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Abstract: The increasing availability of large-scale remote sensing labeled data has prompted re-

searchers to develop increasingly precise and accurate data-driven models for land cover and

crop classification (LC&CC). Moreover, with the introduction of self-attention and introspection

mechanisms, deep learning approaches have shown promising results in processing long temporal

sequences in the multi-spectral domain with a contained computational request. Nevertheless, most

practical applications cannot rely on labeled data, and in the field, surveys are a time-consuming

solution that pose strict limitations to the number of collected samples. Moreover, atmospheric

conditions and specific geographical region characteristics constitute a relevant domain gap that does

not allow direct applicability of a trained model on the available dataset to the area of interest. In this

paper, we investigate adversarial training of deep neural networks to bridge the domain discrepancy

between distinct geographical zones. In particular, we perform a thorough analysis of domain

adaptation applied to challenging multi-spectral, multi-temporal data, accurately highlighting the

advantages of adapting state-of-the-art self-attention-based models for LC&CC to different target

zones where labeled data are not available. Extensive experimentation demonstrated significant

performance and generalization gain in applying domain-adversarial training to source and target

regions with marked dissimilarities between the distribution of extracted features.

Keywords: domain adaptation; Transformers; deep learning; land cover classification

1. Introduction

In the past few decades, the launch of many satellite missions with short revisit time
and comparatively high-resolution sensors has offered an extensive repository of remote
sensing images. Availability of the open-source data by many Earth-observation satellites
has made remote sensing very easy and obtainable [1]. Open-source data sets are available
free of cost from several satellite missions such as the Sentinel-2 and Landsat [2]. These
satellites are equipped with multi-spectral sensors with short revisit time, and good spatial
and spectral resolution, allowing researchers to test modern image analysis techniques to
extract more detailed information of the target object. It is quite possible to monitor the
dynamic processes on Earth [3,4]. Additionally, it has become easier to estimate and classify
biophysical parameters using several data sources [5–7]. Overall, the new scenario has
led to the opportunity for the land cover monitoring, change detection, image mosaicking,
and large-scale processing using multi-temporal and multi-source images [1,8–10].

The most essential and critical remote sensing application is land cover and crops
classification (LC&CC). It facilitates labeling the cover such as forest, ocean, and agricultural
land. Moreover, mapping can also be done manually using satellite images, but the
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process is quite tedious, costly, and time-consuming. Finally, an exquisite global cover
map is not available as yet, but there is a land cover map with the name Corine Land
Cover (CLC) [11] which provides land cover information with 100 m per pixel resolution.
However, the problem with this map is that it only covers the European area and is updated
once in six years. There are several ways to perform land classification automatically.
In general, the classification involves the creation of a training dataset that consists of
annotated samples of the corresponding class labels, training a model using the training
dataset, and evaluating the resulting predictions. The number and quality of training
samples play a pivotal role in defining the performance of the trained model. From a remote
sensing prospective, training sample collection requires a ground survey or visual photo-
interpretation by an expert [12]. Ground surveying involves GIS expert knowledge, human
resource that is not typically economical, while visual interpretation is not appropriate to be
used for some applications, such as finding chlorophyll concentration [13] and classification
of tree species [14]. Most of the machine learning (ML) algorithms such as random forest,
support vector machines, logistic regression performs well in the context of classification
of remote sensing images. However, performance of these ML algorithms are not satisfied
when learning features from different sources such as active and passive sensors [15]. It was
shown in [16,17] that Convolutional Neural Networks (CNN) are better than traditional
land cover classification techniques. In the land segmentation section of the deep globe
challenge [18], the Deep Neural networks (DNN) completely dominate the leaderboards.
The best examples of land cover classification using Deep Neural Networks are ResNet
and DenseNet [19,20].

Since there is a difference in the land covers of different locations, the model trained
in one area cannot be deployed for the other areas. Additionally, the satellite imagery
of different satellites is not the same. That phenomenon is due to the difference in their
resolution, capture time, and other radiometric parameters. Due to these multiple changing
variables, the dataset taken from a satellite covering one region and another satellite dataset
covering the same or other regions leads to a domain shift between the datasets. One way
to achieve a reliable outcome is possibly to train a model with a huge amount of training
samples to generalize its behavior for all classes of all the regions. However, that needs an
enormous labeled dataset that is time and labor-intensive.

Another method to deal with the shift between the datasets is termed Domain Adap-
tation (DA), in which a model is trained on one dataset (source data) and predictions are
made on the other dataset (target domain). The distribution shift between the target and
source dataset is mainly due to temporal differences in the acquisition, differences in the
acquisition sensors, and geographical differences such as variations of objects at the Earth’s
surface. The domain shift affects the performance of a model trained on a source dataset
and applied on the target dataset. Domain adaptation methods often rely on learning
domain-invariant models that keep comparable performances on the two datasets. Existing
domain adaptation techniques may be classified as supervised, unsupervised, and semisu-
pervised. In supervised DA methods, it is presumed that labeled data are available for
both source and target domains [21]. In a semisupervised domain, the labeled data for
the target domain is assumed to be small while an unsupervised method contains labeled
data for the source domain only. For example in [22], a semisupervised visual domain
adaptation was proposed to address classification of very high-resolution remote sensing
images. To deal with the variation in features distribution between the source and target
domains, multiple kernel learning domain adaptation method was employed. Another
example [23], in which domain adaptation based on semisupervised transfer component
analysis was employed to extract features for knowledge transfer from source image to
target image for land cover classification of remotely sensed images.

