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Abstract
Purpose The current study aimed to propose a Deep Learning (DL) and Augmented Reality (AR) based solution for a in-vivo 
robot-assisted radical prostatectomy (RARP), to improve the precision of a published work from our group. We implemented 
a two-steps automatic system to align a 3D virtual ad-hoc model of a patient’s organ with its 2D endoscopic image, to assist 
surgeons during the procedure.
Methods This approach was carried out using a Convolutional Neural Network (CNN) based structure for semantic segmen-
tation and a subsequent elaboration of the obtained output, which produced the needed parameters for attaching the 3D model. 
We used a dataset obtained from 5 endoscopic videos (A, B, C, D, E), selected and tagged by our team’s specialists. We then 
evaluated the most performing couple of segmentation architecture and neural network and tested the overlay performances.
Results U-Net stood out as the most effecting architectures for segmentation. ResNet and MobileNet obtained similar Inter-
section over Unit (IoU) results but MobileNet was able to elaborate almost twice operations per seconds. This segmentation 
technique outperformed the results from the former work, obtaining an average IoU for the catheter of 0.894 (σ = 0.076) 
compared to 0.339 (σ = 0.195). This modifications lead to an improvement also in the 3D overlay performances, in particular 
in the Euclidean Distance between the predicted and actual model’s anchor point, from 12.569 (σ= 4.456) to 4.160 (σ = 1.448) 
and in the Geodesic Distance between the predicted and actual model’s rotations, from 0.266 (σ = 0.131) to 0.169 (σ = 0.073).
Conclusion This work is a further step through the adoption of DL and AR in the surgery domain. In future works, we will 
overcome the limits of this approach and finally improve every step of the surgical procedure.

Keywords Deep learning · Neural network · Semantic segmentation · Intra-operative

Introduction

In recent decades, technology has helped several medical 
procedures to massively improve [1]; in particular, great 
progresses have been achieved with Deep Learning (DL) 
[2] paradigms. Recently, DL has acquired a fundamental role 
in the medical environment, and many different remarkable 
applications have been implemented, from orthopedics [3, 4] 
to oncology [5] and many others [6]. The same enhancement 
was brought in by Augmented Reality (AR), in particular in 
surgery. Neurosurgery has been the first medical specialty in 

which AR was introduced to assist the surgeon [7], followed 
by orthopedics [8], dental surgery [9] and many more. Sur-
gery, in fact, is one of the main subfields in which DL and 
AR are making a fundamental contribution. The potential 
of DL in intra-operative surgery is formidable: by learning 
from data of past procedures, it would be possible to monitor 
the progress of a surgical procedure [10, 11], estimate the 
pose of the medical staff [12, 13], evaluate skill assessment 
and provide new ways of interacting with multimodal data 
during and after a procedure [14], just to name a few exam-
ples. All these procedures necessitate an intuitive interface 
for surgeons and specialist, that could be given by AR appli-
cations. Lately, the efficacy of AR as a tool to improve the 
transfer of information has been the topic of many different 
research works. In particular, give the surgeon the ability 
to see what cannot be normally perceived, as the hidden 
organs inside the body of a patient, is the main addition that 
AR brings to surgery [15]. Unfortunately, in intra-operative 
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surgery, a joint utilization of DL and AR is still underrated, 
due to the difficult compromise between working with 3D 
data and the efficiency needed for real-time elaboration. In 
a recent paper [16], we outlined a definition of an Intelli-
gent Operating Room (IOR), a collaborative operating room 
based on highly intuitive, natural and multimodal interac-
tion. In this study, we moved the first step in this context, as 
we aimed to demonstrate how to apply DL to improve the 
performances of a previously proposed method from our 
group [17]. In the former work, resumed in the next section, 
we integrated different solutions based on localization and 
3D augmentation, each dedicated to a specific stage of a 
prostatectomy, into a single software system to give assis-
tance during robot-assisted radical prostatectomies (RARP). 
The preliminary method used a complex Computer Vision 
approach to localize different areas in the endoscopic video. 
Here, an encoder-decoder structure based on Convolutional 
Neural Network (CNN) is applied to obtain real-time seman-
tic segmentation of the scene and improve in precision the 
subsequent 3D enhancement. We compared different com-
bination of segmentation architecture and base neural net-
work to select the most performing one, based on training 
and testing with 4 different videos (A, B, C and D) present-
ing the last phase of prostatectomy procedures. Finally, we 
used video E to validate the performances of the 3D overlay 
method with a new dataset. The developed application is 
currently being used during in-vivo surgery, for extensive 
testing, by the Urology unity of the San Luigi Hospital, in 
Orbassano (To) Italy, and the augmented video stream can 
be accessed directly into the Tile-Pro visualization system of 
the Da Vinci surgical console. The main contribution of this 
paper is to present a solid evaluation of our methodology to 
visual overlay a 3D model over a 2D endoscopic stream. The 
focus of this research is to provide a robust clinical appli-
cation solution to the stated problem, based on numerical 
evaluation. Rather than techniques-based solely on Com-
puter Vision (CV) to determine the 3D organ model position 
and rotation, as in our previous approach [17], we leveraged 
on the output of a state of the art CNN segmentation archi-
tecture, obtaining better results, as shown in  "Formulation 
of the problem" Section.

