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ABSTRACT This work describes an efficient implementation of the iterative decoder that is the main part
of the decryption stage in the LEDAcrypt cryptosystem, recently proposed for post-quantum cryptography
based on low-density parity-check (LDPC) codes. The implementation we present exploits the structure of
the variables in order to accelerate the decoding process while keeping the area bounded. In particular, our
focus is on the design of an efficient multiplier, the latter being a fundamental component also in view of
considering different values of the cryptosystem’s parameters, as it might be required in future applications.
We aim to provide an architecture suitable for low cost implementation on both Field Programmable Gate
Array (FPGA) and Application Specific Integrated Circuit (ASIC) implementations. As for the FPGA, the
total execution time is 0.6 ms on the Artix-7 200 platform, employing at most 30% of the total available
memory, 15% of the total available Look-up Tables and 3% of the Flip-Flops. The ASIC synthesis has been
performed for both STM FDSOI 28 nm and UMC CMOS 65 nm technologies. After logic synthesis with
the STM FDSOI 28 nm, the proposed decoder achieves a total latency of 0.15 ms and an area occupation of
0.09 mm2. The post-Place&Route implementation results for the UMC 65 nm show a total execution time
of 0.3 ms, with an area occupation of 0.42 mm2 and a power consumption of at most 10.5 mW.

INDEX TERMS Applied cryptography, post-quantum cryptography, hardware design, ASIC, FPGA,
bit-flipping decoding, LDPC codes.

I. INTRODUCTION
Quantum computing is becoming a reality, besides being
an active and appealing research field, due to its rapid
advancement in recent years [1]–[4]. The expected comput-
ing power of quantum computers can deeply change our
world. Quantum computers will enable dramatic reductions
in the complexity of solving some widespread problems,
but also pose a serious threat on the security of Public Key
Cryptography (PKC). One of the security requirements upon
which an asymmetric cryptosystem is built is the hardness
of discovering the Secret Key (SK) from the Public Key
(PK): the PK is computed by applying a one-way function
to the SK, and inverting this function should be computation-
ally infeasible. One of the most widespread one-way func-
tions used in current PKC is based on integer factorization.

The associate editor coordinating the review of this manuscript and

approving it for publication was Gautam Srivastava .

Factorizing large integers is believed to be a Non-Polynomial
(NP) problem with classical computers. However, it has been
demonstrated that by using Shor’s quantum algorithm [5],
the problem can actually be solved in polynomial time. This
breaks the security of asymmetric cryptosystems relying on
such a problem, like the well-known Rivest-Shamir-Adleman
(RSA) algorithm. Similarly, security of Elliptic Curve Cryp-
tography (ECC) relies on the difficulty of discovering the
discrete logarithm of a random elliptic curve, which is another
problem easily solvable by means of quantum computers.

The above threats has encouraged the cryptographic com-
munity to begin migrating to quantum-resistant asymmetric
algorithms: this research area is known as Post-Quantum
Cryptography (PQC). As evidence of this, in Decem-
ber 2016 the National Institute of Standards and Tech-
nology (NIST) started a selection process to define new
standards for post-quantum PKC [6]. Initially, 69 candidate
cryptosystems were considered, based on various approaches
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arising from different families of hard mathematical prob-
lems. One of these problems is that of decoding an arbitrary
linear code, which in [7] has been proven to be NP-hard.
As arguably the most remarkable example of cryptosystems
based on such a problem, we can mention Classic McEliece,
which is among the schemes admitted to the third round of
the NIST competition [8], and is widely recognized as one of
the most secure and promising solutions. Classic McEliece is
substantially based on the work of McEliece in 1978 [9], who
introduced the first ever proposed code-based cryptosystem
employing binary Goppa codes as secret keys. Despite its
largely recognized security, the original McEliece scheme
relying onGoppa codes has amajor drawback in its very large
public keys (hundreds of kilobytes for 128 bits of security).

For the above reason, in recent years researchers have put
significant efforts to the goal of reducing the public key size
of McEliece-like cryptosystems. One of the most promising
solutions in this respect consists in replacing the underlying
secret code employed in the original McEliece system with
a Quasi-Cyclic (QC) random or pseudorandom code [10].
Basically, the idea is that of using codes that admit a compact
geometric representation, which leads to a clearly less mem-
ory demanding implementation, with respect to unstructured
large linear codes (such as Goppa codes). Indeed, such an
approach has been used in different NIST submissions, like
LEDAcrypt [11], BIKE [12] and HQC [13].

In this work we focus on the implementation of the
LEDAcrypt cryptosystem, which uses a class of state-of-the-
art error correcting codes named Low-Density Parity-Check
(LDPC) codes [14], [15] as secret codes. In its general formu-
lation, the secret LDPC code used in LEDAcrypt is defined
by a sparse QC parity-check matrix that can be written as
the product of other two QC sparse matrices. Such a struc-
ture enables the use of a very efficient decoding algorithm,
named Q-decoder, which derives from the classical Bit Flip-
ping (BF) decoder [14]. TheQ-decoder is specifically tailored
for the code structure of LEDAcrypt, and it is significantly
faster than classical BF decoding on general LDPC codes
(we refer the interested reader to [16, Lemma 2] for more
details).

Notice that, while LEDAcrypt was successfully admitted to
the first two selection rounds of the NIST PQC competition,
it was not admitted to the third round due to the recent
discovery of some families of weak keys [17]. However, such
an attack is not destructive, and may still be countered with
some cautious choices of the system parameters. In this paper,
we refer to the LEDAcrypt parameters that were adopted for
the second round of the NIST PQC competition. However,
we remark that our implementation is completely scalable,
i.e., independent of the particularly considered parameters,
and thus remains valid also for other versions of LEDAcrypt,
that is, characterized by different parameters. Furthermore,
we observe that some of the elements that are used in
LEDAcrypt (like the ones for multiplications over quotient
polynomial rings) are also used in other cryptosystems (such
as the aforementioned BIKE and HQC); hence, our results

can additionally be employed for other cryptosystems based
on pseudorandom QC codes.

A fundamental component of cryptographic functions
based on error correcting codes is the decoder. Thus, in this
paper we focus on the implementation of the Q-decoder, that
is, one of the LEDAcrypt peculiarities, as mentioned above.
Actually, the interest for such a decoder goes beyond its
cryptographic application, since efficient decoders are also
required in conventional coded transmissions, where themain
goal is to ensure reliable reception at a reasonable cost (in
terms of transmitted power or, equivalently, signal-to-noise
ratio). It should be noted, however, that in cryptographic
applications impressively low error rates (in the order of
2−128 or less) are required to avoid some types of attacks.
These values can be reached through a proper design of
the LDPC code, able to avoid the appearance of error floor
phenomena [16], [18].

A. OUR CONTRIBUTION
Implementations of the Q-decoder have already appeared in
the literature [19]–[22]. Moreover, a multiplier specifically
designed to handle the arithmetic required in LEDAcrypt
has been studied in [23], but it has an area comparable
to complete implementations of the LEDAcrypt decoder,
like those discussed in [19], [22]. The present work aims
to provide an architecture suitable for low-cost implemen-
tation on both programmable logic devices, namely Field
Programmable Gate Arrays (FPGAs), as well as Application
Specific Integrated Circuits (ASICs). The implementation we
present in this work extends the scalability and improves
the performance of the preliminary implementation in [22]:
in particular, in this work we achieve a linear, rather than
exponential, growth of the implementation complexity by
exploiting parallelism. This study is compared with the most
recent prototyping of LEDAcrypt [19], [21], in which the
decoder has been implemented trying to reduce the resource
utilization or the execution time of the decoding process.
We propose an architecture that can achieve a further reduced
execution time, while keeping a limited resource utilization.
For the proposed ASIC design, we fully characterize our
implementation in terms of post-Place&Route area, delay and
power figures.