Tuia et al. divides the domain adaptation methodologies into four different cate-
gories: domain-invariant feature selection, adapting data distribution, adapting classifiers,
and adaptive classifiers using active learning methods [12]. Many studies discuss the
unsupervised domain adaptation in the context of classification and segmentation of the
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remotely sensed satellite and aerial imagery. For example, In [24], an unsupervised ad-
versarial domain adaptation method was proposed based on boosted domain confusion
network (ADA-BDC) which focuses on feature extraction to enhance the transferability
of classifier which is trained by source domain images and tested on target domain im-
ages. In [25], an unsupervised domain adaptation was used using generative adversarial
networks (GANs )for semantic segmentation of aerial images. A multi-source domain
adaptation (MDA) for scene classification was proposed to transfer knowledge from the
multiple-source domains to the target domain [26]. Most of the studies presented in the
literature related to DA-based classification have used single date images of source and
target domain. However, in [27], first approach was proposed in the context of DA for
classification of multi-temporal satellite images in which Bayesian classifier-based DA was
employed with only two images of Landsat-5 satellite.

This work investigates adversarial training of deep neural networks to bridge the
domain discrepancy between distinct geographical zones. In particular, we perform a
thorough analysis of domain adaptation applied to challenging multi-spectral, multi-
temporal data, highlighting the advantages of adapting state-of-the-art self-attention-based
models for LC(&)CC to different target zones where labeled data are not available. We
choose to experiment our methodology on the BreizhCrops dataset, a large-scale time series
benchmark dataset introduced in 2020 by Rußwurm et al., [28], for supervised classification
of field crops from satellite data. Figure 1 shows the visual representation of the crop
prediction performed on a sub-region of Brittany, highlighting the benefit provided by the
proposed methodology.

Figure 1. Visual representation of land crops classification on zone 3 (Ille-et-Vilain) of the BreizhCrops dataset. For each sub-image

we show the complete region and a sub-area to facilitate the visualization of the advantage obtained by the proposed methodology.

In particular, on the left the crops predictions without our domain adaptation mechanism are shown, while in the center the same

predictions performed adopting DANN are proposed. On the right, ground truth labeled crops can be visualized. The improvement in

the classification with DANN is evident, especially in the reduction of misclassification of wheat and meadows.

This article is organized as follows. Section 2 covers the related work on domain
adaptation and its developments in techniques for LC&CC. Section 3 describes the dataset.
A detailed description of the proposed method is presented in Section 4. The experimental
setup, the results and related discussion are reported in Section 5. Finally, Section 6 draws
some conclusions and future directions.
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2. Related Work

2.1. Land Cover and Crop Classification

LC&CC has been the subject of many studies in the past. A widely used classifica-
tion method makes use of time series of vegetation indices (VI) derived from remotely
sensed imagery to extract temporal features and phenological metrics. There are also
some thresholds and simple statistical techniques that help calculate the time of peak VI,
Maximum VI, and other vegetation related metrics [29,30]. Moranduzzo et al. and Hao
et al. [31,32] Illustrate the older image classification methods using handcrafted features for
image representation and training classifiers such as support vector machine and random
forest. Machine learning methods self-learn how to extract the features from the data with
massive datasets available and improved computing devices. Random Forest (RF)-based
classifiers is another common approach for remote sensing applications [32], though it
should be noted that multiple features need to be derived and fed to the RF classifier for
more effective output.

One of the newest and most powerful concepts integrated into mapping is a branch
of machine learning known as Deep Learning (DL). DL is a type of machine learning
based on artificial neural networks in which multiple layers of processing are used to
extract progressively higher-level features from data. DL can be used to solve a wide range
of problems such as signal processing, computer vision, image processing, and natural
language processing [33]. DL has shown significant contribution in remote sensing image
classification due to its ability to represent features and its competence of mechanization for
end-to-end learning. Autoencoders are type of artificial neural networks and are often used
to represent features of data [34,35]. In the remote sensing field, object detection and image
segmentation have been performed extensively using two-dimensional CNNs [36,37] to
perform spatial feature extraction from high-resolution images. 2D CNN proved better
than 1D CNN in crop classification [38]. In remote sensing, two-dimensional CNN can be
used effectively for image classification where the correlation between the morphological
details and the target classes exists. For example in [39], a 2D-CNN is used to obtain the
spatial features of the hyperspectral imagery (HSI), analyzing the continuity of land covers
in the spatial domain. Often relation among spectral bands of HSI is not linear, in that
case, 2D-CNNs are normally used together with 1D-CNNs to incorporate the spectral and
spatial domain of features [40].

Indeed, the classification task becomes quite challenging when dealing with high-
dimensional hyperspectral data with few labeled samples. Recently, generative adversarial
networks (GANs) have been exploited for sample generation, though it is not easy to
acquire high-quality samples with authenticity. In this context, the generative adversar-
ial networks (GANs) aim to generate more labeled samples by mimicking labeled data
and provide high-quality realistic data to increase the number of training samples [41].
Generally, GANs are comprised of two adversarial modules: a generator that obtains the
original data distribution and a discriminator that differentiates between the generated
labeled data and the original ones [42]. For this purpose, an unsupervised 1D GAN was
aimed to capture the spectral distribution while increasing the training samples for HSI
classification [43]. It was trained on unlabeled samples, which were then transformed as a
classifier in a semisupervised setting. Hence, it is difficult to learn class features during the
training process. Modified versions of GANs have considered the label information, such
as conditional GAN (CGAN) [44], InfoGAN [45], deep convolutional GAN (DCGAN) [46],
and categorical GAN (CatGAN) [47].

