 10. The full D signal is depicted as orange-
magenta lines indicating intervals of positive and negative small scale velocity fluctuations, D(( = D − D!( ,
respectively, while the D!( signal is depicted as light-dark blue lines, highlighting intervals of D!( < 0 and
D!( > 0, respectively. Both the series are normalized in wall-units. (b) A piece consisting of 60 data of the
velocity D from panel (a), depicted as vertical bars whose color reflects the sign of D!( . Two representative
data (corresponding to nodes 8 = 19 and 8 = 49 of the NVG network) are highlighted in red. (c) Network
representation of the NVG built from signal in panel (b). Two subsets of nodes and links from the two
representative nodes, 8 = {19, 49}, are shown as coloured dots and green arcs, respectively. The sequence
of degree values, :8 , for each node, 8, is also reported.

: 8 values correspond to larger instantaneous periods (or wavelengths), and in turn to smaller
instantaneous frequencies.

On the basis of this argument and the insights illustrated in the previous Section 2.2, we
introduce the ratio,  =? , to quantify frequency modulation, defined as

 =? ≡
 =

 ?

,  = =
1

#=46

#∑

9=1

(: 9 |D!( < 0),  ? =
1

#?>B

#∑

9=1

(: 9 |D!( > 0), (2.3)

where  = and  ? are the average degree values computed on the NVG of the full velocity
signal, conditioned to intervals of D!( < 0 and D!( > 0, respectively, while #=46 and #?>B

are the number of occurrences in which D!( < 0 and D!( > 0, respectively.
Values of  =? greater than 1 indicate that the degree is (on average) larger during D!( < 0
intervals than during during D!( > 0, and vice versa for  =? smaller than 1. In the example
of Figure 4(b-c), the degree values, : 8, of the two representative nodes in red (:19 = 17 and
:49 = 9) exemplify the behaviour of the two signal intervals during D!( < 0 and D!( > 0,
resulting in  = = 17, ? ≈ 12.8 and =? > 1. Hence, =? discriminates between (i) positive
frequency modulation for  =? > 1 (i.e., an increase of the local frequency in the velocity
signal gained for D!( > 0 and a decrease for D!( < 0), (ii) negative frequency modulation for
 =? < 1, and (iii) an absence of modulation for  =? ≈ 1. We emphasize that the arguments
leading to the ratio (2.3) do not involve any a priori parameter, but the unique availability
of the full velocity signal to compute the degree value of each node. A filtering operation is
only required to condition the degree values to the sign of the large scale velocity.

To test the NVG-based approach, we built synthetic signals that mimic the near-wall



11

modulation mechanism in wall-bounded turbulence for three modulation cases: amplitude
modulation (AM), frequency modulation (FM), and both amplitude and frequency mod-
ulation. Appendix A contains details on the synthetic signal construction and reports the
 =? values for each configuration (see Figure 9), showing that  =? is able to highlight the
presence of FM and – in presence of both AM and FM mechanisms – tends to be more
sensitive to FM while only weakly to AM.

In summary, the  =? ratio combines the capability of visibility networks (i) to capture the
information on the local temporal structure of a series (§ 2.1), and (ii) to inherit the small
scale energetic features from the full signal (§ 2.2). These characteristics make the visibility
approach a powerful and easy-to-use alternative to previously proposed methodologies for
time-frequency characterization of turbulence signals. In the following, the NVG-approach
is carried out for wall-turbulent signals, showing its robustness (with respect to different
cut-off filtering size) and effectiveness in capturing the large-to-small scale FM mechanism.

3. Description of the turbulent flow datasets

Two main datasets of high Reynolds number wall-bounded turbulent flows are exploited in this
work to study frequency modulation by means of visibility network-based tools: (i) spatial-
series from a numerically-simulated turbulent channel flow at Reg ≈ 5200 (Lee & Moser
2015), and (ii) time-series from experimental measurements in a turbulent boundary layer at
Reg = 14750 (Marusic 2020). Although outer flow structures start to occur and play a role
in scale interaction at lower Reynolds numbers (Agostini & Leschziner 2014; Hu & Zheng
2018; Wu et al. 2019), high Reynolds number flows are required to enhance the inter-scale
separation and amplify the scale interaction mechanism. Moreover, a third DNS dataset
of turbulent channel flow at Reg = 1000 is also employed for comparison purposes, thus
showing effects of inertial on FM results.
To the best of our knowledge, this is the first time a state-of-the-art DNS at Reg ≈ 5200 is
employed to specifically investigate large-to-small scale FM. In fact, while high Reynolds
number boundary layer flows are typically obtained in experimental facilities (as witnessed
by most of previous works on AM and FM), high-Reg experiments of channel flows are
difficult to realise due to strong side-wall boundary effects (Lee & Moser 2015). The DNS
employed in this work is at a large enough Reynolds number (i.e., Reg > 4000, as reported
by Hutchins & Marusic 2007b) to guarantee a sufficient large-small scale spectral separation
(e.g., see energy peaks separation in Figure 3(a)), and allows us to perform a FM analysis
on all the three velocity components that, so far, has only been performed for AM (e.g., see
Talluru et al. 2014; Agostini & Leschziner 2016).

The scale decomposition of the streamwise velocity fluctuation signals was performed as
D(G) = D!( (G) + D(( (G) (e.g., Figure 4(a)) and D(C) = D!( (C) + D(( (C) (e.g., Figure 1(b))
for the spatial- and time-series taken from the turbulent channel and boundary layer flows,
respectively. A common approach to obtain D(( and D!( is to employ a spectral filter
to retain the high and low wavelength or frequency, respectively, as performed in several
previous works (Mathis et al. 2009a; Ganapathisubramani et al. 2012; Baars et al. 2015,
2017; Pathikonda & Christensen 2017, 2019). Alternatively, Agostini & Leschziner (2014)
proposed to employ the empirical mode decomposition (Huang et al. 1998) to separate
large and small scale contributions. In this work, both the spectral and empirical mode
decompositions were tested to separate the large and small scale contributions. However, for
the sake of simplicity and in line with most of the current literature, results are only shown
for a spectral decomposition, as both the procedures produce equivalent results.
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3.1. DNS of turbulent channel flows

Velocity fields were extracted from two direct numerical simulations of incompressible
turbulent channel flows. The first DNS was run at frictional Reynolds number Reg ≡
ℎ*g/a = 5186, where ℎ = 1 is the half-channel height, *g = 4.14872 × 10−2*1 and
a = 8 × 10−6*1ℎ, with the bulk velocity *1 = 1. The size of the spatial domain is
(8cℎ × 2ℎ × 3cℎ) with (10240 × 1536 × 7680) grid points along the streamwise, wall-
normal and spanwise directions, respectively. The flow fields were recorded only after
statistical stationarity of the flow was reached, and 11 temporal frames of velocity and
pressure spatial fields were stored in the dataset. The time interval between two consecutive
frames is about 0.7 flow-through time, corresponding to about 3785a/*2

g in wall-units.
The simulation was performed at a sufficiently high Reynolds number and with a sufficiently
large spatial domain to exhibit characteristics of high-Reynolds-number turbulence, e.g.,
the presence of large scale motions and a rather large wall-normal range for statistics
scaling (Lee & Moser 2015). The dataset is available online (doi:10.7281/T1PV6HJV) from
the Johns Hopkins Turbulence Database (Li et al. 2008). For further simulation details and
statistics, see Lee & Moser (2015).

The second DNS was run at Reg ≡ ℎ*g/a = 1000, with ℎ = 1,*g = 4.9968×10−2*1, a =
5×10−5*1ℎ and*1 = 1. The size of the spatial domain is (8cℎ×2ℎ×3cℎ)with (2048×512×
1536) grid points along the streamwise, wall-normal and spanwise directions, respectively.
Data were stored for approximately one flow-through time, [0, 26]ℎ/*1, with a storage
temporal step of 0.0065. Also this dataset is available online (doi:10.7281/T10K26QW)
from the Johns Hopkins Turbulence Database (Li et al. 2008). For further simulation details,
see Graham et al. (2016).