The paper is organized as follows: Section II describes
the LEDAcrypt encryption and decryption stages, Section III
summarizes the approaches known in the literature to imple-
ment a multiplier for cyclic variables, in Section IV the com-
plete architecture of the decoder is presented, in Section V the
execution time and area/resource occupation are compared to
previous works and, finally, in Section VII some conclusions
are drawn.

II. LEDAcrypt
Given an r × n binary matrix H called parity-check matrix,
an r × 1 binary vector s called syndrome and an integer t ,
the so-called Syndrome Decoding Problem (SDP) consists
in expressing s as the linear combination of no more than t
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columns of H. In other words, the SDP consists in finding
a 1 × n binary vector e of Hamming weight not greater
than t such that HeT = s, where T denotes transposition.
For the binary case we consider, in which all variables lie
in the binary finite field F2, the decisional version of the
SDP has been proven to be NP-complete in [7]. The 1 × n
binary vectors c corresponding to a null syndrome, i.e., such
that HcT = 0, are called codewords belonging to the code
described by H. Such a code hence corresponds to a linear
subspace of Fn2, where n is the codeword length. Notice that
the same code admits multiple representations: in fact, if H
is a valid parity-check matrix for one code, then each r × n
binarymatrixM = SH, where S is a non-singular r×r binary
matrix, is another valid parity-checkmatrix for the same code.

Based on the above considerations, each time a codeword is
transmitted and no errors occur during transmission, the same
codeword is received and the associated syndrome is null.
If instead transmission errors occur, they can be modeled as
an error vector added to the transmitted codeword, that is,
ĉ = c + e, where ĉ is the vector received upon transmission
of c, and the sum is binary. In such a case, we have HĉT =
H(c + e)T = HeT = s, hence solving the SDP for s
means discovering the error vector e. Then, the transmitted
codeword can be recovered as c = ĉ + e. For this reason,
codes of this type are called error correcting codes. The
solution of the SDP for a given code may be unique up to
a certain Hamming weight t . Such a value of t is called the
error correction capability of the code. For given parameters
r and n, the larger the error correction capability, the better
the code. While the SDP is exponentially hard for random
instances (i.e., for randomly picked parity-check matrices),
there exist families of codes for which it can be efficiently
solved. Algorithms that aim at solving the SDP are called
decoders. Code-based encryption schemes, initiated by the
seminal works of McEliece [9] and Niederreiter [24], are
constructed upon codes of this kind.

In this paper we focus on the Niederreiter framework
which, in a nutshell, is represented in Fig. 1 (the asterisk
denotes matrix/vector multiplication).

FIGURE 1. Representation of the Niederreiter operating principle.

With reference to the notation introduced in Section I,
the SK is the parity-check matrix H of some error correcting
code, which must be equipped with an efficient decoding
algorithm, while the PK is derived by applying a secret linear
transformation to the secret key. The public key M obtained

through such a transformationmust be indistinguishable from
the parity-check matrix of a random code. The plaintext
message is mapped onto a small weight vector e, which is
encrypted into a syndrome via multiplication through the
public matrix M. To decrypt, the legitimate user inverts the
secret linear transformation used to produce the public key,
and uses the decoding algorithm to retrieve the plaintext.

The security of the scheme is based on the fact that an
adversary, that does not know the secret code, has no efficient
way of decoding (i.e., of finding the plaintext); in an analo-
gous way, the adversary must not be able to retrieve the secret
key from the public key; otherwise, he could employ the
associated decoder to decrypt the ciphertext. Many families
of error correcting codes have failed in fulfilling this last
requirement. This is not the case of binary Goppa codes for
which, since the first proposal in 1978 [9], no efficient attack
is known. Yet, these codes are characterized by remarkably
large public keys: for instance, the Classic McEliece NIST
PQC candidate, which is based on theNiederreiter framework
with binary Goppa codes, requires public keys more than
32 kB long for a 128-bit security level.1 Given these large
public keys, as mentioned in Section I, researchers have
focused their effort along the years in trying to find other
families of codes, with the goal of reducing the public key
size.

One of the most promising solutions in this sense is based
on Quasi-Cylic Low-Density Parity-Check (QC-LDPC)
codes [25] and Quasi-Cylic Moderate Density Parity-Check
(QC-MDPC) codes [26], which require less memory to be
stored owing to the QC structure of their characteristic matri-
ces. As also mentioned in Section I, QC-LDPC codes are
at the base of the LEDAcrypt cryptosystem. Quasi-cyclicity
implies that the code can be described by a parity-check
matrixmade of circulant blocks, i.e., squarematrices in which
each row is obtained by cyclically shifting the previous row
by one position, as shown in (1) for a generic p× p circulant
matrix A

A =


a0 a1 a2 . . . ap−1
ap−1 a0 a1 . . . ap−2
ap−2 ap−1 a0 . . . ap−3
...

...
...
. . .

...

a1 a2 a3 . . . a0

 . (1)

To store a circulant matrix, it is evident that only a row (say,
the first one) is required; furthermore, this geometric structure
allows for a very efficient algebra, as we will describe in the
following sections.

Moreover, in LDPC codes the parity-check matrix is very
sparse, i.e., most of its elements are null; this property allows
the design of very efficient decoders, with complexity that
grows linearly with the code length. The implications of this
property will be also discussed below.

1We say that a system reaches a λ-bits security level if every algorithm
that recovers the secret key or deciphers intercepted ciphertexts has a com-
putational complexity that is not lower than 2λ.
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A. LEDAkem
LEDAcrypt [11] is a suite of cryptographic public key algo-
rithms; it contains LEDApkc, which is a Public-Key Encryp-
tion (PKE) algorithm built upon the McEliece framework,
and LEDAkem, a Key-Encapsulation Mechanism (KEM)
built upon the Niederreiter framework. In this paper we
focus on the implementation of LEDAkem with ephemeral
keys, i.e., with key-pairs that are refreshed after a single use
[11], [27]. The peculiar aspect of the LEDAcrypt version
here considered is that, instead of using a single parity-check
matrix H, the secret key is composed by two matrices H and
Q, with the following structure

H = [H0,H1, . . . ,Hn0−1], (2)

Q =


Q0,0 Q0,1 . . . Q0,n0−1
Q1,0 Q1,1 . . . Q1,n0−1
...

...
. . .

...

Qn0−1,0 Qn0−1,1 . . . Qn0−1,n0−1

 . (3)

EachHi andQi,j is circulant; the weight of the columns inHi
is dH , while the weights of the blocks inQ are defined by the
matrix

WQ =


w0 w1 . . . wn0−1
wn0−1 w0 . . . wn0−2
...

...
. . .

...

w1 wn0−1 . . . w0

 , (4)

such that Qi,j has weight equal to the element in the i-th row
and j-th column ofWQ, which is again a circulant matrix with
first row wQ = [w0,w1, . . . ,wn0−1]. We denote with m =∑n0−1

i=0 wi the sum of the elements in each row and column
of WQ.

To derive the public key, one first computes L = HQ =
[L0,L1, . . . ,Ln0−1], where each block Li is again a circulant
matrix with size p, such that n = pn0. Once L has been
computed, the weights of its blocks are checked: if cancel-
lations occur, i.e., if the weight of any circulant block in L
is lower than mdH , the secret key is discarded and a new
pair of matrices H and Q is generated. The matrix L is then
obfuscated as

M = L−1n0−1L = [Ml, Ip],

where Ip is the identity matrix of size p. The plaintext is
represented by a vector e with weight t; to encrypt, one
simply performs syndrome computation, that is x = MeT .
To decrypt, one first computes

s = Ln0−1x = LeT = HQeT = H(eQT )T ,

and then exploit the sparsity of L to retrieve e. The decoder
employed in LEDAcrypt is detailed in the next section.