The aforementioned versions of GANs are susceptible to noises and disregard the
relationships between spectral bands. Additionally, the generated samples are usually very
different in the spectral domain from the original ones which fail in increasing classification
results. This problem has been addressed in [48], authors developed a self-attention
generative adversarial adaptation network (SaGAAN) to produce high-quality labeled
samples in the spectral domain for hyperspectral image classification.
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2.2. Domain Adaptation

The method of domain adaptation aims to reduce the domain shift between source
and target datasets. Domain adaptation has three possible approaches according to [49–51].
The primary approach consists of reducing the difference in the feature space among the
target and source data. For this purpose, maximum mean discrepancy (MMD) is often used
as a cost function to minimize the distance or to check a consistent feature extraction in both
source and target domains [51]. Other investigations focus on feature extraction; however,
Nielsen et al. [52] performed change detection by aligning both domains using canonical
correlation analysis (CCA). The work is extended with a semisupervised approach, where
change detection is performed on multi-scale data obtained from different sensors [53].
In [54], the domain alignment is achieved through an eigenproblem aiming at preserving
the mismatch of labels and the geometric structure. The second approach uses Generative
Adversarial Networks (GANs) [42] for an adversarial domain adaptation. The purpose of
the GANs is to make both the source and target datasets spectral characteristics similar.
Tzeng et al. [55] shows an example where the target dataset is translated to the source
dataset using GANs. The translation contains a discriminator that recognizes the two
datasets. Most of the studies employ a feature extraction network to generate feature sets
for source and target domain [56–58]. The feature extraction network acts as a generator
to reduce the classification loss for the source domain and concurrently maximize the
loss of the discriminator. Based on these approaches, Adversarial Discriminative Domain
Adaptation (ADDA) was employed to learn feature extraction networks for the source
as well as for target domains [55]. In [57], an adversarial feature augmentation method
was proposed to achieve DA in which the encoder is trained for the source and target
domains. Inspired by the concept used in ADDA, Mesay et al. [59] implemented GAN-
based DA for object classification in the remote sensing data. The last approach of domain
adaptation creates a shared representation of both domains. In this method, one domain
can be translated to another, and both domains can be translated into a common space.
The method also provides a transfer function that facilitates the translation of one domain
to another and translating back to the original state. CycleGAN provides the third approach
and involves two discriminators that are used to translate one domain to another and
converse [60].

The general methods of domain adaptations are not well interpreted for semantic
segmentation [61]. Thus, adversarial and reconstruction procedures are chosen. Adversar-
ial and constraint-based adaptations are performed at pixel level using architectures that
exploit adversarial domain adaptation using GANs to transform source-like images [62].
Then, the images are segmented using a network that has been trained on the source dataset.
In [63], Domain-Invariant Structure Extraction (DISE) structure was adopted to transform
images into the domain-invariant structure and domain-specific texture representations.
The bidirectional method prevents the translational model to reach a point where the
discriminator fails to identify the image from the same distribution setup and fails to align
correctly [64].

3. Study Area and Data

To promote reproducibility of our experimentation, we rely on BreizhCrops, a large-
scale time series benchmark dataset introduced in 2020 by Rußwurm et al., [28], for super-
vised classification of field crops from satellite data. The dataset comprises multivariate
time series examples in the Region of Brittany, France, of the season 2017, from January 1
to December 31. In particular, the authors of the dataset exploited all available Sentinel 2
images from Google Earth Engine, [65], and farmer surveys collected by France National
Institute of Forest and Geography Information (IGN) to collect more than 600 k samples
divided into 9 classes with 45 temporal steps and 13 spectral bands. Most importantly,
as shown in Figure 2, acquired data are equally split into distinct regional areas. Indeed,
as regulated by the Nomenclature des unites territoriales statistiques (NUTS), the overall
dataset is divided into the four NUTS-3 regions Côes-d’Armor, Finistère, Ille-et-Vilaine,
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and Morbihan. That, in conjunction with the challenging nature of the dataset, makes
BreizhCrops an ideal benchmark to test domain adaptation for multi-spectral and multi-
temporal data for LC&CC.

Figure 2. Magnified view of the four NUTS-3 regions of Brittany, located in the northwest of France

and covering 27,200 km². The strict division of the supervised BreizhCrops dataset in the four regions

allows the performance of a formal and controlled analysis on domain adaptation for LC&CC with

multi-spectral and multi-temporal data.

As summarized in Figure 3, even if the authors of the dataset avoided broad categories,
due to the nature of agricultural production, which focuses on a few dominant crop types,
a class imbalance can be observed in the collected parcels. That constitutes a challenge for
every classifier type, but it reflects the strong imbalance in real-world crop-type-mapping
datasets. On the other hand, sample classes in the different regions are balanced, making
BreizhCrops a perfect bench for testing domain adaptation strategies. Finally, to disentangle
the performed domain adaptation analysis from the influence of the random variation
of the atmospheric conditions, we exclusively make use of L2A bottom-of-atmosphere
imagery where data acquired over time and space share the same reflectance scale. Adjacent
and slope effects are corrected by the MAJA processing chain [66] that employs 60-meter
spectral bands to apply atmospheric rectification and detect clouds. Therefore, only ten
spectral features are available for each parcel. Table 1 is presented as a summary of the
number of samples collected for the domain adaptation experimentation divided into
classes and regions. In conclusion, multi-spectral, multi-temporal pixels are individually
extracted for each parcel and are constituted by 10 spectral bands and 45 temporal steps
each. The class imbalanced highlighted by the number of parcels of Figure 3 is reflected in
the number of samples of Table 1 used for all experimentation.

Table 1. Summary of the number of samples per class divide in the four NUTS-3 regions of Brittany. Instances are derived

by L2A bottom-of-atmosphere parcels to disentangle our analysis with variation of the atmospheric conditions.

Barley Wheat Rapeseed Corn Sunflower Orchards Nuts
Permanent
Meadows

Temporary
Meadows

Zone 1 13,051 30,380 5596 44,003 1 937 10 32,641 52,013
Zone 2 10,736 15,026 2349 36,620 6 348 18 36,536 39,143
Zone 3 7154 27,202 3557 42,011 10 1217 10 32,524 52,682
Zone 4 5981 17,009 3244 31,361 2 552 11 26,134 38,141
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Figure 3. Class frequencies divided in the four NUTS-3 regions of Brittany. The respective number

of parcels highlights the strong class imbalance, reflecting the substantial imbalance in real-world

crop-type-mapping datasets. However, samples per class in the four regions are equally divided.