In this work, 1D spatial-series (i.e., extracted at a fixed time) of the three velocity
components, D, E, F, along the streamwise direction, G, are exploited to build visibility
networks. Network-based results are averaged in time (i.e., on 11 temporal frames for the
Reg ≈ 5200 setup, and on 400 uniformly spaced temporal frames for the Reg = 1000
setup) and in the spanwise direction; in the latter case, averages are performed for a set of
uniformly-spaced spanwise locations separated from each other by 64 and 128 grid points
for the Reg ≈ 5200 and Reg = 1000 configurations, respectively.
The cut-off spectral filter to separate large and small scale streamwise velocity for the
Reg ≈ 5200 setup is set equal to _G,2 = ℎ (i.e., _+G,2 = 5186), in analogy with previous
works in which _G,2 is set equal to the boundary layer thickness (Hutchins & Marusic
2007b; Mathis et al. 2009a,b; Marusic et al. 2010; Dogan et al. 2019; Wu et al. 2019). For
the Reg = 1000 setup, the cut-off filter is _+G,2 = 5000, thus being comparable with _+G,2 of
the higher-Reg channel flow setup.

3.2. Experimental turbulent boundary layer at Reg ≈ 14750

Experimental measurements were performed in the wind-tunnel facility of the University
of Melbourne, which employs a 27 m test section, under a free-stream velocity *∞ =

19.95 m/s (Baars et al. 2015). Under these conditions, a zero-pressure-gradient boundary
layer develops at a frictional Reynolds number Reg ≡ X*g/a = 14750, where X = 0.361 m is
the boundary layer thickness at the measuring location (i.e., 21.65 m from the inlet of the test
section), while*g = 0.626 m/s and a = 1.532× 10−5 m2/s at the same streamwise location.
The dataset is the same employed by Baars et al. (2015, 2017), and is available online at the
Fluid Mechanics Research webpage of the University of Melbourne (Marusic 2020).
Time-series of the streamwise velocity were simultaneously recorded by means of two
constant-temperature hot wire probes, one at a fixed wall-normal location at H+ = 4.33, and
the other vertically moved throughout the boundary layer in the range H+ ∈ [10.5, 2.14×104]

https://doi.org/10.7281/T1PV6HJV
https://doi.org/10.7281/T10K26QW
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(or H/X ∈ [7.087 × 10−4, 1.45]) for 40 vertical locations. At each wall-normal measuring
location, three sets of data are recorded at a sampling frequency of 20 kHz, each one for 120 s
corresponding to a large scale time 6.6×103X/*∞, thus ensuring the convergence of spectral
statistics at the longest energetic wavelengths (Baars et al. 2015). The resulting time-step in
wall units is ΔC+ = 1.28. Further details on the measurement procedure and instrumentation
can be found in Baars et al. (2015).

In order to separate large and small scale components, we employ a cut-off spectral filter
_+G,2 = 7000 following Hutchins & Marusic (2007b), Hutchins (2014) and Baars et al. (2015,
2017), who showed this is a proper filter value for turbulent boundary layers at high Reynolds
numbers. Differently from the channel flow setup in which spatial-series are considered, here
the spectral filter is converted in terms of frequency by invoking the Taylor’s hypothesis
as 52 (H+) = *2 (H

+)/_G,2, where *2 (H
+) is a local convection velocity at the wall-normal

coordinate H+. The effects of different convection velocities on FM will be elucidated in the
next § 4, where a comparison with spatial data from DNSs is carried out.

4. Results

The results of the application of the degree centrality as a metric to quantify frequency
modulation are reported in this section, for velocity signals extracted from the turbulent
channel flows and the turbulent boundary layer described above. A one-point modulation
analysis is carried out: the large scale component, D!(, used to condition the degree on
the D!( sign (see equation 2.3) is extracted at the same H+ in which the signal is mapped
into a visibility network. Due to the footprint of the large and very-large scale motions
towards the wall, D!( evaluated at each H+ represents a good estimate of the large scale
velocity component in the outer region, thus resulting in a more applicable procedure than
two-points analysis (Mathis et al. 2009a). In fact, two-point synchronized measurements are
not easy to perform experimentally (Mathis et al. 2009a). Previous works have shown that
similar results are obtained by adopting a one- or two-point procedure for characterizing
scales interaction (see, among others, Hutchins & Marusic 2007a; Mathis et al. 2009a;
Ganapathisubramani et al. 2012), thus one-point modulation is here preferred for simplicity.

First, the streamwise velocity component, D, is considered, both in an overall perspective
(§ 4.1) and with near-wall focus (§ 4.2). Most of the current literature on scale interaction
in wall-bounded turbulence is indeed focused on the D component, being the component in
which large and small scales can be clearly separated. We then extend the analysis to the
other velocity components, E and F (§ 4.3). Finally, a space-shifted FM analysis is carried
out for all velocity components and for both the turbulence configurations (§ 4.4).

4.1. FM in the streamwise velocity component

The values of the ratio  =? as a function of the wall-normal coordinate, H+, are shown
in Figure 5 for visibility networks built from the streamwise velocity, D. We recall that
 =? > 1 indicates a higher frequency under intervals of positive large scale velocity than
under negative ones, and vice versa for  =? < 1.
Figure 5(a) shows  =? for the spatial-series of the two channel flow DNS at Reg ≈ 5200
(black) and Reg = 1000 (red), while Figure 5(b) illustrates the  =? behaviour for time-
series of the boundary layer (green). Values of  =? > 1 are detected close to the wall
for all configurations, while – moving away from the wall –  =? becomes smaller than 1,
indicating a reverse scale interaction mechanism, i.e., higher frequency are detected during
D!( < 0 than under D!( > 0. The overall behaviours shown in Figure 5 are in accordance
with previous works on scale interaction in wall-bounded turbulence, which have indicated
that a higher (amplitude and) frequency of the small scales is found under positive D!(
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Figure 5: Large scale conditional average degree ratio,  =? , as a function of the wall-normal coordinate, H+,
for streamwise velocity, D, extracted from (a) the channel flow DNS at different Reg and (b) the boundary
layer experiment. The inset in (a) shows the  =? behaviour for the two channel flows as a function of H/ℎ.
In panel (b),  =? (H

+) is shown for spatial-series obtained through the classical (CTH) and modified (MTH)
Taylor’s hypothesis as green and cyan plots, respectively; for comparison, the behaviour for the channel flow
at Reg ≈ 5200 is also reported in black. Moreover, the boundary layer intermittency region is highlighted
in (b) as a shaded grey region. Angular brackets indicate averaging over time and spanwise direction in (a)
and over three different realizations in (b). The results for synthetic velocity signals with shuffled phases are
also shown.

intervals in regions close to the wall, while a reversal mechanism occurs far from the
wall (Ganapathisubramani et al. 2012; Baars et al. 2015, 2017; Pathikonda & Christensen
2017; Tang & Jiang 2018; Awasthi & Anderson 2018; Pathikonda & Christensen 2019).
However, the behaviour of  =? (H

+) for the two setups highlights also peculiar features
of large-to-small scale FM that deserve further investigations.

First, we compare the results for the two channel flows at different Reynolds numbers (red
and black lines in Figure 5(a)). A similar trend of  =? (H

+) is found for both channels, but
the intensity of the FM (close to the wall) is larger for Reg ≈ 5200 than for Reg = 1000, thus
clearly showing the effect of higher Reynolds numbers is to increase FM mechanism in the
near-wall region, as a consequence of increasing magnitude of the large-scale fluctuations
with increasing Reg . Similarly, away from the wall the reversal mechanism of scale interaction
is strengthened for the higher Reynolds number DNS. Furthermore, in Figure 5(a) – and also
in Figure 5(b) for the boundary layer – we observe a peak of  =? at H+ ≈ 10: this peak
turns out to be related to strong sweep-like events, a phenomenon referred to as splatting

in which large scales transport high-intensity small scales towards the wall below the buffer
layer (Agostini & Leschziner 2014; Agostini et al. 2016). Thus, being the highest small scale
intensity detected in the buffer layer (Agostini et al. 2016), the strongest FM is revealed by a
peak in  =? , which then represents a sensitive metric to local changes in the flow dynamics.
Eventually, it is remarkable to observe in Figure 5(a) the near-wall agreement of  =? plotted
against H+ between the two channel flows at different Reynolds numbers, as the near-wall
dynamics is related to near-wall cycle whose characteristic scales are fixed in wall-units (see
also a discussion on characteristic near-wall spatial and temporal scales in § 4.4).