The LEDAkem parameters we have considered in this
work are reported in Table 1 [16, Table 2].

TABLE 1. Considered LEDAkem parameters.

B. THE Q-DECODER
In LEDAkem, the decryption phase finds the low-weight
error vector that, in the encryption phase, has been mapped
into the syndrome ciphertext; this is realized with an
improved BF algorithm [14]. Crucial quantities in a generic
BF algorithm are the Unsatisfied Parity Check (UPC) coun-
ters, which correspond to the number of unsatisfied parity
equations for each element of the unknown error vector. The
UPC counters are then employed to locate the errors posi-
tions, through a simple threshold criterion: the positions with
a counter exceeding the chosen threshold are deemed as error
affected. The threshold values selection can be performed in
many different ways, depending on the particular BF variant
employed.

The BF variant used in LEDAkem is called Q-Decoder ; it
takes into account the particular code structure (i.e., multipli-
cation between H and Q) to speed-up the decryption phase.
The Q-Decoder procedure is detailed in Algorithm 1. The
decoder takes as input the syndrome s, that is, the product
between the secret circulant blockLn0−1 and the ciphertext x,
and either returns an estimate of the error vector e or reports
decoding failure. Decoding is performed through an iterative
procedure, that is, the error vector estimate and the syndrome
are continuously updated until a null syndrome is obtained or
the maximum number of iterations Itmax is reached. In the
first case, decoding has been successful and the algorithm
returns the estimated error vector e, otherwise decoding has
failed and the algorithm reports the failure event.

Note that, together with e, the decoder updates another
vector ẽ, such that it always corresponds to eQT . To do this,
each time a bit is flipped in e, ẽ is coherently updated by
adding the corresponding row of QT (in the algorithm, qi
denotes the i-th row of QT ). This vector is used to update
the syndrome at the end of each iteration, by summing the
product HẽT to the initial syndrome (which is stored as s(0)).

The decisions on the bits to be flipped are taken on the
base of the correlation values, collected in a vector ρ, which
are computed in two steps. The current syndrome s is first
multiplied by H, obtaining σ . Note that this multiplication
is performed in the integer domain, and as such the resulting
vector σ takes values in [0; dH ]. Then, σ gets multiplied byQ
to obtain ρ, which takes values in [0;mdH ] and whose entries
provide the UPC counters for the BF algorithm.
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Algorithm 1 Q-Decoder

Input: syndrome s ∈ Fp2, parity-check matrix H ∈ Fp×n0p2 ,
Input: sparse matrix Q ∈ Fn0p×n0p2 , maximum number of
Input: iterations Itmax ∈ N
Output: estimated error e or failure report
1: It = 0 F Iterations counter
2: s(0) = s F Store the initial syndrome in s(0)

3: e = 0, ẽ = 0 F Null vectors with length n0p
4: while It < Itmax or s = 0 do
5: σ = sT ?H
6: ρ = [ρ0, . . . , ρn−1] = σ ?Q
7: b = f (s) F Compute threshold
8: P = {i ∈ [0, n− 1]|ρi > b}
9: for i ∈ P do
10: ei = ei ⊕ 1 F Update error vector estimate
11: ẽ = ẽ⊕ qi
12: end for
13: s = s(0) ⊕HẽT F Update syndrome
14: It = It + 1 F Increase iterations counter
15: end while
16: if s = 0 then
17: return e F Decoding is successful
18: else
19: Report failure F Decoding has failed
20: end if

It is important to note that the encrypted message, the syn-
drome and all the matrices are binary while, as mentioned,
σ and ρ are vectors of integers. To evidence multiplications
that are computed in the integer domain, in Algorithm 1 we
have used the operator ?. In analogous way, the operator⊕ is
employed to indicate sums that are performed in the binary
finite field.

In LEDAkem, the threshold, noted by b, is chosen accord-
ing to a law f (s), that is a piece-wise function of the syndrome
weight. Such a function, which depends on the code size
and on the desired correction capabilities of the decoder,
is efficiently stored as a Look-Up Table (LUT) filled with
pairs (wi, bi), where wi ∈ [0; p] represents the syndrome
weight and bi ∈ [dmdH/2e ;mdH ] is the associated threshold
value. On input s, the function finds the largest wi, among
those that are lower than the weight of s, and returns the
associated threshold value bi. For more details about how the
LUT is built, we refer the reader to [27, Section 2.4]. On
the base of the chosen threshold, the error estimate and the
syndrome are coherently updated.

It can be easily seen that ρj (i.e., the j-th entry of vector ρ)
is obtained by summing the entries of s that are indexed by
set entries in the j-th column of L. Hence, the values in ρ
correspond to the UPC counters. However, as we will discuss
afterwards, the Q-decoder exploits the particular geometry of
the secret L and performs the counters computation through
a two-steps procedure; by doing this, the execution time
gets significantly reduced, with respect to a traditional BF
decoder.

C. COMPUTATIONAL COMPLEXITY AND COMPARISON
WITH OTHER DECODERS
In principle, any LDPC or MDPC decoder can be used in the
decryption phase of LEDAkem.2 Indeed, all such decoding
techniques are solely based of the sparseness of the employed
parity-check matrix, a characteristic that holds true also for
the codes employed in LEDAkem. Recent works have pro-
posed and analyzed decoders for generic MDPC codes (for
instance, see [28]–[31]). All of such algorithms employ a
very low latency, iterative procedure, where in each itera-
tion some common operations (i.e., counters computation
and syndrome update) are performed: the difference between
different techniques lies in how the counters are processed
(i.e., how error affected positions are located).

As we have already said, any MDPC decoder may replace
the Q-decoder in the LEDAkem decryption phase. However,
these algorithms are designed to be used for generic MDPC
codes, and hence do not take into account the particular prod-
uct structure of the secret parity-check matrix in LEDAkem.
This is where the peculiarity of the Q-decoder comes into
play: it integrates the factorization of the parity-check matrix
L intoH andQ, to speed up the decoding procedure. By doing
this, one can easily prove that the counters computation and
each syndrome update come with a cost of O

(
(m + dH )n

)
and O

(
m + dH

)
elementary operations, respectively [16,

Lemma 2].
For an MDPC code with column weight v, the counters

computation is done withO(nv) elementary operations, while
for each flipped bit the syndrome update is performed with
a cost of O(v). In LEDAkem, the secret key L has columns
of weight v = mdH ; hence, we can roughly estimate the
computational advantage of the Q-decoder (with respect to
generic MDPC decoders) as

mdH + 1
m+ dH + 1

≈

(
m−1 + d−1H

)−1
.

To make a numerical example, let us consider the LEDAkem
parameters for the 128-bits security instance with n0 = 2:
since dH = 11 and m = 7, we have m−1 + d−1H = 0.234,
implying that the Q-decoder is expected to run approximately
4 times faster than MDPC decoding schemes.

Taking the above cost estimates into account, as in [16],
the computational complexity of the Q-decoder can be
assessed as

O
(
nItmax(m+ dH )+ (m+ dH + 1)t

)
.

Notice that the above cost has been derived under the assump-
tion that the Q-decoder performs exactly t bit flips, i.e., that
no bit is wrongly estimated as error affected. In practice,
one observes that the decoder always makes a very limited

2The term MDPC, introduced in [26], refers to a code which can be
described by a parity-check matrix whose density is only slightly higher
than that of a typical LDPC code. Hence, the matrix is still somehow sparse.
From a decoding perspective, there is no meaningful difference between the
two families of codes and, hence, they can be decoded through the same
techniques.
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number of wrong flips, so that the above estimate is always
quite accurate.