4. Methodology

In this work, unsupervised domain adaptation is considered in the field of land cover
classification from satellite images. The study aims to tackle the problem of low gener-
alization capability of classifiers only trained on a peculiar geographical region dataset.
Moreover, the lack of rich available datasets of labeled satellite images increases the interest
towards this challenge. In particular, the proposed methodology is intended to investigate
the application of representation learning (RL) techniques for domain adaptation when
dealing with multi-temporal data. For this purpose, a Transformer Encoder-based clas-
sifier is adapted to a Domain-Adversarial Neural Networks (DANN) architecture and
trained accordingly.

In this section, a thorough description of the methodology is provided. First, we frame
domain adaptation with the DANN method. Then, we briefly explain the Transformer
Encoder structure with self-attention adopted for the multi-temporal crops classification.
Finally, we describe the resulting architecture of the attention-based DANN, which is used
to train a classifier with improved domain generalization.

4.1. Domain-Adversarial Neural Networks

Classifiers obtained with Deep Neural Networks often suffer from a lack of general-
ization related to possible variations in the appearance of the same objects. This problem is
usually identified as a domain gap. In the land cover classification task, this situation is
very recurrent and can be associated with the spectral shift affecting the data collected in
different regions at different times. The shift is often related to photogrammetric distortion
or visual differences in the appearance of lands. Furthermore, when dealing with satellite
images, a dataset usually needs to be created by labeling images for a specific region to
train a classification model. Despite this time-expensive procedure, standard training does
not guarantee satisfying performance on images of different regions.

Domain-Adversarial Neural Networks (DANN) is a representation learning technique
that allows a classifier to generalize better from a source domain to a target domain. This
specific domain adaptation method consists of adding a branch to the original feed-forward
architecture of the classifier and carry out an adversarial training. From a generic perspec-
tive, it is possible to identify three main components of the DANN: a feature extractor with
parameters θ f , a label predictor with parameters θy, and a domain classifier with parameters
θd. The feature extractor is the first block of the DANN model. It is responsible for learning
the function G f : X → R

d, which maps the input samples X to a d-dimensional vector
containing the extracted features. The label predictor function, Gy(G f (X)), compute the
label associated with the predicted class of the sample. The domain discriminator function
Gd(G f (X)) distinguishes between source and target domains given the extracted features.
The combination of feature extractor and label predictor gives us the complete classifier
model. The domain classifier is composed of a secondary branch, similar to the label
predictor, which receives the extracted feature vector by the first block of the network.
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Given these three main elements, the expression of the total loss used to train DANN
is obtained by the following expression, according to the authors [67]:

L
(

θ f , θy, θd

)

=
1

n

n

∑
i=1

Li
y

(

θ f , θy

)

− λ

(

1

n

n

∑
i=1

Li
d

(

θ f , θd

)

+
1

n′
N

∑
i=n+1

Li
d

(

θ f , θd

)

)

(1)

The first term Ly is the label predictor loss, while the second one involves the domain
discriminator loss Ld. The hyper-parameter λ can be tuned to weigh the contribution
of the two learning terms. A more detailed analysis of the choice of λ is proposed in
the experiments section. n and n′ are respectively the numbers of samples from the
source and the target domains. Totally, we have N = n + n′ samples used in the training.
The expression of the total loss function also describes the principal goals of DANN:
first, we want to obtain a label predictor with low classification risk. Second, we are
adding a regularization term for the domain adaptation. To this extent, we aim to find
a set of parameters of the feature extractor θ f that can map a generic input sample from
either source or target domain to a new latent space of features, where the domain gap
is reduced. On the other hand, the classification performance has not to be affected.
For this reason, the extracted features should be discriminative as well as domain-invariant.
According to this goal, the optimal choice of parameters θ f and θy is represented by the one

which minimizes the total loss function, keeping θ̂d unchanged. By contrast, the domain
discriminator parameters θd are updated to maximize the loss while not changing the
other ones.

(

θ̂ f , θ̂y

)

= argmin
θ f ,θy

L
(

θ f , θy, θ̂d

)

(2)

θ̂d = argmax
θd

L
(

θ̂ f , θ̂y, θd

)

. (3)

In the original paper of DANN, the parameters of each piece of the neural network
model are updated with a classical Stochastic Gradient Descent (SGD) optimizer. Here
instead we use Adam (Adaptive momentum estimation), another popular optimization
algorithm introduced by [68]. Parameters θ f ,θy and θd are updated according to its rules.

θ f ←− θ f − η

(

m̂ f ,y
√

v̂ f ,y + ǫ
− λ

m̂ f ,d
√

v̂ f ,d + ǫ

)

(4)

θy ←− θy −
η

√

v̂y + ǫ
m̂y (5)

θd ←− θd −
η√

v̂d + ǫ
m̂d (6)

As can be studied more in detail in the Adam original paper, the first (mean) and the
second (uncentered variance) moments of Adam m̂ and v̂ are estimated as exponentially
moving averages computed with the gradients obtained from each mini-batch. For the
specific case of DANN, gradients used to estimate the Adam moments change for each
element G f , Gy, Gd of DANN structure. For example, the feature extractor gradients

(∂Li
y/∂θ f ) and (∂Li

d/∂θ f ) are used to compute m̂ f ,y and m̂ f ,d. Diversely, gradients obtained

from label predictor (∂Li
y/∂θy) and domain discriminator (∂Li

d/∂θd) are only used to
update their respective momentum m̂y and m̂d.

The feature extractor and the domain discriminator play adversarial roles during
the training process. A satisfying feature extractor can fool the domain discriminator by
forwarding a vector of domain-invariant features. The role of the domain discriminator is
to improve and evaluate this ability. A key intuition in the DANN method is to carry out the
adversarial training with a standard backpropagation of the gradients, thanks to a custom
Gradient Reversal Layer between the feature extractor and the domain discriminator. This
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particular layer does not add other parameters to the model but changes the sign of the
upstream gradients. The GRL operation can be formulated with R(x) in the following
mathematical expressions for the forward and backpropagation step:

R(x) = x (7)

dR
dx

= −I (8)

where I is the identity matrix. Hence, by performing optimization steps on the resulting
DANN architecture, we can update parameters to reach saddle points of the total loss
function reported in Equation (1).