The behaviour of  =? obtained from time-series of the turbulent boundary layer is shown
in Figure 5(b). When time-series are considered, a convection velocity,*2, has to be defined
to apply Taylor’s hypothesis in filtering large and small scales. Typically, *2 is set equal
to the local mean velocity, *, and in the following this assumption will be referred to as
classical Taylor’s hypothesis (CTH).  =? as a function of H+ obtained through the CTH is
displayed in green in Figure 5(b): although a similar behaviour with respect to the channel
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flows is observed (e.g., the black line in Figure 5(b)), there is a significant vertical shift when
time-series are employed. It is worth noting that, since the local mean velocity, *, does not
depend on time, the temporal structure of the time-series is preserved when classical Taylor’s
hypothesis is applied. This implies that the application of any technique (including NVG) to
study scale-interaction from time-series is the same as from the corresponding spatial-series
(i.e., obtained through the classical Taylor’s hypothesis), being ΔG ∝ ΔC.

The overestimation of modulation parameters when time-series and CTH are used has
been previously observed for amplitude modulation in jet (Fiscaletti et al. 2015), mixing
layer (Fiscaletti et al. 2016) and turbulent boundary layer flows (Yang & Howland 2018).
Specifically, Yang & Howland (2018) reported a distortion of the spatial-series when the
classical Taylor’s hypothesis is used, and suggested to employ a convection velocity, *2 ,
defined as *2 (C) = * + UD(C), where D(C) = D!( (C) + D(( (C) is the fluctuating component
of the streamwise velocity, and U = $ (1) is a proportionality constant. The correction
proposed by Yang & Howland (2018) is based on the rationale that the sampling time step
has to be scaled using the local viscous scales, so that small scale activity is enhanced (or
reduced) where the wall shear stress is high (or low) due to an increase (decrease) in the
local friction velocity (Yang & Howland 2018). However, variations in the (fluctuating) wall
shear stress are mainly induced by variations into large scale fluctuations, D!( (C), rather
than D(C), as observed by Yang & Howland (2018) and reported in previous literature (e.g.,
Zhang & Chernyshenko 2016; Baars et al. 2017) (see a more detailed discussion about the
relation between near-wall small scales and wall shear stress in § 4.2). Therefore, in this work
we exploit the time-varying formulation by Yang & Howland (2018) but only accounting for
the large scale component of D(C), namely

*2 (C) = * + UD!( (C). (4.1)

In what follows, we will refer to the application of (4.1) as the convection velocity as the
modified Taylor’s hypothesis (MTH), where we selected U = 0.8 (which has proved to be
a suitable value). It should be noted that a correction based on D!( arguments was also
discussed by Fiscaletti et al. (2015) for jet and boundary layer flows to compensate for
amplitude modulation overestimation. Moreover, it should be noted that, differently form the
classical Taylor’s hypothesis, the structure of D(G) is different than the structure of D(C) for
the MTH case, since *2 (C) is not a constant thus leading to a non-uniform spacing of the
spatial series.

The  =? behaviour for the MTH is shown in cyan in Figure 5(b): the overestimation of
 =? is compensated and its values are much more comparable to spatial-series obtained
from DNS of the channel flow at Reg ≈ 5200 (black line in Figure 5(b)). This analysis
confirms the applicability of the time-dependent correction of Yang & Howland (2018) for
amplitude modulation when time-series are employed, and extends such correction to the
study of frequency modulation through (4.1). In particular, we stress that D!( (C) represents
a more suitable choice than D(C) in equation (4.1) since it is assumed that fluctuations in
the large scale velocity, D!( (C), drive the variations in the friction velocity affecting the
behaviour of small scales (see relation (4.2) and accompanying discussion). In this regard,
the relation (4.1) leads to scaling arguments that are in good agreement with the quasi-steady
quasi-homogeneous theory, as it will be discussed in § 4.2.

One additional feature emerging from Figure 5 concerns the reversal in the modulation
mechanism from the wall proximity to the outer flow. In fact, while Figure 5 shows a contin-
uous decrease of  =? for H+ > 10 and H/ℎ . 0.5, an almost absence of FM was previously
found in the log-region by means of other techniques (where a reversal of the FM was only
detected in the proximity of the end of the boundary layer) (Ganapathisubramani et al. 2012;
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Baars et al. 2015). We point out that the  =? behaviour in Figure 5 resembles the decreasing
behaviour of the AM parameters (e.g., see Mathis et al. 2009a,b), with a reversal of  =?

from the near-wall (where  =? > 1) towards the outer region (where  =? < 1). In principle,
if the small scales are both amplitude- and frequency-modulated, one could expect that –
following the Newtonian principle that to the same natural effects we must, as far as possible,

assign the same causes – a similar underlying mechanism is at play for both amplitude and
frequency modulation. This can justify the similarity between the  =? (H

+) behaviour – that
quantifies FM – with the widely reported behaviour of AM parameters, either in internal
or external wall-bounded turbulent flows. In other words, both AM and FM result from a
common underlying phenomenon, for which both amplitude and frequency of small scales
are concurrently affected by negative or positive large-scale fluctuations at different wall-
normal locations.
Specifically, concerning the reversal coordinate (i.e., the H+-location where  =? switches
from  =? > 1 to  =? < 1), for amplitude modulation the reversal typically occurs in the

middle of the log-region, H+ ≈ 3.9Re
1/2
g (Mathis et al. 2009a,b; Ganapathisubramani et al.

2012; Baars et al. 2015). For frequency modulation, instead, it is still not clear whether a
modulation reversal does occur in the log-region (as shown in Figure 5) or it is only limited
to the wake region (Baars et al. 2015). From Figure 5 we can conclude that FM mechanism
is indeed limited to a near-wall region up to approximatively H+ = 100, consistently with
the analysis by Ganapathisubramani et al. (2012). Nevertheless, Figure 5 also shows that
the reversal H+ location increases with the Reynolds number. In fact, we find that – when
spatial-series are focused both from channel DNSs and time-series by the MTH – the
reversal coordinates (i.e., H+ ≈ 35, 75, 145 for the channel and boundary layer flows at

Reg = 1000, 5186, 14750, respectively) scale as H+ ≈ 1.15Re
1/2
g (the power-law fit gives

an exponent of 0.5 with an '2
= 0.985). This scaling has the same functional relationship

found for amplitude modulation, i.e., H+ ≈ 3.9Re
1/2
g , but with a different proportionality

constant. In particular, the Re
1/2
g -trend is reminiscent of the scaling of the outer peak position

as a function of Reynolds number (Mathis et al. 2009a), thus strengthening the underlying
connection of FM with the change in large scale features.