Formulation of the problem

In recent years, the adoption of minimally invasive surgery 
(MIS) technology has grown exponentially, to reduce access 
to wound trauma and decrease the incidence of post-opera-
tive complications [18]. In particular, the high demand for 
greater surgical precision has led to the birth of robotic sur-
gery. The introduction of surgical robots has given many 
advantages to surgeons, for example, improved stereoscopic 
visualization, removal of hand tremors and greater precision 

and enhanced maneuvering of the surgical tools. In the con-
text of urology, robotic surgery was introduced 15 years ago 
and is now used worldwide [19] and in particular in the 
context of radical prostatectomy. Despite the above-men-
tioned positive improvements, it still presents challenges that 
require to be solved. Among them, we addressed the prob-
lem of the limited field of view offered by the endoscope 
used for navigation. AR could be the solution to overcome 
this obstacle, as it combines images from the real world with 
others digitally produced, with the intent of increasing the 
information the viewer can obtain from their combination 
[20]. In particular, when AR is applied to MIS the goal is 
fusing 3D objects produced from pre-operatory patient data 
with real-time images taken by the endoscope camera [21]. 
The challenge then became how to correctly align the virtual 
objects with their real world equivalent. In a previous work 
from our research group [17], we presented our progresses 
in enhancing endoscope video during RARP, by superim-
posing the 3D virtual model of the patient’s prostate on its 
2D counterpart, using different real-time techniques. The 
proposed framework was divided into 5 main phases that 
characterize a prostatectomy procedure [22]. To perform the 
task, a virtual model was generated from high-resolution 
preoperative medical imaging techniques, such as MRI. This 
3D reconstruction accurately reproduces the organ and the 
surrounding structures of the patient undergoing the opera-
tion and was modeled by bioengineers using the  HA3DTM 
technique. According to [22], the steps of this particular 
procedure are highly standardized, hence we have grouped 
them into 5 subsequent steps, based on similar visual charac-
teristics and similar levels of benefit from the use of RARP. 
These 5 steps are: (1) Defatting and incision of the endopel-
vic fascia. (2) Management of the bladder neck. (3) Vase 
clamping and nerve-sparing. (4) Surgery by the prostatic 
apex. (5) Targeted biopsy.