4.2. Classification of Multi-Spectral Time Series Data with Self-Attention

Self-Attention, popularized by the Transformer model in 2017, [69], has provided a
considerable boost in machine translation performance while being more parallelizable
and requiring significantly less time to train. Nevertheless, the introspection capability
behind the success of Transformers is not limited only to natural language processing,
but can be adapted to any time series analysis to filter data and focus on more relevant
repressions aspects.

A single sample pixel i-th of multi-spectral, multi-temporal acquisition can be repre-
sented as a matrix X(i) ∈ R

t×b where t is the temporal dimension and b is given by the
number of spectral bands. Therefore, it is a 1D sequence of tokens, (x0, ..., xt), with xt ∈ R

b,
that can be easily linearly projected to feed a standard Transformer encoder. The encoder
can map a temporal input sequence Xt×b in a continuous representation XL

t×dmodel
, where L

is the output layer of the Transformer model and dmodel is the constant latent dimension of
the projection space.

Self-attention, through local multi-head dot-product self-attention blocks, can easily
manipulate the temporal sequence finding correlations between different time-steps and
completely avoiding the use of recurrent layers. The dot-product self-attention operation is
composed on a trainable associative memory with key and value vector pairs of dimensions
d. For a sequence of t query vectors, arranged in a matrix Q ∈ R

t×d, the self-attention
operation is described by the following operation:

Attention(Q, K, V) = Softmax(QKT/
√

d)V (9)

where the Softmax function is applied over each row of the input matrix and K ∈ R
t×d

and V ∈ R
t×d are the key and value vector matrices, respectively. Query, key and values

matrices are themselves computed from a sequence of t input vectors with dimension
dmodel using linear transformations: Q = XWQ, K = XWK, V = XWV where X ∈ R

t×dmodel .
Finally, multi-head dot-product self-attention is defined by considering applying h self-
attention functions to the input X. Each head provides a sequence of size t× d. These h
sequences are rearranged into a t× dh sequence that is linearly projected into t× dmodel .

Subsequently, after the transformer encoder, the output representation, XL
t×dmodel

,can
be exploited to perform a classification of the input sequence. Indeed, that can be achieved
by further processing the output encoder matrix and feeding a classification head trained
to map the hidden representation to one of the k classes.

Several approaches have been proposed in the literature to obtain this result; in [70,71]
they pre-append to the input sequence a learnable embedding, whose state at the output
of the Transformer encoder serves as a hidden representation of the membership class.
Indeed, only that output token is fed to the classification head to obtain the final predic-
tion. On the other hand, the output sequence can be averaged or processed with a max
operation on the temporal dimension [72]. Nevertheless, despite the type of processing
applied to XL, the encoder will adapt to elaborate the sequence properly and embed the
needed information for the classification task. In conclusion, a Transformer encoder can
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be repurposed to process a multi-spectral input sequence and find valuable correlations
between the different time-steps to perform LC&CC with a high level of accuracy.

4.3. DANN for Land Cover and Crop Classification

We employ DANN in conjunction with self-attention-based models to bridge the
domain gap between different geographical regions. The overall architecture of the adopted
methodology is shown in Figure 4. First, an input sequence Xt×b is linearly projected to
the constant latent dimension of the Transformer model dmodel . Moreover, a Transformer
encoder does not contain recurrence or convolution to make use of the order of the sequence.
Therefore, some positional encoding is injected about the relative or absolute position
of the tokens in the sequence. The positional encodings have dimension dmodel as the
projected sequence, so that the two can be summed. Guided by experimentation, as in [71],
we adopt a learnable positional encoding instead of the sine and cosine functions with

different frequencies of [69]. The resulting pre-processed input sequence X
l0
t×dmodel

feeds

the Transformer encoder, parameterized by Θ f , that provides as output a continuous

representation XL
t×dmodel

. Subsequently, we make use of the max function, over the temporal

axis, to extract a token, xL
dmodel

, from the output sequence.

Figure 4. Overview of the overall framework to train a Transformer encoder with domain-adversarial

training. The multi-spectral temporal sequence Xt×b is first linearly projected and fused with a

position encoding. Subsequently, the self-attention-based model manipulates the input series and,

through a max operation applied to the last layer of the encoder, is possible to extract a token xL
dmodel

from the output sequence. Finally, gradients derived by LC&CC and Domain classifiers train the

network while keeping close the distribution of source and target domains.

The extracted representation constitutes the input for either the LC&CC and domain
multi-layer perceptron classifiers. The first network provides a probability distribution over
the k different classes, ŷk. On the other hand, the domain classifier outputs the probability,
d̂2, that the extracted representation xL

dmodel
belongs to the target or source domain. Using

the cross-entropy loss function for both classifiers, it is possible to compute the respective
gradients and update the weights, Θ f of the feature extractor. Indeed, inverting the sign
of the gradients, ∇Ld(Θd), derived from the domain classifier, and multiplying them for
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a scale factor λ, we can increasingly reduce the distance between the latent space of the
two domains while training the encoder on the classification task. Overall, the proposed
training framework provides an effective solution to transfer the acquired knowledge of a
model to a diverse region, exploiting only the original nature of the data.

5. Experiments and Discussion

We experiment with the proposed methodology on the four regions of the multi-
temporal satellite BreizhCrops dataset presented in Section 3. As explained in the same
section, we indicate this dataset as an optimal choice to train and test new domain adap-
tation methods exploiting labeled multi-temporal data. The first main objective of the
conducted experimentation is to investigate how the classification performance of a state-
of-the-art model for LC&CC model is affected by a lack of generalization towards different
geographical regions. Then, we clearly highlight how adversarial training can mitigate the
domain gap and significantly boost performance for source and target regions with marked
distribution distance. It is important to remark that the method relies on the availability of
samples of both source and target domains, whereas only source labels are required, not
allowing direct applicability of transfer learning techniques. Finally, in the last part of the
section, obtained results are discussed and inspected through dimensionality reduction
techniques, validating the proposed method for practical use.