Another notable aspect discernible in Figure 5 is the V-like shape of  =? in the outer
region of the channel flow, i.e. around H/ℎ ≈ 0.5 (H+ ≈ 2500). In literature, the increase
– giving the V-like shape – of amplitude modulation (AM) of small scales (which are
representative of fine-scale turbulent motion) can be observed close to the channel center,
e.g., in Chung & McKeon (2010) (see Figure 4 therein) for the streamwise velocity, D, or
in Yao et al. (2018) (see Figure 3c therein) for the E and F components. However, to the best
of our knowledge, this peculiar increase of the modulation parameter in the channel flow has
not been explicitly discussed so far. Here we propose an interpretation based on the insights
gained from turbulent boundary layers.
Previous analyses, in fact, have highlighted that the preferential arrangement of the small
scales in the wake region of turbulent boundary layers is mainly affected by intermittency,
namely the presence of bulges of turbulent and non-turbulent flow (Baars et al. 2015, 2017).
However, Figure 5(a) shows a similar V-like behaviour – as for previous results on AM –
also in the outer region of the channel flows, despite the absence of a turbulent/non-turbulent
region in the channel flow (that is an internal flow). In particular, the V-like shape for the
channel at Reg = 1000 – although less evident than at Reg ≈ 5200 – consistently occurs
at H/ℎ ≈ 0.5 as highlighted in the inset of Figure 5(a). Here we suggest that – similarly
to the effect of intermittency in boundary layer flows – the preferential arrangement in the
proximity of the channel centreline could be affected by an alternating occurrence of high-
and low-rotational fluid motion above the head of large or very-large scale structures. This



17

phenomenon would lead to the increase of both the AM and FM parameters toward the
channel centreline. Although the clarification of this issue goes beyond the aim of this work,
we do believe it deserves future investigations, being the channel flow setup much less
considered for scale interaction analyses than turbulent boundary layers (for which high Reg
data are much more available from experimental measurements).

With the aim to ensure that the behaviour of  =? (H
+) described so far is the result of

an intrinsic flow phenomenon rather than an artefact due to the network representation, in
Figure 5 we also show the results for random-phase signals. Through a randomization of the
phase of velocity Fourier coefficients, the energy spectral density and the turbulence intensity
do not change, but any phase information is lost. Hence, following Mathis et al. (2009a),
first the signals of D are phase-scrambled, then the large scale component, D!(, is extracted
from the new random-phase signal (the amplitude spectrum is not changed), and eventually
the degree is calculated from the full random-phase signal and conditioned to the sign of the
random-phase D!(. Figure 5 shows that, both in the channel flow and boundary layer setups,
the characteristic behaviour of =? for turbulent signals (black curves) disappears for random-
phase velocity signals (blue curves). As previously reported (e.g., see Chung & McKeon
2010), phase relationships between large and small scales play an important role in the
characterization of scale interaction, specifically on scale modulation; thus, if any realistic
phase information is lost, modulation effects disappear as well.

The NVG-based approach demonstrates to be reliable in capturing FM in turbulent velocity
signals, and sensitive to phase-randomization. Moreover, the behaviour of  =? (H

+) for both
the channel and boundary layer is found to be robust under different cut-off wavelengths
(used to extract D!( from the full signal D), as discussed in Appendix B. Further insights into
the frequency modulation of the streamwise velocity will be presented in the next Section 4.2
focusing on the near-wall region, i.e., where large-to-small scale modulation does essentially
take place.

4.2. Scale interaction in the near-wall region

The presence of a near-wall modulation, whose intensity increases with the Reynolds number,
has posed a challenge to the classical view on the universality of near-wall turbulence, i.e., the
independence of the near-wall statistics (scaled in wall units) to the Reynolds number when
this is sufficiently large. Since large scale structures affect the behaviour of the wall shear
stress (Mathis et al. 2013), the classical universality hypothesis has been recently replaced
with the hypothesis that statistics have to be normalized by considering the large scale
skin friction, g!( , rather than the mean skin friction, gF (Zhang & Chernyshenko 2016;
Chernyshenko 2020). This hypothesis is referred to as quasi-steady quasi-homogeneous
(QSQH) hypothesis, since the temporal and spatial variations of the large scale structures are
much slower than variations of the near-wall turbulence (Zhang & Chernyshenko 2016).

The aim of this section is (i) to provide the proportionality relationships between D!(
and the (temporal or spatial) frequency of the small scales as expected from the QSQH
hypothesis, and (ii) to test the validity of such relationships by means of the network degree
centrality. In particular, we will focus on velocity signals extracted at H+ = 15 that corresponds
to the H+ value of maximum  =? in Figure 5, thus being a representative wall-normal
coordinate of the near-wall region. This choice is also related to the fact that, how evidenced
by Zhang & Chernyshenko (2016) and Agostini & Leschziner (2019), the validity of the
QSQH hypothesis is found to be rather accurate only in a narrow region close to the wall that
is H+ < 70 − 80.

According to the QSQH hypothesis, variations in the large scale velocity, D!(, induce
proportional variations in the large scale skin friction, g!( , namely (gF + g!() ∝ (* + D!(),
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where * is the local mean velocity. Since, by definition, *g =
√
gF/d (where d is the fluid

density), the effect of D!( on g!( can be stated in terms of velocities as

(*g + Dg,!() ∝
√
(gF + g!() ∝

√
(* + D!(), (4.2)

where Dg,!( is the fluctuating (i.e., zero-mean) large scale component of the friction veloc-
ity (Baars et al. 2017). Due to near-wall modulation, a quasi-steady or quasi-homogeneous
variation of the friction velocity affects also the (amplitude and) frequency of the small scales.
Specifically, D!( > 0 events induce Dg,!( > 0 (see relation (4.2)) that, in turn, produces an
increase of the small scale instantaneous spatial or temporal frequency according to the FM
mechanism; vice versa for D!( < 0 (Baars et al. 2017).

In the near-wall region, the spatial scales are supposed to have a constant characteristic
length when normalized in wall-units (e.g., see the inner spectral peak for _+G = _G*g/a =

2>=BC. ≈ 1000 in Figure 3(a)). Therefore, spatial scales are related to Dg,!( variations
as _G (*g + Dg,!() = 2>=BC., namely _G ∝ 1/(*g + Dg,!(). Since spatial frequency (i.e.,
wavenumber), ^G , is related to spatial scales as ^G ∝ _−1

G , by using the (4.2) we obtain the
following scaling relations

_G ∝ (* + D!()
−1/2, ^G ∝ (* + D!()

1/2. (4.3)

In the case of time-series, the temporal frequency, 5 , is related to spatial scales as 5 = *2/_G ,
where*2 is the convection velocity. Assuming that*2 scales in wall units (Baars et al. 2017),
namely*2 ∝ (*g + Dg,!(), temporal frequency is eventually expected to scale as

5 ∝ (*g + Dg,!()
2 ∝ (* + D!(). (4.4)

Therefore, the relations (4.3) and (4.4) represent the expected scaling of spatial and temporal
frequency, respectively, according the QSQH hypothesis.

As discussed in Section 2.3, the degree centrality represents a measure of the instantaneous
wavelength or a temporal period. Therefore, it is expected that the degree, : , scales as : ∝ _G
for the channel flow (in which spatial-series are mapped into NVGs), and : ∝ 1/ 5 for
the boundary layer (in which time-series are analysed). If the degree is indeed an effective
parameter to quantify FM, : should then be proportional to (* +D!()

VD,G in the channel flow
and (* + D!()

VD, 5 in the boundary layer. Following the aforementioned scaling arguments
(i.e., relations (4.3) and (4.4)), the two exponents that verify the QSQH hypothesis should be
equal to VD,G = −0.5 and VD, 5 = −1.

To test the VD,G and VD, 5 scaling, we conditionally averaged the degree centrality values
(computed from NVGs of the full velocity signals D(G)) to the D!( values at H+ ≈ 10.
In particular, D!( values were firstly divided into uniformly-binned intervals in the range
min[D!(] −max[D!(]. Then, for each visibility network (i.e., each signal), nodes 8 for which
D!( (8) belongs to a specific bin were selected, and the corresponding degree values, : 8, were
averaged for that specific bin. By extending the averages to all D!( bins, the conditional
average, (: |D!(), is obtained, where the overbar indicates an average over a set of nodes.
When plotting (: |D!(), the D!( value representative of each bin is chosen as the middle
value of the bin.