In the 2nd step, the 3D overlay was rarely requested by 
the surgeon. In the 4th step, 3D reconstruction from MRI 
is considered not accurate enough in depicting the apex. 
Hence, we excluded these stages from those requiring AR 
implementation. Instead, during the 1st step, it is critical 
for the surgeon to correctly identify and locate the neck of 
the prostate and in the 3rd step preserving nerves’ function-
ality after the procedure. In these stages, the presence of 
the 3D model correctly representing organs boundaries was 
requested by the surgeons to increase their intra-operative 
perception. Aligning the 3D model of the prostate with its 
physical counterpart, without clear visual references, proved 
to be extremely inaccurate. For this reason, we focused on 
the 5th phase. During this stage, the insertion of a catheter 
into the pelvic cavity provides an artificial feature easy to 
be identified and used to guide the virtual-over-real overlay. 
Superimposing a 3D model along with the cancer position is 
fundamental to improve the localization of the tissue sample 
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for post-operative biopsies. Our previous approach to detect 
the catheter leveraged solely on classic CV techniques which 
made it very fast and suitable to operate in real-time; never-
theless, this method experienced great variability depend-
ing on conditions, such as illumination changes or camera 
movements, resulting in non-optimal performances. We now 
changed our approach, evaluating the ability of different neu-
ral networks architectures to perform semantic segmentation 
and localize the catheter in the video stream, maintaining an 
acceptable elaboration speed.

Methods

Semantic segmentation

The semantic segmentation of an image aims to associate 
each pixel with a class of a predefined set. Segmentation 
techniques are mostly based on CNN. The typical architec-
ture adopted in these procedures uses two opposite branches 
of CNN and is called the encoder-decoder structure. The 
encoder has the typical structure of a CNN with convolu-
tional and pooling layers that samples the input to generate 
a high dimensional characteristics vector. The decoder has 
the opposite structure: it takes as input a high dimensional 
characteristics vector and generates a semantic segmentation 
mask. We explored the best combination of architecture and 
neural network and selected the most performing one. We 
tested 3 segmentation architectures among the vast amount 
of versions: SegNet [23], U-Net [24] and PSPNet [25]. They 
were chosen for a particular reason related to our objec-
tive, as SegNet is specifically designed for real-time task, 
U-Net was created especially for biomedical imaging, and 
for this reason, it works very well with a limited number of 
images, and PSPNet is optimized to learn better global con-
text representation of a scene. The next task was to choose 
an appropriate base network. The models we decided to test 
are ResNet [26], VGG [27] and MobileNet [28]. We trained 
and tested each possible combination of these segmentation 
architectures and the base networks, except for the combina-
tion of PSPNet and MobileNet that was not present in the 
library used.

Dataset

We collected 5 videos from different surgical procedures 
showing the insertion of the catheter, i.e., the above-men-
tioned fifth phase “targeted biopsy”, and we extracted, 
tagged and resized a set of frames. The first video selected, 
named A, due to its variety of operations and camera-views, 
and to the fact that the surgical equipment appears and dis-
appears in a continuous fashion, was considered the most 
exemplary. Adding up the total number of frames of all the 

videos of different duration, we ended up with approximately 
15.570 images. From these, we extracted from A 275 images 
to be used or training plus another 50 images taken from the 
same video to test the segmentation. Then, 90 images from 
B, C and D were selected to try to generalize the results: 50 
were used to test the former model, 40 to re-train the model 
including frames from different videos, after the selection 
of the best combination of segmentation architecture and 
encoder network. We decided to use a small percentage of 
the total number of images to demonstrate that this approach 
could rely on a limited number of training samples. Each 
image was manually tagged by two senior urologists using 
labelme [29], an open-source software that provides an inter-
active GUI to produce the ground truth segmentation for 3 
categories: background, tool and catheter. Nevertheless, we 
gave importance to optimize the value of the catheter, as we 
needed its location to map the 3D model to the 2D video. 
Finally, we extracted 100 frames from video E to test the 
overlay performances of the AR framework. Each frame has 
been selected for its peculiarity (e.g., extreme rotations, par-
tially hidden catheter, uncommon catheter rotational values, 
etc.) and tagged by our specialists’ team with optimal value 
of the anchor point (p1, p2) and the rotation along the X- and 
Z-axis for the 3D model. In Fig.1, are shown some samples 
for the 5 different videos. All the samples have been resized 
416 × 608 pixels.