III. CIRCULANT MATRIX PRODUCT
The multiplication of a vector by a circulant matrix is a
recurrent operation in LEDAcrypt: many processing tasks
(such as encrypting, computing s and the correlation values)
are indeed the result of a circulant matrix product.

To describe this operation, we can consider the product
r = vA, with v = [v0, v1, . . . , vp−1] being a length-
p row vector and A a square circulant matrix of size p
(i.e., with structure as in (1)). The result is the length-p vector
r = [r0, r1, · · · , rp−1] where each entry ri is obtained as

ri =
p−1∑
j=0

vja mod (i−j,p).

Notice that the result is the same as the carry-less product
between integers or the polynomial multiplication evaluated
in F2[x]/(xp+1) (see [27] for more details about the relation
between operations with circulant matrices and the algebra of
polynomials).

The most common method to evaluate r is the Schoolbook
algorithm. However, this should be adapted in order to effi-
ciently implement the multiplications present in LEDAcrypt.
In particular, wemust note that themultipliers for LEDAcrypt
involve vectors with size of several thousands (see the param-
eter p in Table 1). Hence, it becomes important to further
explore implementations of multipliers that can compute cir-
culant matrix products in an efficient way.

A. STATE OF THE ART
A multiplier for large integer or polynomial multiplica-
tions can be efficiently implemented by means of two
main approaches: the Karatsuba and Ofman [32] and the
Schönhage–Strassen [33] algorithms. To compare the algo-
rithms, we employ the time complexity metric, that is,
the number of required binary operations as a function of
the input length p. As shown in Fig. 2, the complexity of the
Schoolbook algorithm grows as p2, while for the Karatsuba
and Schönhage–Strassen multiplications it evolves as plog2 (3)

and p log2(p) log2
(
log2 (p)

)
, respectively [33].

FIGURE 2. Comparison between the time complexity of multiplication
algorithms, as a function of the input size p.

While Karatsuba and Schönhage–Strassen are generally
faster than the Schoolbook multiplication, they are how-
ever characterized by a larger hardware complexity [23],
[34], [35]. Indeed, while the Schoolbook algorithm uses
only a large adder, the Karatsuba multiplier (in its basic
version) employs two adders and a small multiplier, while
Schönhage–Strassen requires a multiplier plus a Fast Fourier
Transform (FFT) module. Hence, as discussed in [36],
more logic elements are necessary to implement Karatsuba
and Schönhage–Strassen multipliers than the Schoolbook
multiplier.

In the present study we use a simplified version of the
Schoolbook multiplier, and we adapt it to the case of very
sparse circulant matrices. We will refer to the resulting mul-
tiplier as Vector by Sparse Circulant (VbSC).

In particular, VbSC reduces the time complexity from p2 to
pd , where d is the number of ones in the first row (or column)
of the matrix. The sparsity of the matrix can reduce the
Schoolbook multiplier time complexity, up to the point that,
for very sparse matrices (as those employed in LEDAcrypt)
its running time becomes comparable to that of the Karatsuba
and Schönhage–Strassen algorithms. Notice that a similar
idea has already been exploited in QcBits [37], for software
implementation of a method to multiply moderately dense
matrices.

In this work, we adapt such modified multiplication
method for hardware implementation, with the purpose
of further reducing both the execution time and the area
occupation.

B. VECTOR BY SPARSE CIRCULANT
The way the Schoolbook algorithm evaluates r = vA is simi-
lar to the canonical vector by matrix multiplication. However,
due to the sparsity of the employed matrix (i.e., most of its
elements are null), we can avoid to compute many elements,
since they will be null: this way, we can save a significant
amount of time.

Moreover, the execution can be further simplified since
the presence of a circulant matrix reduces the result to the
sum of cyclic rotations of the input vector v. These rotated
input vectors are referred to as partial products, v(i), with
i = 0, 1, . . . dA − 1, where dA corresponds to the number
of non zero elements in the first row (or any other row) of A.
To clarify the derivation of our proposed algorithm,

we show an example for the case of p = 5. The components
of the vector r are calculated as

r0 = v0a0 + v1a1 + v2a2 + v3a3 + v4a4,

r1 = v0a4 + v1a0 + v2a1 + v3a2 + v4a3,

r2 = v0a3 + v1a4 + v2a0 + v3a1 + v4a2,

r3 = v0a2 + v1a3 + v2a4 + v3a0 + v4a1,

r4 = v0a1 + v1a2 + v2a3 + v3a4 + v4a0. (5)

If sparsity is included, for example with a0 = a2 = a3 = 1
and a1 = a4 = 0, after a rearrangement of the output,
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the result becomes

r0 = v0 + v2 + v3 = v0 + v2 + v3,

r1 = v1 + v3 + v4 = v1 + v3 + v4,

r2 = v0 + v2 + v4 = v2 + v4 + v0,

r3 = v0 + v1 + v3 = v3 + v0 + v1,

r4 = v1 + v2 + v4 = v4 + v1 + v2, (6)

The example clearly shows that it is enough to generate the
rows by rotating the input. This remark is helpful for large p.
The formal description of the VbSC is shown in

Algorithm 2. The input v is stored as a 1 × p vector, while
to represent the matrix A we use the set SA containing the
positions of asserted entries in the first row. The quantities
dA and SA(i) denote the length of the position vector and the
i-element of SA, respectively.

Algorithm 2 Vector by Sparse Circulant (VbSC)
Input: length-p vector v, weight of A (interpreted as the
Input: weight of each row and column) dA ∈ N, first row
Input: of A represented as a list of positions SA with size dA
Output: length-p vector r = vA
1: r = 0 F Initialized as null vector with length p
2: for i = 0 to dA − 1 do
3: k = SA(i)
4: v(i) = [vk , vk+1, · · · , vp−1, v0, v1, · · · , vk−1]
5: r = r+ v(i) F Update r with new partial product
6: end for
7: return r

Clearly, the advantage of this approach is in the genera-
tion of the partial products: one iteration of the algorithm is
enough to obtain one partial product. Notice that, when A
is a matrix containing only zeros and ones, with the same
algorithmic structure we can perform both the integer mul-
tiplication (i.e., v ? A) and the canonical product over the
binary finite field (that is, vA). Indeed, when both v and A
are defined over the finite field F2, it is enough to update r by
xor-ing it with each partial product v(i).
The hardware implementation of themultiplier is described

in the following sections.

1) MEMORY
The efficient mapping of memories onto physical compo-
nents available in FPGA devices or ASICs is a critical aspect,
because of the large values of p in Table 1.

Let nb, a power of two, denote the machine word size
(i.e., the register size for the chosen architecture). The input
and output vectors of VbSC are divided into h words, with
h = dp/nbe, as follows

r = [ r0 ··· rnb−1︸ ︷︷ ︸
# 0

nb entries

· · · r(h−2)nb ··· r(h−1)nb−1︸ ︷︷ ︸
# (h− 1)
nb entries

r(h−1)nb ··· rp−1︸ ︷︷ ︸
# h

p− (h− 1)nb entries

].

The first h−1 words contain nb entries, while we use the last
one to store the remaining p− (h−1)nb entries. Since pmust

be a prime, in order to avoid cryptanalysis exploiting factor-
ization [27], the last word will always represent a number of
entries that is lower than nb, and the remaining elements of
the register will be filled with zeros.