The behaviour of (: |D!() as a function of D!( reveals the scaling between degree-based
frequency variations and large scale velocity variations. Such conditional degree averages
are shown in Figure 6 for the channel flow at Reg ≈ 5200 (Figure 6(a)) and the boundary
layer (Figure 6(b)), as a function of (D!(/* + 1), where * = * (H+ = 10) is constant and
(D!(/* + 1) values equal to 1 correspond to large scale zero-crossing points (D!( = 0). We
find a scaling of the conditioned degree which follows a power-law with best-fit exponent
VD,G = −0.48 for the channel flow (spatial data) and VD, 5 = −1 for the boundary layer when



19
(a) (b)Turbulent channel flow Turbulent boundary layer

0.7 0.9 1.1 1.3

u
LS

/U+1

0.8 1 1.2

18

20

22

24

hk
 |
 u

L
S
 i

~x –0.48; R2=0.998

~x –0.5; R2=0.993

0.7 0.9 1.1 1.3

u
LS

/U+1

0.8 1 1.2
15

20

25

30

hk
 |
 u

L
S
 i

~x –0.4; R2=0.98
~x –0.5; R2=0.88

~x –1.0; R2=0.998

CTH

MTH

Figure 6: Average degree conditioned to the D!( values as a function of the normalized D!( deviation, for
D signals at H+ ≈ 10 in (a) the turbulent channel flow and (b) the turbulent boundary layer (angular brackets
indicate the average over time and homogeneous directions). In panel (b), the scaling for spatial-series
obtained through the classical (CTH) and modified (MTH) Taylor’s hypothesis are shown as black lines.
The power-law fitting curves are shown as dashed lines, together with the exponent of the fitting and the
coefficient of determination, '2, for both setups. Light-blue dashed lines correspond to the expected scaling
trends for spatial data. The intervals of D!(/* + 1 in abscissa cover, for each setup, a range from the 5th to
the 95th percentile of all D!( at the selected vertical coordinate H+ ≈ 10.

local mean velocity is used in the Taylor’s hypothesis (CTH). These exponent values are in
excellent agreement with the expected values of −0.5 and −1. We recall that, since for the
CTH case the convection velocity is constant and equal to the local mean velocity *, the
scaling exponent obtained in the CTH case is representative of a (temporal) frequency, thus
obtaining VD, 5 = −1. On the other hand, when the modified Taylor’s hypothesis (MTH) is
employed (equation (4.1)), the structure of the spatial-series (obtained from the corresponding
time-series) significantly changes and scaling arguments are therefore congruent with DNS
spatial-series. Accordingly, the (: |D!() scaling for the MTH case in Figure 6(b) produces an
exponent which is close to −0.5, as expected from spatial-series. Finally, we mention that an
exponent VD,G = −0.5 is found for the channel flow at Reg = 1000 with an '2 ≈ 0.92 when
cut-off filter is set to _+G,2 = 2500, while for larger _+G,2 values a poorer fitting is observed,
likely due to the limited scale separation for this setup.

While conditional averages were performed here by using uniformly-binned intervals of
D!(, Baars et al. (2017) – by adopting a variable-interval scheme for conditional averages –
reported a scaling of approximatively 0.8 (instead of 1) for frequency in turbulent boundary
layers over a wide range of Reg . They indicated that the discrepancy in the expected exponent
might be caused by an inaccurate assumption that small scales are convected at a fixed inner-
scaled velocity. However, here we show that the expected scaling for 5 is still obtained by
assuming *2 ∝ (*g + Dg,!(), suggesting that the discrepancy in the fitting in Baars et al.

(2017) might be related to different methodological arguments.

The relevance of the scaling shown in Figure 6 is twofold. From one hand, it demonstrates
that – similarly to the near-wall AM (Baars et al. 2017) – the near-wall FM agrees with the
quasi-steady quasi-homogeneous hypothesis. On the other hand, the outcomes of Figure 6
further validate the capability of the visibility-based approach – relying on the degree
centrality – to capture FM in wall-bounded turbulence, as well as the validity of the modified
Taylor’s hypothesis (4.1) in converting time-series into spatial-series.



20
(a) (b)1.1

1.05

1

0.95

0.9

0.85

y+

10–1 100 101 102 103 104

v - Full signal (5200)
w - Full signal (5200)
v - Random phase (5200)
w - Random phase (5200)
v - Full signal (1000)
w - Full signal (1000)

hK
n
p
 i ~x –0.3; R2=0.999

~x –0.3; 
  R2=0.997

0.7 0.9 1.1 1.3

u
LS

/U+1
0.8 1 1.2

13

14

16

18

hk
 |
 u

L
S
 i

15

17

19
v

w

Figure 7: (a)  =? ratio as a function H+ for the wall-normal and spanwise velocity components, E and F,
extracted from the two channel flow DNSs, together with the corresponding  =? values for random-phase
signals. The respective Reynolds number value of the DNS is reported within brackets in the legend. Angular
brackets indicate averaging over time and spanwise direction. (b) Average degree conditioned to the D!(
values as a function of the normalized D!( deviation, for E and F signals at H+ ≈ 10 in the turbulent channel
flow at Reg ≈ 5200. The power-law fitting curves are shown as cyan and green dashed lines for the E and F
cases, respectively, together with the exponents of the fitting and the coefficients of determination, '2.

4.3. Analysis of the spanwise and wall-normal velocity components

The application of the NVG approach to spatial-series of wall-normal, E(G), and spanwise,
F(G), velocity from the DNS of the turbulent channel flows is here reported. Figure 7(a)
shows the ratio  =? for the E (black and green curves) and F (red and purple curves)
components as a function of H+ for the two channel flows at different Reg .  =? > 1 is found
in the near-wall region indicating a positive frequency modulation of the large scales on the
small scales of E and F. This result is consistent with amplitude modulation investigations,
which show a similar modulating effect of the large scale motion on the small scales of the
three velocity components (Hutchins & Marusic 2007b; Talluru et al. 2014; Yao et al. 2018;
Wu et al. 2019). In particular, the trends shown in Figure 7(a) are similar to that reported
in Figure 5(a) for the D signals, although lower  =? values are obtained from E and F.
Moreover, as for D, the FM of small scales of E and F is weaker at lower Reynolds number,
since smaller  =? values are observed in the near-wall region for Reg = 1000.
Furthermore, similarly to the D component, an almost constant  =? ≈ 1 behaviour is found
for network built from the random-phase E and F signals (see orange and blue curves in
Figure 7(a) referring to Reg ≈ 5200 as a representative case), confirming the ability of
the degree to capture phase information from the (full) signal. It should be noted that, for
the sake of consistency, a unique phase shuffling was performed in this case for the three
velocity components. As the degree from the E and F signals are conditionally averaged on
D!(, the phase of the streamwise velocity signal was extracted and randomly shuffled, so
that the random-phase D!(, E and F signals were obtained via the respective (non-shuffled)
amplitudes but with the same random phases.

Although spectral peak separation in the spectrograms of the transversal velocity compo-
nents is less evident than for the streamwise velocity, the generation and amplification of
small scale motions (i.e., fine scale vortices) of all the three velocity components is strongly
connected with large scale events (Hutchins & Marusic 2007b). Within this perspective,
the wall-normal and spanwise velocities are expected to be modulated in the near-wall
region by following the QSQH hypothesis in a similar way as the streamwise component,
D. However, while results for AM of the three velocity components (Talluru et al. 2014;
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Agostini & Leschziner 2019; Chernyshenko 2020) and scaling arguments for the AM and
FM of the D component (Baars et al. 2017) have been provided, as far as we know, similar
scaling arguments (as in Baars et al. (2017), figure 9 therein) for E and F have not been
pursued for FM to date.

In analogy with the modulation of the D component, the conditional average degree,
(: |D!(), is evaluated as a function of (D!(/* + 1) at H+ ≈ 10 for NVGs built from E(G)
and F(G) signals. The conditional average degree and the corresponding fitting are shown
in Figure 7(b) for the Reg ≈ 5200 setup and confirm the power-law modulation effect of
the large scales in the near-wall region even for the other velocity components, namely
: ∝ (* +D!()

VE,G and : ∝ (* +D!()
VF,G . However, while for the D component the exponent

of the power-law was VD,G ≈ −0.5, a weaker scale interaction effect is found for the E and
F components being VE,G ≈ −0.3 and VF,G ≈ −0.3, which are both smaller (in modulus)
than VD,G . This outcome is also consistent with the smaller  =? values for E and F (see
Figure 7(a)) than for D (see Figure 5(a)), indicating a weaker FM in the near-wall region for
the transversal velocity components.
The power-law relationships found for D, E and F suggest that – although the intensity of
modulation is different for each velocity component – the response of the small-scales of E
and F exhibits a functional relation qualitatively analogous to the response of D. In general,
there could be several factors playing a role in the scale-interaction mechanisms (such as
the direction of the large-scale motions as discussed by Chernyshenko (2020)), but we can
conclude that the QSQH hypothesis is valid for all velocity components, although a more
refined description is required for the transversal components, E and F.