Metrics

Different combinations of network and basic architecture 
were tested, and the best pair was selected using Intersec-
tion over Unit (IoU) metrics and the number of iterations 
per second (it/s). The first metric was used to measure the 
precision of the segmentation, the second metric to calcu-
late the number of frames that could be processed every 
second. The IoU is defined as:

where AOverlap is the area of overlap between the expected 
segmentation and ground truth, and AUnion is the area of 
union between the expected segmentation and ground truth. 
This metric is normalized in the interval [0, 1], with 0 mean-
ing that there is no overlap and 1 meaning a perfectly super-
imposed segmentation. Each pixel of the network’s output is 
compared with the corresponding pixel in the ground truth 
segmentation image. We not only computed the IoU for 
the catheter, but also the Mean IoU, that is the average IoU 
between the 3 classes. This metric was used to demonstrate 
that the network was learning to also segment the tool and 
background classes. The second metric, it/s, is defined as:

IoU =
AOverlap

AUnion
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where n is the number of iterations, and sec is the time unit. 
In this case, one iteration consists of predicting the segmen-
tation output given an input image. As the frame rate metric 
depends on different aspects, such as the complexity of the 
mesh, the rendering engine used, the hardware specifics, the 
particular implementation of the pipeline, etc., these factors 
can determine a strong fluctuation of the metric, for this 
reason we preferred to opt for a metric independent of these 
parameters. We empirically noticed that our frame rate was 
acceptable if we kept the it/s greater than 10; this evaluation 
is not indicative but sufficient for us to obtain a real-time 
validation. Regarding the validation of the 3D overlay, we 
computed two different metrics. The 3D model is attached 
to the video stream given the coordinates (p1, p2) of the 
anchor point and the rotation along the X- and Z-axis. The 
difference between the predicted 

(

p̂1, p̂2
)

 and the actual 
anchor point (p1, p2) was evaluated with the classical 
Eucl idean distance between two 2D points : 

eucDist =

√

(

p1 − p̂1
)2

+
(

p2 − p̂2
)2

.

The difference between the rotations was computed con-
verting the values of the rotations (considering the one along 
the Y-axis equal to 0, since rarely involved) in quaternions 
and then calculating the geodesic distance between two qua-
ternion’s coordinates q1 and q2. To get a distance between 
two unit quaternions, you have to rotate both of them such 

it∕s =
n

sec

that one of them becomes the identity element. To do this for 
our pair q1 and q2, we simply multiplied q1 by q2’s inverse 
from the left

and normalize the obtained quaternion Q through L2 
normalization:

The metric is a positive amount corresponding to the 
length of the geodesic arc connecting q1 to q2.

Post‑processing

From the segmentation output, we used the algorithm 
proposed by Suzuki et al. [30] to obtain the segmentation 
contours and the Sklansky’s algorithm [31] to obtain the 
convex hull given the main contour, to extract the informa-
tion needed to correctly align the 3D model to the real-time 
video. This information is:

1. The rotation angles for X and Z-axis. Y-axis is not con-
sidered since rarely involved;

2. The anchor point where to plot the upper extremity of 
the catheter.

In particular, as shown in more detail in Fig. 2, the cen-
tral point of the upper edge of the boundary box shown as 

Q = (inverse(q2) ∗ q1)

geoDist = L2(Q) =
√

Q ⋅ Q

Fig. 1  Samples taken from video A, B, C, D and E videos
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a black dot, is considered the anchor point of the 3D mesh, 
corresponding to the apex of the catheter. The dimension of 
the upper edge is compared to the diameter of the catheter 
in the real world to determine the scale of the virtual model. 
The vector from the anchor point to the centroid shown as 
a white dot in Fig. 2, is used to calculate the rotation of the 
mesh along its Z-axis (standard Cartesian coordinate sys-
tem). The rotation along the X-axis is processed by compar-
ing the upper and lower part, divided by the centroid, of the 
area of the catheter’s shape detected. These two sections are 
highlighted in Fig. 2 with two different colors. When the 
lower area is larger than the upper area, the mesh must be 
rotated toward the camera. When the lower area is smaller 
than the upper area, which happens less often, the 3D model 
should be turned so that its base is further away from the 
camera. The full pipeline of this method is shown in Fig. 3.