Hence, in the design we have that the input and the result
vectors, v and r, are stored asmatrices of size h×nb, whichwe
refer to as Mv and Mr , respectively. The element in position
(i, j) in the matrix corresponds to the vector entry in position
inb + j.
To store the matrix A, as already mentioned, we exploit

the fact that it is sparse and hence we represent it as a list of
positions.

In particular, we can consider only the first row of A, and
just represent its dA asserted positions. To do this, we employ
a format that is analogous to that for r and v, and hence use
two memories Madx and Mshift . For each position,

⌈
log2(p)

⌉
bits are required: the first

⌈
log2(p)

⌉
− log2(nb) are stored in

Madx , while for the last log2(nb) bits we use Mshift . Finally,
we use Mshift (i) and Madx(i) to denote the access to the
representation of the i-th asserted entry in the first row of A
(so, we have 0 ≤ i ≤ dA − 1).

2) EXECUTION
The architecture of VbSC generates nb elements of each
partial product v(i) (for 0 ≤ i ≤ dA − 1) in a single iteration.
The starting point is the i-th asserted element in the first row
of A, whose position is stored through Madx(i) and Mshift (i).
Remember that v is represented as an h× nb matrix Mv, and
that v(i) is obtained by rotating the input v by the value of SA(i)
(see Algorithm 2). The rotation is realized in two steps: we
initially rotate the rows ofMv by the amount stored inMadx(i),
and then apply a final column-shift ofMshift (i). In details, let
M i
v denote the matrix representation for v(i); its j-th row is

obtained from the rows of Mv with indices mod
(
Madx(i) +

j, h) and mod(Madx(i) + j + 1, h): the rows are loaded in
memory in a 2nb large register and connected to the collapse
unit together with Mshift (i). At this point the unit extracts the
portion of bits of the result, which is loaded in memory, too.
In the next cycle, mod(Madx(i) + j + 2, h) row is loaded,
mod

(
Madx(i) + j, h) discarded and mod(Madx(i) + j + 1, h)

moved in the first position of the 2nb register; then, extraction
and load in Mr are completed. The process goes on until the
complete v(i) is generated. For i = 0, we simply load the
words of the partial product v(0) in memory; for the remaining
values of i, each generated word is xor-ed with the value
already present in memory.

Figure 3 provides an example of the VbSC execution, for
the case of h = 6 and nb = 4. The two consecutive rows
are read from memory and loaded in the datapath; the portion
of v(i) to extract is highighted in Mv; the update of the result
is done reading the j-th row of Mr and then xor-ed with the
current v(i) row. Finally, the j-th word ofMr is updated. These
two operations on the words of Mr are highlighted in Fig. 3
with a lighter and darker blue color, respectively.

The function of the collapse unit is to extract the target
nb bits from the initially loaded 2 nb bits. In [22], this unit
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FIGURE 3. Detailed representation of the VbSC execution, for h = 6 and
nb = 4.

has been implemented as a single multiplexer that takes as
input all the possible p bits which can be selected from v.
In this work we have considered a different version for the
multiplexer, which we call logarithmic version: the rotation
is organized in log2(nb) levels, such that the `-th level (where
` goes from log2(nb) to 0) operates a rotation of nb/2`−1,
plus one rotation at the end. This strategy results in a cascade
of log2(nb) + 1 multiplexers with only two inputs. In Fig. 4
the example for one layer of collapse is shown: the choice,
made through s, is to reduce the number of bits from 2nb to
nb+nb/2 by taking the first nb+nb/2 bits or the last nb+nb/2
bits; these operations correspond either to a rotation by nb/2,
or by 0 positions. The rotation that covers a wide range of
possibilities is realized with a series of cascaded collapse
units. The example in Fig. 5, for nb = 4, shows how one can
perform a rotation of at most four positions. This is achieved
with three layers (since log2(4) + 1 = 3); each layer has a
two input multiplexer that selects between a rotation of 0 or
nb/2l and its output is the input of the next multiplexer level.

FIGURE 4. The collapse unit reduces 2nb bits to nb + nb/2 bits.

The total number of clock cycles required to compute a
multiplication can be easily derived as

NVbSC
cycles (h, dA) = 3hdA + 2dA. (7)

Each word of the result is computed in three clock cycles,
as it requires to load the rows of Mv, extract v(i) and then
to load the updated Mr row (each of these operations is
performed in just one clock cycle). Furthermore, we have to
take into account the cost of two loads frommemory: the rows
from Madx , together withMshift , and the first read fromMv.

FIGURE 5. Rotation by three positions, for the case nb = 4.

C. SPARSE VECTOR BY SPARSE CIRCULANT
The unit VbSC can be further improved, in order to reduce
the time complexity, when the input vector is also sparse. To
show how the multiplication gets simplified in this case, let
us refer again to the example in (6), and further assume that
v0 and v4 are the only non null entries in v. This yields

r0 = v0 + 0+ 0 = v0,

r1 = 0+ 0+ v4 = v4,

r2 = v0 + 0+ v4 = v0 + v4,

r3 = v0 + 0+ 0 = v0,

r4 = 0+ 0+ v4 = v4. (8)

The result in (8), with respect to that in (6), requires a reduced
number of evaluations.More in general, for a vector v that has
dv non zero elements and a circulant matrix A with rows and
columns with weight dA, the number of elements to generate
for the resulting r = vA is only dvdA. In this case, one
can compute products through the approach we report in
Algorithm 3.

Algorithm 3
Input: weight of v dv ∈ N, weight of A (interpreted as
Input: the weight of each row and column) dA ∈ N,
Input: vector v represented as a list of positions Sv with size
Input: dv, first row of A represented as a list of positions
Input: SA with size dA
Output: length-p vector r = vA
1: r = 0 F Initialize r as a null vector with length p
2: for iA = 0 to dA − 1 do
3: for iv = 0 to dv − 1 do
4: ir = mod (Sv(iv)+ SA(iA), p)
5: rir = rir + 1 F Update entry in position ir
6: end for
7: end for
8: return r

Sparse Vector by Sparse Circulant (SVbSC) is an almost
direct mapping of Algorithm 3. The only difference is in the
evaluation of mod(a, p): it is split in two cycles in order to
speed up the execution.
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FIGURE 6. Schematic representation of the Data Path, with its elements and connections.

Actually, it can be easily proved that the total number of
cycles becomes

N SVbSC
cycles (dA, dv) = dA + dv + 6dAdv. (9)

IV. DECODER ARCHITECTURE
The decoder architecture consists of three main sections,
the Data Path, the Control Unit and the Memory block. The
multipliers are key components in the Data Path, exploited
to compute and update s and ρ in Algorithm 1. One rele-
vant element of flexibility in the decoder is the design-time
selection of the degree of parallelism, which ranges from 8
to 256. The choice reduces the overall execution time thanks
to the presence of parallelizable units, but is limited by the
components that do not have such feature. As discussed next,
this aspect has been analyzed in detail and two versions of the
decoder have been derived.

A. DATA PATH
In this section we analyze each internal unit of the Data
Path, which is the most complex component of the decoder.
The high-level view of this component is depicted in Fig. 6,
where the connections with Memory, Control Unit and inner
units are highlighted; precisely, bold lines connect the Mem-
ory to the inner units, dotted lines connect the Data Path
with the Control Unit, while red lines are used for internal
signals. The Data Path includes a dedicated unit for each
key processing part of the Q-decoder (Algorithm 1), which
we divide as Syndrome (computation of s which is given
as input to the decoder), Correlation (computation of the
vectors σ and ρ), Syndrome Update (computation of the
syndrome which is given as input to the next iteration),
Error Position Search (i.e., determination of the positions in

the estimated e that need to be updated), Syndrome Weight
together with Threshold Evaluation (threshold computation
through the LUT based on the current syndrome weight).
In the remainder of this section, we describe each unit and
its execution time, which we express in terms of required
number of cycles. Notice that such a quantity depends on the
code parameters (i.e., n0, p and the weights of the blocks in
the matrices H and Q), as well as the word size nb, which
determines the value of h = dp/nbe. Furthermore, some units
have a running time that may change depending on some
characteristic parameters of the considered iteration (such as
the number of performed flips); to highlight this dependence,
where present, we will use the iteration counter (It) as a
superscript.