The results shown in this section reveal that the three velocity components are all affected
by a large scale FM in the near-wall region, where an increase of the local (spatial) frequency
is observed under Dg,!( > 0 periods induced by positive D!( events. In particular, we
provided novel insights on FM for the E and F components – which have been investigated
less than D – in terms of FM intensity for spatial-series (Figure 7(a)), and scaling arguments
on the QSQH hypothesis (Figure 7(b)).

4.4. Time and space shifting in FM

To conclude our analysis, we provide results on the investigation of time- and space-shifted
FM, as quantified by  =? . We recall that a lead of the small scale amplitude was found
with respect to the large scales in the near-wall region of turbulent boundary layers, while
a small scale lag is found above the reversal coordinate (Bandyopadhyay & Hussain 1984;
Guala et al. 2011). Concerning FM, a lead of the small scale frequency with respect to large
scales was found in the near-wall region but, differently from AM, scattered behaviours were
found far from the wall (Ganapathisubramani et al. 2012; Baars et al. 2015).

To address this issue, we show in Figure 8 the conditionally average degree,  =? , as a
function of H+ and the spatial delay,ΔA+G , where for time-series it holds the Taylor’s hypothesis
ΔA+G = −*2ΔC

+ (the minus sign highlights the opposite direction of reference systems between
fixed-point time-series and spatial-series). Therefore, the formulation of =? reported in (2.3)
is extended to account for spatial shifting, ΔA+G , as  =? (ΔAG) =  = (ΔAG )/ ? (ΔAG), with




 = (ΔAG ) =
1

#=46 (ΔAG )

∑#
9=1

(
: (G 9 − ΔAG) |D!( (G 9) < 0

)
,

 ? (ΔAG) =
1

#?>B (ΔAG )

∑#
9=1

(
: (G 9 − ΔAG) |D!( (G 9) > 0

)
.

(4.5)

Positive or negative ΔA+G values indicate in (4.5) a lag or lead, respectively, of the degree,
: , with respect to D!( in the conditional averages of equation (2.3) (the results in Figure 5
correspond to ΔA+G = ΔC+ = 0). If classical Taylor’s hypothesis (CTH) is employed for
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Figure 8: Contour plot of the  =? ratio as a function of the wall-normal coordinate, H+, and the temporal or
spatial shifting, ΔC+ or ΔA+G , respectively. Shifting for the turbulent boundary layer are reported in panels (a)
and (b) whether the classical or modified Taylor’s hypothesis is used, respectively. Spatial shifting for the
turbulent channel flow at Reg ≈ 5200 is shown in panels (c-e) for the three velocity components. Iso-level
contours are displayed by using a level-step equal to 0.03 in panel (a), 0.01 in panel (b) and 0.015 in panels
(c)-(e).

turbulent boundary layer time-series (Figure 8(a)), a slight lead of  =? with respect to D!(
(i.e., high  =? values are at ΔA+G < 0 but close to ΔA+G = 0) is observed for H+ . 15. However,
a more substantial lead is observed for larger H+ coordinates in the near-wall region up to
H+ ≈ 100, in agreement with previous analyses (Baars et al. 2015), while a lag of  =? with
respect to large scales is detected for H+ & 100. A clearer picture is obtained when the
modified Taylor’s hypothesis (MTH) is exploited (Figure 8(b)). Significant lead of  =? with
respect to D!( is found in the whole near-wall region (including wall proximity, H+ . 15),
while the lag for H+ & 100 is less evident and a lead is recovered for larger H+ values (see
blue contours in Figure 8(b)). Eventually, no clear patterns are observed in the intermittent
regions (H+ & 5 × 103).

The space-shifted  =? values in the turbulent channel flow at Reg ≈ 5200 for the three
velocity components are displayed in Figure 8(c-e). Likewise the turbulent boundary layer,
a lead of  =? with respect to D!( is found for H+ < 100, as highlighted by high  =? values
for ΔA+G < 0. Differences among the D, E and F components are detected in proximity of
the channel centreline, where  =? appears to lead, be in-phase, and slightly lag D!( for the
D (Figure 8(c)), E (Figure 8(d)), and F component (Figure 8(e)), respectively. It should be
noted that the Reg ≈ 5200 is here used as a representative setup for spatial data, and results
for the lower Reg channel flow are in agreement with results in Figure 8 so they are not shown
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for the sake of conciseness.
In particular, it is worth highlighting that the maximum  =? values in the near-wall region
are found at ΔA+G ≈ 1000 for the streamwise velocity in the turbulent boundary layer when the
MTH is employed (Figure 8(b)), as well as for all the velocity components in the turbulent
channel flow (Figure 8(c-e)). The value ΔA+G ≈ 1000 is in very good agreement with the
characteristic length scale in the near-wall region, being _+G = $ (103) (see inner spectral
peak in Figure 3(a)). The equivalent time-scale is ΔC+ = ΔA+G/*

+
2 ≈ 100 (being *+

2 ≈ 10
in the buffer layer and viscous sublayer), which is the characteristic turnover time of the
near-wall cycle. As small scales are supposed to be actively modulated by large-scales, the
time taken for this process to be completed is therefore equivalent to the time scale of the
near-wall cycle (Ganapathisubramani et al. 2012).

The results shown in Figure 8(a-c) for the streamwise velocity reveal that different
convection velocities indeed play a significant role in the FM dynamics, not only in terms
of overestimation (as highlighted in Figure 5(b)), but also in terms of spatial delay that –
in the near-wall region – is strongly related to the near-wall cycle. Therefore, NVG reveals
again to be a reliable approach for quantifying FM even in presence of a temporal or spatial
shifting. Finally, we note that an important issue about scale interaction is whether large
scales actually cause an increase or decrease of small scale activity, as the parameters used
so far to quantify AM and FM only show there is a relation (e.g., a correlation) between large
scales and small scales. Although definite answers to this issue are not still available, our
detection of the presence of a significant temporal or spatial delay close to the characteristic
time or length scale of the near-wall cycle, in conjunction with the arguments leading to
relation (4.2), could provide supporting clues that a causation process is at play. In fact,
fluctuations in the large scale component of the wall shear stress – which affect the small
scales behaviour – appear to be directly caused by the outer large scale structures rather than
being the feature of near-wall processes (Zhang & Chernyshenko 2016).

5. Discussion

In this work, the natural visibility graph was used to study 1D spatial-series and time-series
from two turbulent flow configurations, but some generalizations can be carried out. First,
the geometrical criterion at the basis of the visibility algorithm can be extended to scalar
fields of arbitrary dimension (Lacasa & Iacovacci 2017). For instance, Tokami et al. (2020)
recently constructed a spatial visibility graph (employing a simplified version of the NVG
called horizontal visibility graph as proposed by Luque et al. (2009)) from a 2D velocity field
in a buoyancy-driven turbulent fire. Therefore, our approach could be extended to 2D velocity
fields at fixed H+ coordinates, thus concurrently taking into account the degree variations
along the streamwise and spanwise directions.

The results provided by natural visibility graphs, specifically about the degree centrality,
necessarily depend on the signal resolution (either the sampling frequency or the grid size),
which needs to be sufficiently high to capture the behaviour of small scales. However, if the
temporal or spatial resolution is sufficient enough to capture the smallest significant features
of the signal, the degree centrality tends to proportionally scale with the signal resolution
as shown, e.g., in Iacobello et al. (2018b). Nevertheless, an additional feature of visibility
networks is the possibility to explicitly account for the spatial or temporal discretization. In
fact, one can assign to each discrete observation, 8, the corresponding signal spacing (e.g.,
ΔG8 , ΔI8, ΔC8 , etc.). In this way, each node 8 of the network is representative of an interval
centred in 8, thus providing a continuous representation of the signal. As a result, a weighted
network is obtained in which the relation 2.2 is reformulated as :̃ 8 ≡

∑
9 Δj 9 �8, 9 , for a

series sampling, Δj 9 , where j is independent variable (e.g., time). This generalization is
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particularly useful for non-uniformly sampled signals from experimental measurements, in
which :̃ can be used in place of : , e.g., in the definition (2.3).