5.1. Experimental Settings

We carried out a complete set of experiments to compare the Transformer encoder clas-
sifier performance with and without DANN. The standard classifier is trained separately on
each of the single regions of the dataset, then tested on the other ones. By contrast, DANN
models are trained on each source-target pair to gain the desired adaptation capability and
tested an all the regions except for the source domain. No validation set is used for model
selection. Tests are always performed with the model resulting from a fixed number of
training epochs.

In the final architecture, the classifier model comprises a transformer encoder feature
extractor and a final classification stage. In all experimentation, the transformer encoder
receives as input a batch of 256 tensors with t = 45 temporal steps and b = 10 spectral bands
in the image samples. Moreover, to linearly project the temporal sequence to the constant
latent dimension of the encoder, the input is first passed to a dense layer with 64 units.
Therefore, dmodel is equal to 128. On the other hand, the multi-head attention Transformer
encoder is defined with several layers and attention heads equal to nlayers = 3 and nheads =
2. Finally, the dimension of internal fully connected layers dinner = 128. Rectified linear
units is the non-linear activation function used for all neurons of the encoder.

The LC&CC classification stage is a simple multi-layer perceptron head composed of
a normalization layer, a fully connected layer with 128 units, ReLU as activation function,
and a final layer with k = 9 neurons. On the other hand, for the DANN experimentation,
the domain predictor is identical to the multi-layer perceptron head of the LC&CC classifier,
with 128 units and a ReLU activation. However, the number of neurons in the final layer is
set to d = 2, since we always perform a single target domain adaptation.

A cross-entropy loss function is chosen to train both the classifiers. The parameters of
both models are updated using Adam optimizer with β1 = 0.9, β2 = 0.999 and ǫ = 1× 10−7.
A fixed number of epochs is always set to 250. The learning rate value is changed during
training according to an exponential decay policy from a starting value of 0.001, with a
decay scheduled for each epoch equal to 0.99epoch. A key point in the experimental settings
is related to the domain adaptation parameter λ. It acts as a regularization parameter,
since it regulates the impact of the domain discriminator gradients on the feature extractor
during training. Therefore, it can be considered to be the principal hyper-parameter to tune
when using DANN. We always use a scheduling policy for λ, as suggested in the original
publication of DANN:

λt = λmax

(

2

1 + e−γt
− 1

)

(10)
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where λmax is the plateau value reached. This is the actual value of λ used for the second
half of the training, which affects the final performance of the model in terms of general-
ization. The parameter γ = 10 defines the slope of the curve and it is fixed to such value
to let λmax be reached in a suitable number of epochs. A scheduled value of λ allows the
feature extractor to learn the basic features for the classification during the first epochs. It
then adjusts the mapping function to let the source and target domain feature distributions
to overlap at the end of the training process. As shown in Figure 5, different values of λmax

are tested to study the response of the model. To our knowledge, λmax = 0.2 is the best
value for a robust adaptation improvement of the classifier, at least among the set of tested
λmax values.

Figure 5. λ scheduling: the value of the domain adaptation parameter λ is changed during training

according to an exponentially growing trend. This allows the feature extractor to learn basic features

during the initial epochs. Different final λmax values are tested to study the right level of adaptation

required in the different cases: 1, 0.5 and 0.2. λmax = 0.2 is the best choice for an overall adaptation

improvement of the classifier in the different regions. The parameter γ influences the slope of the

curve and it is kept constant to 10 to let λ reach the desired value in a suitable number of epochs.

As already explained at the beginning of the section, the classifiers are trained and
tested on all the possible combinations of regions to quantify the existing domain gap.

The classification performance is evaluated using three different classification metrics,
which are chosen among the ones proposed in the BreizhCrops dataset benchmarks: Accu-
racy, F1-score and K-score. This last metric is the Cohen’s kappa [73], computed according
κ = (po − pe)/(1− pe) where po and pe are the empirical and expected probability of
agreement on a label. In addition, we make use of Maximum Mean Discrepancy (MMD)
metric, presented in Section 5.2, to quantitatively evaluate the distance between source and
target distributions.

5.2. Maximum Mean Discrepancy

MMD is a statistical test originally proposed in [74] to determine a measure of the
distance between two distributions. MMD is largely used in domain adaptation since it
perfectly fits the need to understand whether the source and the target domain extracted
features overlap. MMD can be directly exploited as a loss function for adversarial training
of generative models or for domain adaptation purposes, as shown in [75,76]. However,
in this works we limit its usage to show the results of the Transformer Encoder DANN in
terms of reduction of feature distances.

Formally, MMD is a kernel-based difference between feature means. Given a set of m
samples X with a probability measure P, the feature mean can be expressed as:

µp (φ(X)) = [E[φ(X1], · · · , E[φ(Xm]]
T (11)



Remote Sens. 2021, 13, 2564 13 of 23

where φ(X) is the feature map that maps X to a new feature space F . If it satisfies the
necessary theoretical conditions, a kernel-based approach can be used to compute the inner
product of two distributions of samples X ∼ P and Y ∼ Q:

〈µP (φ(X), µQ (φ(Y)〉F = EP,Q [〈φ(X), φ(Y)〉F ] = EP,Q [k(X, Y)] (12)

At this point the MMD can be defined as the distance between the feature means of
X ∼ P and Y ∼ Q:

MMD2(P, Q) = ‖µP − µQ‖2
F (13)

which can be expressed more in detail using Equation (12):

MMD2(P, Q) = EP [k(X, X)]− 2EP,Q [k(X, Y)] + EQ [k(Y, Y)] (14)

However, an empirical estimate of MMD needs to be computed since in a real case
only samples are available instead of the explicit formulation of the distributions. It is
possible to obtain the MMD expression by considering the empirical estimates of the feature
means based on their samples:

MMD2(X, Y) =
1

m(m− 1) ∑
i

∑
j 6=i

k(xi, xj)− 2
1

m.m ∑
i

∑
j

k(xi, yj) +
1

m(m− 1) ∑
i

∑
j 6=i

k(yi, yj) (15)

where xi and yi in this case are the image samples from source and target domains, m is
the number of samples of the considered subsets. Finally, we specifically use a gaussian
kernel with the following expression:

k(xi, xj) = exp

(

−‖xi − xj‖2

2σ2

)

= exp

(−1

σ2
[xi

⊺xi − 2xi
⊺xj + xj

⊺xj]

)

(16)

5.3. Results Discussion and Applicability Study

In this section, we present the comparison results between the Transformer classifier
with and without DANN, clearly highlighting the scenarios that present a definite advan-
tage in applying adversarial training for training a classifier for LC&CC. From results in
Tables 2 and 3, Figure 6, it is possible to notice that DANN adversarial training allows
the classifier to improve knowledge transferability to other domains for most of the cases.
Nonetheless, we investigate a potential criterion to decide if the transfer of learning from
source to target can be effectively improved by DANN. More in detail, since DANN aims
to overlap feature distributions, we look at the extracted features from a subset of 10,000
samples of each zone dataset that is considered representative of the total one.

We use the set of extracted features to compute a numerical evaluation of the distance
decrease, and to give a graphical visualization of the effect of DANN. From a quantitative
perspective, we propose Maximum Mean Discrepancy as the feature distance metrics to
detect suitable conditions where DANN is an appropriate methodology. To compute MMD
without considering the clustering of classes, we only need unlabeled image samples. We
use PCA algorithm to compute the principal components of the extracted features and we
exploit them to provide 2D and 3D visualization of relevant cases.

First, we can look at the MMD values obtained from both the Transformer encoder
and DANN in Table 2. It is clear that DANN is always able to reduce the distance be-
tween feature distributions. However, this is not always associated with an increase in
classification performance. We realize that key information is contained in the MMD value
obtained from source and target features, extracted by the standard classifier. This simple
test is crucial and can also be done without labels. The best improvement with DANN
is reached considering zone 2 as the source domain and selecting zone 3 as the target
domain. The percentage improvement shown in Table 3, with an increase of more than 30%
of accuracy, correlates with an initial MMD value for this specific case is equal to 0.6700,
reduced by DANN to 0.0104. What can be deduced by this observation is that high values
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of the MMD indicate a lack of generalization of the classifier and a domain gap. It is also to
consider that the geographical zones of interest are close to each other. Hence, it can be
reasonable to find small domain gaps. A clear example is the case of zone 1, when chosen
as source domain. This factor can be considered an additional difficulty of the study case.
Therefore, it is possible that the same methodology applied to other regions on the planet,
sharing the same categories of crops, can probably show greater results. Another peculiar
case to be considered is: zones 4 (source) and 3 (target). The MMD value is low from the
initial analysis of the case, without the intervention of DANN. However, a classification
boost is always achieved.

Figure 6. Class-wise comparison of classification results on zone 3 (target), selecting zone 2 as source domain. Confusion

matrix obtained with Transformer encoder trained on zone 2 and tested on zone 3 is shown in (a) on the left. Figure (b)

on the right shows classification results with DANN model tested on zone 3. The effect of DANN clearly mitigate the

prediction error, with a particular focus on relevant classes such as Corn, Permanent and Temporary Meadows.

Table 2. Results of crops classification for the Transformer Encoder classifier trained with and without DANN using

λmax = 0.2. The two models are trained and tested on all the possible combinations of source/target domains available in

BreizhCrops dataset. Accuracy, F1-Accuracy and K-score are the metrics used to compare the classification quality. Training

accuracy is also reported for the Transformer encoder classifier. Maximum Mean Discrepancy computed on a subset of

extracted features of source and target domain shows the successful reduction of features distance obtained with DANN.

Zone Transformer Encoder DANN

Source
Domain

Target
Domain

Train
Accuracy

Test
Accuracy

F1-Accuracy K-Score MMD
Test

Accuracy
F1-Accuracy K-Score MMD

1 2 0.8577 0.7877 0.5675 0.7229 0.1109 0.7628 0.5540 0.6950 0.0077
1 3 0.8577 0.7436 0.5266 0.6606 0.1620 0.7449 0.5080 0.6714 0.0183
1 4 0.8577 0.7941 0.5675 0.7294 0.0516 0.7960 0.5734 0.7343 0.0086
2 1 0.8951 0.7433 0.5309 0.6773 0.1577 0.7403 0.5161 0.6687 0.0208
2 3 0.8951 0.4967 0.3592 0.3642 0.6700 0.6505 0.4544 0.5483 0.0104
2 4 0.8951 0.6006 0.4395 0.4912 0.2536 0.7482 0.4832 0.6735 0.0416
3 1 0.8750 0.7767 0.5339 0.7122 0.1819 0.8045 0.5778 0.7488 0.0121
3 2 0.8750 0.6638 0.4594 0.5615 0.6254 0.7589 0.5334 0.6865 0.0277
3 4 0.8750 0.7348 0.5074 0.6504 0.1184 0.7968 0.5778 0.7338 0.0115
4 1 0.8870 0.7927 0.5551 0.7354 0.0339 0.8233 0.5822 0.7753 0.0039
4 2 0.8870 0.7600 0.5443 0.6870 0.0953 0.8003 0.5788 0.7399 0.0084
4 3 0.8870 0.7111 0.4961 0.6230 0.0960 0.7673 0.5443 0.6965 0.0062
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Table 3. Comparison between Transformer Encoder Classifier with and without DANN, in terms of

classification metrics reported in Table 2. This run of experiments is conducted with a scheduling of

the adaptation parameter λ, with λmax = 0.2.