1) SYNDROME AND CORRELATION
These units are connected to the input and output memo-
ries, which are addressed by the VbSC module. Since the
Syndrome and Correlation units work on different types of
input and output vectors, each unit employs its own VbSC
multiplier.

To evaluate s, consider that

s = Ln0−1x =
n0−1∑
i=0

Hi
(
Qi,n0−1x

)
,

where each Hi has weight dH while, recalling (4), Qi,n0−1
has weight wn0−1−i. Since x is dense, we first use VbSC
to compute the products Qi,n0−1x, and then use it again to
multiply each product by Hi. So, we measure the number of
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cycles to compute s as

NSyn = n0NVbSC
cycles (h, dH )+

n0−1∑
i=0

NVbSC
cycles (h,wi). (10)

Recalling Algorithm 1, we have that since the productHQ
leads to a matrix L with full weight (i.e., no cancellations
occur), the following relation holds

ρ = sT ? L =
(
sT ?H

)
?Q = σ ?Q.

Such a computation is performed in two steps. First, we com-
pute the integer product σ using for n0 times the VbSC
algorithm, considering as circulant matrices the blocks in H
(eachwithweight dH ). Then, we useVbSC again for n20 times,
to compute the integer product σ ?Q. Hence, we estimate the
number of cycles as

NCorr = n0

(
NVbSC
cycles (h, dH )+

n0−1∑
i=0

NVbSC
cycles (h,wi)

)
, (11)

where, as in (4), wi refers to the weights of the blocks in Q.

2) SYNDROME UPDATE
The Syndrome Update unit performs the multiplication
between the matrix L = HQ and the estimated error vector
eT = [eT0 , e

T
1 , . . . , e

T
n0−1

].
We remark that, in principle, both VbSC and SVbSC can

be used for such operation. Actually, we must remember that
the asserted entries of e are assessed as the iterations go on,
and that e starts as the null vector. Hence, its Hammingweight
likely grows as the iterations go on, it is always rather sparse
and reaches the value t � n0p at the end of the decoding
procedure. Hence, we may rely on SVbSC to perform the
syndrome update. Let us consider the It-th iteration, and
suppose that the weight of the i-th block in e is w(It)

e,i . Since
each block in L has weight mdH , we have that the required
number of cycles for this unit, when SVbSC is used, is given
by

N SVbSC
SynUpt (It) =

n0−1∑
i=0

N SVbSC
cycles

(
mdH ,w

(It)
e,i

)
. (12)

Notice that we expect to have
∑n0−1

i=0 (w(It)
e,i ) ≤ t , so that

as a very rough but reliable upper bound on the number of
cycles, independently of the iteration number, we can use
n0N SVbSC

cycles (mdH , t).
In principle, we can also choose to neglect the sparsity of

e, and perform the syndrome update via the VbSC unit. By
doing this, we obtain a number of cycles that is given by

NVbSC
SynUpt = n0NVbSC

cycles (h,m+ dH ). (13)

We notice that, in this case, the cost of updating the syndrome
is independent of the iteration number (since it does not
depend on the weight of the current e).

3) ERROR POSITION SEARCH
The Error Position Search unit evaluates the error posi-
tions from the correlation values and stores them in the
address (rows) and shift (column) format, in order to make
the positions available to the SVbSC multiplier. This search
requires to read the Correlation vector, and to compare its
entries with the threshold value: if there are no matches,
the next row is processed; in case of a match, the complete
row is read to store all error positions (nb elements are pro-
cessed, thus nb + 1 cycles are required to read the elements
and store the positions).

Hence, if we denote with w(It)
e =

∑n0−1
i=0 w(It)

e,i the weight
of e in the It-th iteration, we have that the required number of
cycles is

NErr (It) = 2h+ (nb + 1)w(It)
e . (14)

4) SYNDROME WEIGHT AND THRESHOLD EVALUATION
The Syndrome Weight unit reads each line of the Syndrome
memory and counts the number of asserted entries. The
resulting weight, w(s)(It), is used to address the LUT con-
taining the thresholds, in order to obtain the current thresh-
old b(It).
A number h of cycles is necessary to read the rows from

the Syndrome memory, while additional h cycles are used to
count the number of asserted entries. Finally, two cycles are
needed to load the threshold. Therefore, the resulting overall
number of cycles is

NSynW+Th = 2h+ 2. (15)

B. CONTROL UNIT
The Control unit provides the start signals to the units in the
Data Path and collects their end signals in order to properly
synchronize the operations and the syndrome weight w(s)(It),
in order to decide whether to end or not the algorithm. The
scheduling of the operations is shown in Fig. 7 for an example
with p = 8, 269, n0 = 3, nb = 8 and three decoding
iterations.

FIGURE 7. Time evolution of the decoding process. On the y-axis the
operations performed by the Decoder are listed.

In general, at the end of each iteration, the value of the syn-
drome weight, w(s)(It), is checked and if it is not equal to zero
and the maximum number of iterations has not been reached
then the next iteration is started. In the figure, the same
(orange) color is used for the successive processing steps in
the Q-decoder while a different (blue) color is used for the
initial evaluation of the syndrome.
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We now derive an estimate on the number of cycles which
are necessary to perform a full execution of the Q-decoder.
We are going to use Itdec to denote the number of performed
iterations; notice that we are not able to predict in advance
its value, and can thus only claim that, in the worst case, it is
equal to Itmax . Since the execution is sequentially scheduled,
the execution time for each iteration is obtained by summing
over the times taken by each unit. In particular, we consider
two versions for the decoder, which only differ in the unit
which is used to perform the syndrome update:

- In version 1 (v1), for all iterations we perform the
syndrome update with the SVbSC unit. Hence, for the
It-th iteration, we estimate the number of cycles as

NIter,I (It) = NCorr + NSynW+Th
+NErr (It)+ N SVbSC

SynUpt (It). (16)

We notice that the terms NCorr and NSynW+Th
only depend on the code parameters, while NErr (It)
and N SVbSC

SynUpt (It) additionally depend on the iteration
number;

- In version 2 (v2), we use both SVbSC and VbSC units
to perform the syndrome update at the end of each
iteration. When the VbSC unit is employed for the
syndrome update in the It-th iteration, we have the
following cost for the iteration

NIter,II (It) = NCorr + NSynW+Th+NErr (It)+NVbSC
SynUpt .

(17)

We notice that, for this version, the only iteration
dependent term is NErr (It). Hence, in this decoder ver-
sion, we switch from one choice to the other, in order to
improve the decoder performances (in terms of number
of required cycles). To decide between the two possibil-
ities, it is enough to derive the conditions upon which
the approach based on VbSC performs better than that
based on SVbSC. Using (12) and (13), one easily finds
that the SVbSC based version is more convenient if the
current vector e has weight w(It)

e such that

w(It)
e <

n0(m+ dH )(1+ 3h)
1+ 6n0 mdH

.

Starting from this consideration and having realized a
series of simulations, we have found that using SVbSC
is more convenient if nb < 64, independently of the
iteration number, or if nb ≥ 64 and It ≥ 2. In the other
cases, relying on VbSC offers better performances.