Finally, it is worth to observe that, so far, the visibility approach was presented as a
convexity criterion (see inequality (2.1)). In particular, the network degree was interpreted
as a measure of the instantaneous period (quantified in terms of the local convexity of the
signal), in analogy with the concept of instantaneous frequency based on the Hilbert transform
(where the local properties of a series are emphasized by performing a convolution of the
signal with the function 1/C (Huang et al. 1998)). Nevertheless, the visibility algorithm can
also be used as concavity criterion by applying it to the opposite signal, −B8 , whose effect is
to change the direction in the inequality (2.1) (Iacobello et al. 2019a). The comparison of the
network metrics extracted from B8 and −B8 allows one to characterize the peak-pit asymmetry
of a signal, especially in real-world phenomena (Hasson et al. 2018). Following this point of
view, we evaluated – for the sake of completeness – the values of  =? (H

+) by using the NVG
as a concavity criterion for the streamwise velocity, and we found that the main features of
the FM for full and random-phase signals are retained either when the information is only
taken from the convexity or concavity criterion.

6. Conclusions

In this study, we propose a novel approach to investigate the frequency modulation (FM)
mechanism in wall-bounded turbulence by means of the natural visibility graphs. Spatial-
series and time-series of the velocity from two turbulent channel flows and a turbulent
boundary layer, respectively, are mapped into visibility networks and the degree centrality is
conditionally averaged to the sign of the large scale velocity to quantify FM. In particular,
the versatility of visibility graphs to map either time- or spatial-series, let us exploit velocity
spatial-fields from turbulent channel flows that have been much less investigated than
turbulent boundary layers under the lens of frequency modulation.

The overall results for the streamwise velocity indicate a frequency modulation mechanism
occurring in the near-wall region with a peak of intensity in the buffer layer, in agreement
with previous works. However, in contrast with previous observations on FM, we observe a
reversal in the frequency modulation mechanism far from the wall similarly to what observed
for amplitude modulation, in both channel and boundary layer flows. We argued that such
similarity could stem from a common underlying phenomenon, for which both amplitude
and frequency of small scales are concurrently affected by negative or positive large-scale
fluctuations. Moreover, we observe that the reversal coordinate scales as Reg

0.5, which is
reminiscent of the scaling in the wall-normal position of the outer spectral peak.

The effect of different convection velocities for the time-series analysis is also discussed.
In particular, we modified the correction proposed by Yang & Howland (2018) by accounting
for only the large scale velocity component in the definition of the convection velocity. This
choice is based on the rationale that variations in the large scale velocity induce variations
in the wall shear stress, which in turn affect the behaviour of small scales. We detect
an overprediction of frequency modulation when the local mean velocity is employed as
convection velocity in the turbulent boundary layer, while such overprediction is compensated
when the proposed modified Taylor’s hypothesis is used. Moreover, scaling behaviours of
the degree centrality as a function of the large scale velocity are found to be in very good
agreement with the the quasi-steady quasi-homogeneous (QSQH) theory. In this regard,
our correction of the Taylor’s hypothesis provides reliable scaling trends as the large scale
velocity is supposed to induce modulation of small scales through variations in the wall shear
stress.

Finally, the FM for the wall-normal and spanwise velocity components is analysed for
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the turbulent channel flows and FM scaling is discussed for the transversal velocities.
We find a frequency modulation mechanism for the wall-normal and spanwise velocity
components qualitatively similar to FM of the streamwise velocity. Specifically, a power-
law scaling of the degree conditioned to the large scale velocity is found for the three
velocity components, although smaller exponents are found for transversal velocities than
for the streamwise velocity. Moreover, a delay-based analysis is carried out for the three
velocity components in the channel flow and for streamwise velocity time-series in the
boundary layer. We observe that small scales lead large scales in the near-wall region (in
accordance with previous studies), but significant differences are found when the classical
or modified Taylor’s hypothesis is applied. Specifically, our modified Taylor’s hypothesis
provides results in agreement with spatial-series analysis, where the delay of maximum
modulation corresponds to the characteristic length (or temporal) scale of the near-wall
cycle.
Furthermore, we emphasize here that, to the best of our knowledge, this is the first time
that frequency modulation is thoroughly investigated for all the three velocity components,
as previous works have been mainly focused on amplitude modulation. The findings
gained through the visibility networks of all the three velocities can then contribute to the
development of a more general model of scale interaction, which accounts for the different
modulating effect of the large scale on each velocity component.

The visibility-based approach reveals to be robust in the quantification of FM with respect
to AM (Appendix A), and to different cut-off filtering sizes and high-frequency noise
(Appendix B), as well as sensitive to a spectral phase randomization of the signals. The
latter implies that the natural visibility graph is able to capture non-linearities in the signal,
as linear effects are preserved during phase randomization (i.e., amplitude spectrum does not
change) while non-linearities are lost through phase-shuffling. We stress that the visibility
networks do not require any a priori parameter, and are directly built from the full velocity
signals (instead of the small scale component), being the network degree able to capture
the signal structure at local scales. In this regard, although in this work a one-point analysis
is carried out for simplicity, a two-point analysis (where the large scale signal is extracted
at a fixed wall-normal coordinate) would reveal the full potential of visibility networks. In
fact, when multiple synchronized signals are available at different wall-normal locations
(e.g., from numerical simulations, hot-wire rakes or through particle image velocimetry),
the large scale signal can be obtained only once at a fixed wall-normal location, as well as
probes working on a smaller frequency range can be employed (being only low-frequencies
necessary). The full velocity signals, instead, can be used without any filtering operation to
capture the small scales frequency modulation at the remaining wall-normal locations.

In the wake of the recent successful applications of network science to the analysis
of turbulent flows (Murugesan & Sujith 2015; Taira et al. 2016; Schlueter-Kuck & Dabiri
2017; Krishnan et al. 2019; Iacobello et al. 2019b), the proposed visibility-based approach
candidates for being a parameter-free and robust tool for FM investigation.

Appendix A. Synthetic signals for visibility-based FM detection

In this appendix we provide results of the application of the visibility-based approach to
quantify frequency modulation from synthetic signals, which is a simple but representative
benchmark of more complex signals such as from turbulent flow fields. Three configurations
of modulation are here investigated, as shown in Figure 9(a-c), namely amplitude modulation
(AM), frequency modulation (FM) and both amplitude and frequency modulation (AFM).
In this way, we assess the effect of different modulations on the ratio  =? and its ability to
discern FM only.
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Figure 9: First 2500 time instants (out of 104) of the three synthetic modulated signals (shown in black) and
the modulating signal (shown in red) for: (a) amplitude modulated signal (AM); (b) frequency modulated
signal (FM); (c) amplitude and frequency modulated signal (AFM). The inset show a zoom of the AFM
modulated signal. (d) Results of the application of the NVG to the synthetic signals in panels (a-c). Values
of  =? are shown as box plots, where @1, @2 and @3 are the 25th, median, and 75th percentiles, respectively,
while @<8= = @1 − 1.5(@3 − @1) and @<0G = @1 + 1.5(@3 − @1) whose values are explicitly indicated at the
tips of the whiskers as percentages.