Zone Improvement [%]

Source
Domain

Target
Domain

Test
Accuracy

F1-Accuracy K-Score

1 2 −3.1576 −2.3859 −3.8508
1 3 0.1762 −3.5378 1.6395
1 4 0.2296 1.0467 0.6773
2 1 −0.3996 −2.7935 −1.2698
2 3 30.9721 26.4916 50.5414
2 4 24.5690 9.9474 37.1046
3 1 3.5803 8.2152 5.1446
3 2 14.3204 16.1075 22.2539
3 4 8.4475 13.8791 12.8283
4 1 3.8705 4.8817 5.4228
4 2 5.3053 6.3384 7.6922
4 3 7.9018 9.7154 11.8067

We report a visual representation of the extracted features to add meaning to the
previous considerations. In particular, Figures 7–9 show the 2D principal components
obtained from the peculiar cases defined below:

• case 1: zone 2 (source), zone 3 (target). In this case DANN shows the greatest im-
provements with an initial high value of MMD. Features are visually reported in
Figure 7: in (a,b) when extracted by standard Transformer encoder trained on the
source domain, in (c,d) when extracted by DANN. The difference is visually clear.
Features distributions are matched by DANN, with a resulting overlapping shape
between source and target domain.

• case 2: zone 1 (source), zone 2 (target). In this case DANN shows the worst im-
provements with an initial low value of MMD. Features are visually reported in (a,b)
of Figure 8 when extracted by standard Transformer encoder, in (c,d) of the same
Figure 8 when extracted by DANN. They appear already similar also without DANN.

• case 3: zone 4 (source), zone 3 (target). In this case DANN shows noticeable improve-
ments, regardless an initial low value of MMD. Features are visually reported in (a,b)
of Figure 9 when extracted by standard Transformer encoder, in (c,d) of Figure 9 when
extracted by DANN. As with case 1, the difference is visually clear, and the effect of
DANN can be easily appreciated.

Finally, case 1 and case 2 defined above are also considered for a 3D representation.
Figure 10 shows the obtained results. For each subplot in the figure, both source and
target domain features are scattered. Thanks to this visual perspective, the effect of the
DANN method is highlighted, considering both the worst and the best application scenario.
In case 1, the difference between source and target features is shallow also without DANN,
as shown in (a). By contrast, the situation from (c) to (d) is changed thanks to the adversarial
training significantly.
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Figure 7. 2D feature visualization obtained with PCA, extracted with the Transformer Encoder trained on the source domain

and with the Transformer DANN model trained on the specific source-target domains. A comparison between the 2D

feature distributions is proposed for the case of zone 2 (source) and 3 (target). In (a,b) we have features extracted with

the Transformer Encoder from source and target domains: (a) reports features of the source domain (zone 2) and (b) the

ones extracted from the target domain (zone 3). In this case, features are mapped poorly in the target domain, with a

consequent low accuracy in classification. In (c,d) the same features extracted with the Transformer DANN model are

shown. The positive effect of DANN in terms of features overlapping is evident compared to (a,b).
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Figure 8. 2D feature visualization obtained with PCA, extracted with the Transformer Encoder trained on the source domain

and with the Transformer DANN model trained on the specific source-target domains. A comparison between the 2D

feature distributions is proposed for the case of zone 1 (source) and 2 (target). In (a,b) we have features extracted with the

Transformer Encoder from source, (a), and target, (b), domain: a low MMD distance indicates no need for domain adaptation.

In (c,d) the same features extracted with the Transformer DANN model are shown, with no substantial differences.
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Figure 9. 2D feature visualization obtained with PCA, extracted with the Transformer Encoder trained on the source domain

and with the Transformer DANN model trained on the specific source-target domains. A comparison between the 2D

feature distributions is proposed for the case of zone 4 (source) and 3 (target). In (a,b) we have features extracted with the

Transformer Encoder from source, (a), and target, (b), domains: regardless of an initial low MMD, the classifier accuracy

can still be improved reducing the domain gap. In (c,d) the same features extracted with the Transformer DANN model

are shown, with a clear improvement of the feature mapping, which result in very similar distributions from source to

target domain.

The proposed discussion underlines some interesting insights on the correlation
between reducing the domain gap and improving a classifier performance. The isolated
cases considered provide a good reference example to decide if it is a reasonable and
convenient choice to adopt the proposed DANN methodology for multi-spectral temporal
sequences for Land Cover classification.
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Figure 10. 3D feature visualization and comparison. (a,b) show the features extracted from zone 1

(source) and 2 (target). They are respectively obtained with transformer encoder and DANN. It is

clear that the transformer encoder alone can correctly map features on both domains. By contrast,

the improvement provided by DANN model is very evident in figures (c,d), representing the features

extracted from zone 2 (source) and 3 (target), where the transformer encoder alone present both high

values of MMD and low classification accuracy on target domain.

6. Conclusions

In this paper, we investigated adversarial training for domain adaptation with state-
of-the-art self-attention-based models for LC&CC. Indeed, domain gaps between distinct
geographical regions prevent the direct repurpose of the trained model on diverse areas
of the training domain, and the practical difficulty of acquiring labeled data prevents the
direct application of transfer learning techniques. Our extensive experimentation clearly
highlights the advantages of applying the proposed methodology to transformer models
trained on multi-spectral, multi-temporal data and the considerable gain in performance
with considerable distribution distance between target and source regions. In particular,
the best improvement obtained with DANN shows a percentage increase of more than
30% of classification accuracy, associated with an evident reduction of the features distance
metrics MMD from 0.6700 to 0.0104. Moreover, our investigations conduct to a clear
identification of the scenarios where it is advantageous to apply the DANN domain
adaptation mechanism. More in detail we identified three different cases that highlight the
strategy for a correct adoption of the methodology. A graphical visualization of the effect
of DANN on the crop classification task has also been proposed and discussed exploiting
the 2D class-wise and the 3D principal components of crops features distribution.

Future work may investigate the advantages and disadvantages of different domain
adaptation techniques applied to LC&CC and extend our study to further geographical re-
gions.
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