Given the above considerations, we are ready to derive an
estimate for the number of cycles that are performed by a
full Q-decoder execution. For version 1, we can estimate the
overall number of cycles as

Ndec,I = NSyn +
Itdec−1∑
It=0

NIter,I (It), (18)

FIGURE 8. The memory accesses during the execution of a decoding step.
On the y-axes the memories are listed.

while for version 2 (assuming nb ≥ 64), we have

Ndec,II = NSyn +
1∑

It=0

NIter,II (It)+
Itdec−1∑
It=2

NIter,I (It) (19)

where NIter,I and NIter,II are given by (16) and (17), respec-
tively. Notice that, in order to derive a closed form theoretical
estimate, we would need to know in advance both the number
of performed iterations, as well as how theweight of e evolves
throughout the iteration and distributes among the blocks
in e. These quantities are hardly to predict and a probabilistic
analysis would produce only a rough estimate of the relevant
quantities. For this reason, in SectionVwewill present results
obtained through, more significant, experimental evaluations.

C. MEMORY
TheMemory unit includes the components employed to store
the decoder variables. The dense vectors are stored in the
matrix memory format (i.e., divided into words of size nb),
and each block vector is considered as a distinct memory.
The matrices are stored as a list of positions. The main
memory components are: Mx storing the ciphertext, Ms for
the syndrome, Mρ for the correlation and Me for the error.
Additional memories are allocated to store matrices L, H
and Q and their transposes.

The accesses to the memory in each phase of the decoding
process are shown in Fig. 8, where read (dark areas) and
write (light areas) operations are reported for each memory
component along one iteration.

V. SYNTHESIS RESULTS
The architecture has been implemented by using Design
Compiler R© with two different technologies: STM FDSOI
28 nm and UMC CMOS 65 nm. The FPGA implementation
has been carried out with Vivado R©Design Suite HLx, tar-
geting the Xilinx Artix -7 xc7a200tfbg484-2 device, which is
large enough to support the most resource demanding version
of the decoder. The results have been obtained for all the
possible conditions of parallelism, for given security levels
and values of n0.

A. EXECUTION TIME
The decoder total execution time is computed as

Tdecrypt =
Ncycles
fmax

, (20)
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FIGURE 9. The maximum frequency as function of the parallelism degree
for different technologies.

where fmax is the maximum operating frequency and Ncycles
is the total number of cycles employed by the decoder. fmax
depends on the technology (or device) used to synthesize the
architecture and the design choices made to implement each
unit. The maximum frequency, shown in Fig. 9, is obtained
as the reciprocal of tcp,min, the minimun critical path delay.
Ncycles can be computed as the sum of the contributions from
the main decoder units in Fig. 6 for both version 1, when (18)
applies, and version 2, when (19) applies.

The execution time is shown in Figs. 10 and 11 as a func-
tion of the degree of parallelism, for version 1 and version 2,
respectively, and for all values of p considered in Table 1.
In all cases, the given results are derived from the STM
FDSOI 28 nm synthesis.

FIGURE 10. The total execution time for version 1 of the decoder.

According to the plots, as expected, by increasing the
parallelism, one can progressively reduce the total execu-
tion time. However, the achieved speed-up is approximately
proportional to the parallelism in the range from 8 to 32,
and becomes gradually marginal with higher values. The
effectiveness of the parallelism increase is limited by three
factors: the increase of the critical path delay, the contri-
bution of non parallelizable units, such as SVbSC, and the

FIGURE 11. The total execution time for version 2 of the decoder.

FIGURE 12. Breakdown of the execution time of decoder (version 1) for
the most relevant functions, n0 = 2 and p = 14,939.

decoding capabilities of the code. The latter is intrinsic to the
choice made by the user: for instance, for the case n0 = 2,
the number of errors found in a single iteration is on average
larger than in the other cases, so requiring more cycles to
detect all the errors and then update the syndrome. The limit
related to the hardware implementation of the multipliers is
mitigated in version 2 of the decoder, which adopts VbSC in
the Syndrome Update phase. As a consequence of this modi-
fication, the high-parallelism implementations of Fig. 11 are
significantly faster than those in Fig. 10. The execution times
of the single units are reported, for better evidence, in Figs. 12
and 13 for version 1 and version 2, respectively, assuming
n0 = 2 and p = 14, 939.
We observe, in Fig. 12, that the time required by the

Syndrome Update unit increases with the parallelism. This
is a consequence of the increase in the critical path delay,
tcp. Indeed, the synthesis reports showed that the critical path,
both for the ASIC and FPGA implementations, is placed in
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FIGURE 13. Breakdown of the execution time of the decoder (version 2)
for the most relevant functions, n0 = 2 and p = 14,939.

the VbSC multiplier, along the collapse unit, of the Correla-
tion unit.

Finally, Fig. 13 shows that the Syndrome Update con-
tribution is reduced in version 2, thanks to the different
algorithm employed for updating; despite the increase in the
critical path, version 2 still benefits from the increase of the
parallelism.

B. AREA OCCUPATION AND RESOURCES UTILIZATION
The decoder area occupation depends on the specified par-
allelism, while it is weakly affected by the parameters
in Table 1. Figure 14 shows the area breakdown for the most
important units of the decoder.

The figure is referred to version 1, but the area is practically
the same for version 2. This is because the difference between
the two versions is limited to a small part of the Control unit,
thus having a negligible effect on the total area.

According with the implementation presented in [22],
the area occupation grows faster than linearly with the par-

FIGURE 14. The area occupation of the decoder for a 28 nm technology.

allelism while, in the present work, the increase in the area
is almost linear, thanks to the logarithmic structure of the
collapse unit.

The total area occupation as a function of the parallelism
is shown in Fig.15 for both the UMC CMOS 65 nm and
STM FDSOI 28 nm technologies. The results are referred to
a single line of Table 1, with p = 14, 939. Independently of
the technology, the increase in the area is almost linear with
the parallelism.

FIGURE 15. Total area occupation of the decoder as a function of the
parallelism.

Finally, Fig. 16 shows the percentage of resource utiliza-
tion for the FPGA implementation. The target FPGA is the
Artix-200 platform; this device has 133, 800 LUTs, 367, 600
Flip-Flops (FFs) and 365 Block Random Access Memories
(BRAMs). The number of occupied LUTs and FFs tends to
increase linearly with the parallelism. However, the number
of used BRAMs grows in a less regular way: in the small
parallelism range, the number of BRAMs is constant because
the size of a single BRAM is enough. On the contrary,
in the large parallelism range, the number of required BRAMs
grows almost linearly.

FIGURE 16. Percentage of resource utilization for Artix 7 200.

C. POWER ESTIMATION AND Place&Route RESULTS
In this paper we have not specifically addressed a low power
implementation and, consequently, no option to reduce the
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power consumption has been adopted. Yet, to complete the
characterization of our work, in this section, we provide
the power estimation for our implementation. In particular,
we have considered both versions of the decoder, assuming
the UMCCMOS 65 nm technology with 0.9 V supply voltage
and an operating frequency fixed to 100 MHz.

The dissipated power estimate has been carried out with
the following procedure: initially the design has been synthe-
sized with Design Compiler R©; then, the Verilog netlist has
been extracted and simulated with Questa R©, using the SDF
(Standard Delay Format) delay-based full timing annotation
to obtain the switching activity information. Finally, the result
has been employed by Design Compiler R©to evaluate the
dynamic power consumption together with the static power.

With this approach, we have been able to estimate the total
power consumption of the design, which we have reported
in Figure 17.

FIGURE 17. Total power consumption for both decoder versions, for the
instance with n0 = 2, p = 14,939.

The results show that for nb = 256 the architectural
choices for version 2 reduce, together with the execution time
(as we have already observed in the previous section), also the
power consumption.