All the generated signals have length # = 104 and sampling frequency 5B0<? = 4000 Hz,
which is chosen to be much larger than the characteristic frequencies of the modulated and
modulating signals. The modulating (i.e., large scale) signal – shown in red Figure 9(a-c) –
is given by the expression B! (C8) = cos(2c 5! C8)/3, where C8 = (8 − 1)/ 5B0<? is time, with
8 = 1, . . . , # , and 5! = 2 Hz is the frequency of the modulating signal.
The three modulated signals, B�" , B�" and B��" , are constructed as high-frequency
sinusoidal series, which emulate the small scale velocity component, modulated by B! . A
positive modulation is considered, namely, an increase of amplitude and/or frequency is
induced for intervals of positive B! values, and vice versa for negative B! values. This
behaviour mimics the modulation close to the wall by large scales to small scales in
wall-bounded turbulence. Specifically, the three modulated signals, shown as black lines
in Figure 9(a-c), are given as follows:

• B�" = (cos [2c 5� C8] + B') (1 + B!),
• B�" = cos [2c 5� C8 + i!] + B',
• B��" = B�" (1 + B!),

where 5� = 12 Hz is the (high) carrier-frequency of the modulated signals. The role of
(1 + B!) is to provide the amplitude modulation effect on B�" and B��" , while the role
of i! is to give a frequency modulated component to B�" and B��" . In particular, i!

is a time-varying phase depending on B! typically used to generate frequency-modulated
signals (Boashash 2015), defined as i! = 2c 5Δ�<, where 5Δ = 11 Hz is the frequency

deviation (i.e., the maximum frequency shift from 5� ), and �< ≡
∑

8 B! (C8)/ 5B0<?. The
frequency deviation, 5Δ, is selected to be close to the value of the carrier frequency, 5� , in
order to maximize the modulation effect on the signal.
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In each of the three modulated series, an additional signal, B', is also included. It is
obtained as a sum of unmodulated cosine signals with randomly-varying amplitude, given
by

B' (C8) =

5∑

@=2

A�

2@
cos [2c(2@ 5� )C8], (A 1)

where A� is a random number extracted from a uniform distribution in the range (0, 1). The
effect of B' in a modulated signal can be observed in the inset of Figure 9(c). The role
of B' is to introduce – similarly to turbulence velocity spectra – additional high-frequency
low-amplitude components, thus making the modulated (small scale) signal a broadband-like
series.

By generating several random amplitudes, A�, in equation A 1, an ensemble of B' series
is obtained for each A�. This leads to an ensemble of different modulated signals, B�" , B�"

and B��" , that are characterized by different B'. Specifically, we generated 5 × 103 values
of A� for each of the three modulated signals. The values of the ratio  =? (see equation 2.3)
are then computed for each ensemble, by evaluating the degree on the NVGs built for the full
signals, namely, (B�" + B!), (B�" + B!) and (B��" + B!).
Figure 9(d) shows the values of  =? for the three modulation configurations as box-plots, in
which the most significant percentiles are highlighted. For the AM case,  =? is concentrated
around unity, with a median value that is very close to one, as expected since the main
modulating effect is on amplitude. For the FM and AFM cases, instead, values of  =?

greater than one are consistently obtained (note the percentile values in Figure 9(d)), as a
result of the positive frequency modulating effect of the large scale signal. In particular, it
is worth noting that even when a signal is modulated both in amplitude and frequency, the
ratio  =? is able to emphasize the contribution of the FM.

The results shown in Figure 9(d) reveal that  =? is an accurate parameter to quantify FM,
since it consistently shows positive values under positive FM, and also a precise metric, since
there is narrow spreading of the  =? values around the median. The results shown in this
appendix corroborate the ability and robustness of the proposed visibility-based approach –
relying on the conditioned degree centrality – to capture frequency modulation, thus fostering
its application as a tool to study scale-interaction in wall-bounded turbulence.

To conclude this section, we show the effect of higher frequency harmonics on the average
degree, , for synthetic signals. With this aim, we used two sets of synthetic signals according
to their power spectrum scaling: (i) following a −5/3 spectrum, and (ii) a −2 spectrum. The
former emulates turbulent signals in the inertial range, while the second refers to signals
defined in equation (A 1). Figure 10(a-b) show the power spectra for both types of synthetic
signals, while Figure 10(c) illustrates the behaviour of  as a function of the maximum
frequency considered, 5 ∗. As discussed in § 2.2 referring to Figure 3(c) for turbulent series,
 decreases as the number of high-frequency harmonics increases. Moreover, the changes
in  are stronger for the synthetic signals following the 5 −5/3 spectrum (Figure 10(a)) than
for 5 −2 spectrum (Figure 10(b)), because the energy content of small scales is larger in the
former case being the exponent −5/3 lower (in modulus) than −2.

Appendix B. Sensitivity analysis

The aim of this section is to assess the robustness of the proposed NVG-based approach
under different values of the spectral filtering wavelength and under high-frequency noise.

We recall that the spectral filtering wavelength is used to extract the large scale component,
D!(, from the streamwise velocity signal, D. Mathis et al. (2009a) firstly reported a sensitivity
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Figure 10: (a) Power spectra of synthetic signals following a 5−5/3 law. Signals are generated through inverse-
Fourier transform of the power spectrum shown in black for different frequency ranges (i.e., different number
of harmonics). Fifty ranges of 5 are generated, and the spectra of the synthetic signals for some representative
5 ranges are highlighted with different colours, as well as vertically shifted to enhance visualization. (b)
Power spectrum of signals generated as per equation (A 1). The range of frequency considered for the
equation (A 1) is highlighted as a shaded red region, and an 5 −2 scaling is also shown. (c) Average degree
centrality,  , for signals generated as in (a) and (b) for increasing maximum frequency, 5 ∗.

analysis on the AM of streamwise velocity in a turbulent boundary layer. They showed that
a decrease of the cut-off wavelength leads to a small increase of the AM below the reversal
wall-normal coordinate (i.e., in the near-wall region), and a small decrease of AM above
the reversal coordinate (i.e., far from the wall). The conclusion was that, despite the small
variations due to different cut-off wavelengths, the general form of the AM parameter is
retained. For this reason, subsequent works on AM and FM exploited the sensitivity analysis
by Mathis et al. (2009a) as a reference case to justify the choice of the cut-off wavelength.

Here we perform a sensitivity analysis on the wall-normal behaviour of  =? for the
streamwise velocity, by changing the cut-off wavelength, _G,2 . Figure 11 shows  =? as a
function of H+ for four _G,2 values, in the turbulent channel flow at Reg ≈ 5200 (Figure 11(a),
_+G,2 = 5186 in the main text) and the turbulent boundary layer (Figure 11(b), _+G,2 = 7000 in
the main text). For the boundary layer, both the classical and modified Taylor’s hypotheses
are considered and labelled as CTH and MTH in the legend of Figure 11(b). The nominal
shape of  =? as a function of H+ is maintained both for the channel and boundary layers
setups, and – similarly to the analysis carried out by Mathis et al. (2009a) – a decrease in
_G,2 leads to a reduction of  =? below the reversal H+ and a rise of  =? above the reversal
H+. Specifically, variations of  =? in the wall proximity are less evident for the boundary
layer when the modified Taylor’s hypothesis (MTH) is applied rather than when local mean
velocity is considered as convection velocity (CTH).

This sensitivity analysis confirms the robustness of the decoupling procedure to extract
D!(, which is employed to evaluate  =? as metric for studying frequency modulation.

Finally, our method is tested under the presence high-frequency noise in the velocity signals
(as usually happens in experimental measurements). With this aim, we artificially added a
high-frequency noise to experimental signals of the streamwise velocity (whose sampling
frequency is 5B = 20000 Hz) in the turbulent boundary layer. The noise signal is given by the
sum of three harmonics with random phase and with frequencies equal to 0.5 5B , 0.475 5B and
0.45 5B (the maximum frequency included is 5B/2 as higher frequencies are not be captured
in the amplitude spectrum), whose effects on spectra are displayed in Figure 12(a). The
corresponding values of  =? are shown in Figure 12(b), where we observe that the behaviour
of  =? is retained throughout the boundary layer except for the intermittency region where
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the noise intensity significantly affects the signal structure. Therefore, we conclude that –
although a pre-processing of the (experimental) data is always a good practice to avoid biased
behaviours – the NVG approach based on  =? is sufficiently robust under high-frequency
noise.
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