Training, framework, and evaluation

We first trained the model with 275 images of the A data-
set, tested it with 50 images taken from A and subsequently 
with 50 images from B, C and D each, to select the best 
combination of segmentation architecture and CNN for 

this specific case. Then, we trained the model selected 
with A video plus two among the B, C and D videos and 
tested with the excluded one, to obtain more generalized 
results. This was done with 40 previously unseen images 
for class B, C and D. Finally, we trained and tested the 
model with all the videos. We then take the model trained 
with A, B, C and D and tested the overlay precision with 
100 frames extracted from video E. After trying different 
configurations, we obtained the best results using a batch 
size of 4 and Adam [32] optimizer with a learning rate of 
0.001 and beta values of 0.9 and 0.999, respectively. The 
function to calculate the loss was the categorical cross-
entropy. We run the model for just 20 epochs before it 
starts to converge. We used Keras [33], an open-source 
neural network library written in Python, running on top 
of TensorFlow, and, in particular, the keras-segmentation 
[34] library, on Windows 10 Pro with NVIDIA Quadro 
P4000.

Results

We firstly run all the possible combination between the 3 
segmentation architectures (U-Net, SegNet, PSPNet) and 
the 3 base networks (MobileNet, VGG, ResNet), except 
the ensemble of PSPNet and MobileNet due to the miss-
ing implementation in the Python library. The IoU value 
obtained is shown in Table 1, for networks trained just 
with the A video and tested with different frames taken 
from A, B, C and D videos. The values of Mean IoU are 
shown for completion, to demonstrate that the network was 
learning to also segment the tool and background classes. 
In Table 1, it is also shown the iterations per second for 
each combination, because we are working with a real-
time application, and we needed the application to have 
an acceptable frame rate.

After picking U-Net with MobileNet as the most per-
forming ensemble for performance and speed, we re-
trained the chosen network with A video plus two videos 
among B, C, D, and tested it with the remaining one. These 
results are shown in Table 2, where we also indicate the 
results of a network trained with all 4 videos.

Then we compared our best network with the one based 
on Computer Vision techniques used in the previous work. 
The results of comparison are shown in Table 3 while a 
graphical example is shown in Fig. 4.

We also evaluated the performances of the 3D overlay 
with the values of Euclidean Distance between the real 
and the predicted anchor point and the Geodesic Distance 
between the X and Z real and predicted rotations, shown 
in Table 4.

Fig. 2  The bounding polygon of the catheter. The upper black dot 
marks the anchor point, while the white one marks the centroid. The 
direction arrow was used to calculate the Z rotation, and the two sec-
tions of the area divided by the centroid to compute the X rotation
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Fig. 3  The full pipeline of our method. The original image a is segmented b and, after the shape detection c, the 3D model is projected over the 
2D image d 

Table 1  Results training with A and testing with A, B, C and D 

Catheter IoU (Cat IoU) and Mean IoU for the available combination of architecture and base network, training with 235 frames taken from A 
video and testing with 50 frames taken from A, B, C, D. It is also shown the number of iterations per second for each combination. One iteration 
consists in predicting the segmentation output given an input image

Base network Architecture

U-Net SegNet PspNet

Test Video Cat IoU Mean IoU It/s Cat IoU Mean IoU It/s Cat IoU Mean IoU It/s

MobileNet A 0.926 0.927 11.04 0.913 0.911 10.96 NA NA NA
B 0.888 0.819 0.763 0.776 NA NA
C 0.467 0.705 0.259 0.611 NA NA
D 0.868 0.753 0.634 0.690 NA NA

VGG A 0.815 0.720 7.81 0.914 0.887 8.02 0.863 0.870 8.68
B 0.752 0.733 0.846 0.830 0.709 0.736
C 0.147 0.537 0.499 0.710 0.324 0.587
D 0.580 0.680 0.836 0.735 0.622 0.614