We have also completed the Place&Route for the
UMC CMOS 65 nm; the result, which we have obtained
with Cadence R©Innovus, starting from the netlist gener-
ated by Design Compiler R©, is reported in Table 2. As in
Figs. 14 and 15, the area is referred to version 1 but, as already
mentioned, version 2 has almost the same area occupation.
Compared to the pre-Place&Route design, it is possible to
verify that the total area increases, as expected, at most
by 60%.

TABLE 2. Total Area and Power Consumption of the Chip after
Place&Route in mm2. Results are referred to UMC CMOS 65 nm
technology.

Finally, the power consumption for the design generated
after the Place&Route has been derived, too. The Verilog
netlist and SDF file are generated by Cadence R©Innovus,
while the input is the Verilog netlist resulting from the
synthesis with Design Compiler R©. The switching activity
is generated with Questa R©and then the file is passed to
Cadence R©Innovus to obtain the power estimate, with the
same operating conditions used for the pre-Place&Route
case (0.9 V supply voltage and 100 MHz clock frequency).
The post-Place&Route total power consumption, reported
in Table 2 for both version 1 and version 2, does not differ
significantly from the pre-Place&Route estimation.

VI. COMPARISONS
In order to assess the proposed decoder architecture,
the obtained results are compared with those appeared
in recent literature for two FPGA implementations of
LEDAcrypt [19], [21]. The comparison is reported in Table 3,
that shows the synthesis results of our LEDAcrypt system for
the two target devices used in [19] and [21], i.e., a Spartan-6
device and the Artix-7 c7a200tfbg484. It must be taken
into account that [21] considered the Q-decoder only, while
in [19], similarly to our analysis, the syndrome computation
has been included as well. Comparison has been adapted
accordingly, assuming n0 = 4, p ≈ 7, 000, nb = 128 for
the Artix-7 case and n0 = 2, p = 14, 939, nb = 32 for the
Spartan-6 case.

TABLE 3. Comparison among LEDAcrypt FPGA implementations.

By comparing the two Artix-7 implementations, one can
notice that our solution is slower than [21] by a factor 7.5,
but much cheaper in terms of occupied FPGA elements, with
percentages of saved resources equal to 88%, 82% and 83%
for LUTs, FFs and BRAMs, respectively.3 In order to have
a comprehensive figure of merit, we provide in Table 3 the
product of the execution time (in ms) by the number of
occupied LUTs (Latency × LUTs), which combines both
the speed and the hardware complexity achieved by each
implementation. This special metric gives very similar values
for the two Artix-7 cases, with a relative difference as small
as 8%.

3In Table 3, the absolute numbers of resources used for the implementation
in [21] are estimated from the percentage values given in the paper.
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TABLE 4. Comparison between our work and different FPGA implementations of post-quantum cryptography algorithms.

TABLE 5. Comparison of LEDAcrypt with other cryptosystems.

As a further comment on these results, we notice that
the 0.53 ms latency of our design is short enough for the
implementation of the LEDAcrypt algorithm on both client
and server sides. On the other hand, in our solution the
BRAMs usage is significantly reduced; this is because, in our
design, only a partial product is addressed during the update
by VbSC, while in [21] more partial products are generated
in the same iteration.

As for the Spartan-6 designs, we see from the table that
the proposed implementation achieves a much shorter latency
than [19], at the cost of a slightly larger number of occupied
resources; moreover, for our implementation, the Latency ×
LUTs metric is lower by a factor greater than 6.

This latency improvement is mainly due to the collapse
unit that can rotate up to nb elements in a single cycle, while
in [19] the complete rotation of the row is obtained through
multiple steps, thus increasing the latency of the whole pro-
cess.

Another relevant issue concerns the comparison with dif-
ferent designs of PQC schemes, also proposed for the NIST

competition. Some relevant examples are shown in Table 4,
where we compare the presented architecture against a
number of recently published FPGA implementations of
well-known PQC algorithms. No ASIC implementations are
available for comparisons, for the time being. Details on the
algorithms can be found in the references quoted in the first
column of the table. All the considered schemes are code-
based, except for SIKE that exploits supersingular isogeny
graphs. For BIKE and Classic McEliece different implemen-
tations have been considered.

The showed comparisons are not entirely fair, as the con-
sidered cryptosystems are heterogeneous and not always a
direct comparison makes sense. However, the data reported
in the table allow for a global overview of the implemen-
tation performance and cost of several algorithms proposed
in the frame of the NIST competition. From the given fig-
ures, it can be seen that LEDAcrypt offers very low latency
and complexity with respect to the other cryptosystems.
In particular, from the rightmost column in the Table, which
gives the Latency × LUTs product, we see that LEDAcrypt
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(with nb = 8 and n0 = 2) shows the lowest value of this met-
ric among all considered implementations. Moreover, despite
the BIKE algorithm is similar to LEDAcrypt, its implementa-
tion turns out to be more expensive than LEDAcrypt in terms
of occupied resources. On the whole, the reported results
suggest that the proposed implementation is an effective way
to realize a post-quantum cryptosystem.

Finally, in Table 5, we give a comparison with a few
public-key cryptography schemes that are widely used nowa-
days, such as ECC and RSA.

Of course, the security level of these systems is not compa-
rable with the security provided by LEDAcrypt and the other
PQC systems. However, the purpose of such a table is to have
a first evaluation of the additional latency and complexity of
a post-quantum cryptosystem, like LEDAcrypt, with respect
to quantum-vulnerable schemes which are currently in use.

In the first part of the table, we compare our architecture
mapped on an Artix-7 device, for the case p = 14, 939 and
nb = 128, against the Virtex-4 implementation proposed
in [44]. The second part of the table presents instead the
comparison between our UMCCMOS65 nm implementation
and four ASIC designs: one for RSA [45] and three for ECC
[46]–[48]; a large number of additional ECC implementa-
tions are reported in [49], but the comparison with them
is here omitted for the sake of brevity. As for the ASIC
case, we notice that the difference between our post-quantum
cryptosystem (with p = 14, 939 and nb = 128) and
the other ones is limited in terms of latency: in particular,
the LEDAcrypt ASIC implementation is faster than the con-
sidered ECC designs by a factor ranging from 1.2 to 4. The
ASIC implementation of LEDAcrypt is also much faster than
the reported RSA design. On the contrary, the differences
in terms of equivalent gates result to be much larger: while
LEDAcrypt needs 165 · 106 equivalent gates, the complexity
of the considered ECC implementations is in the order of 10 ·
103 equivalent gates. A slightly higher complexity is required
for the ASIC RSA design. The increase in the number of
gates, however, is quite obvious and expected, and must be
interpreted as the price to pay for designing cryptosystems
able to resist against quantum computers.

VII. CONCLUSION
This work has introduced significant improvements with
respect to previous implementations of the recently pro-
posed LEDAcrypt code-based post-quantum cryptosystem.
In particular, we have presented an ASIC implementation,
which was missing in existing literature, to the best of our
knowledge. Moreover, as regards the FPGA implementation,
already studied in the literature, our architecture is charac-
terized by an excellent trade-off between execution time and
area occupation. In particular, by assuming the Latency ×
LUTs product as a figure of merit, we have shown that our
design is able to significantly reduce it, up to a factor of
6 for the Spartan-6 device. Moreover, our implementation
compares favorably with other code-based schemes proposed

for PQC and is even faster than known realizations of classical
public-key cryptography schemes like ECC or RSA.

Our focus has been on the implementation of a KEM
with ephemeral keys and assuming the parameters chosen for
the second round of the NIST PQC competition. However,
the design can be extended to different scenarios, as well
as easily scaled for taking into account parameters updating,
as probably required in future versions of the algorithm.
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