ResNet A 0.937 0.933 6.23 0.829 0.847 8.95 0.901 0.900 6.46
B 0.925 0.811 0.711 0.714 0.792 0.725
C 0.626 0.756 0.254 0.511 0.369 0.628
D 0.892 0.760 0.646 0.577 0.787 0.678
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Discussion

In this paper, we present the results of our effort to improve 
the precision of catheter identification in the endoscope 
frames during the fifth phase of RARP. During this phase, 
the 3D overlay, based on the correct catheter positioning, 

is crucial to locate tissue sampling for post-operatory biop-
sies. For this reason, we trained an encoder-decoder struc-
ture for segmentation. Our dataset was composed by 
frames extracted from 5 different videos: 325 frames from 
A, 90 from B, C and D each and 100 for E. We firstly tested 
different combination of segmentation architecture and 
base networks. We performed the training with frames 

Table 2  Training and testing of U-Net architecture with MobileNet as the base network to generalize the results

We trained the network with A video and two videos among B, C, D, and tested it with the remaining one. In the first row, the results for the 
baseline are reported again to make the comparison valid, and improvements are shown in parenthesis. In the last row, are shown results given 
from training and testing the network with all the videos

Test Train

A B C D

Cat IoU Mean IoU Cat IoU Mean IoU Cat IoU Mean IoU Cat IoU Mean IoU

A (Baseline) 0.926 0.927 0.888 0.819 0.467 0.705 0.868 0.753
A+B+C 0.899 (↑0.031) 0.864 (↑0.111)
A+B+D 0.661 (↑0.194) 0.783 (↑0.078)
A+C+D 0.841 (↓0.047) 0.840 (↑0.021)
A+B+C+D 0.925 (↓0.001) 0.927 (=) 0.936 (↑0.048) 0.921 (↑0.102) 0.762 (↑0.295) 0.858 (↑0.153) 0.945 (↑0.077) 0.937 (↑0.184)

Table 3  Comparison between the proposed approach based on Deep Learning (DL) and the former approach based on Computer Vision (CV) 
techniques for segmentation

Standard deviation σ is also shown in the rightmost column

A cat IoU B cat IoU C cat IoU D cat IoU Mean

DL approach 0.925 0.936 0.762 0.945 0.894 (σ = 0.076)
CV approach [17] 0.450 0.590 0.079 0.240 0.339 ( σ = 0.195)

Fig. 4  Comparison between the pipeline of the CV-based approach from our previous work [17] and the method proposed on this paper based on 
DL. It is possible to notice that the approach based on CV predicted a wrong anchor point and slightly worse rotations X and Z 
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taken from A video and the testing with frames from A, B, 
C and D videos, and the best catheter’s IoUs were obtained 
with the U-Net architecture with ResNet and MobileNet 
as base networks. ResNet reached an average catheter’s 
IoU of 0.845 while MobileNet 0.780. Nevertheless, 
MobileNet performed 11.04 it/s and ResNet 6.23 it/s. As 
already discussed, we noticed that the frame rate of the 
real-time application was acceptable if we kept the it/s 
greater than 10: with 11.04 it/s, on the hardware used for 
testing, we are able to reach a frame rate of approximately 
8fps, which is a good value for a medical application, 
where the constraint on real-time is not so severe. Since 

we work with real-time data, we decided to choose 
MobileNet as a good compromise between precision and 
speed. We then improved the IoU by training the network 
with A video plus two among B, C and D and testing with 
the remaining one. When testing with unseen data, the IoU 
computed with this approach, had a significant increase, 
especially for C video where the catheter’s IoU passed 
from 0.467 to 0.661. In the last line of Table 2, we can see 
the best results. They were obtained when training the net-
work with all 4 videos. These results outperformed the 
former approach, based on Computer Vision segmentation 
techniques, where the Gaussian blurred frames were con-
verted to HSV format and binary thresholded given an 
adaptive pixel range, in order to identify the pixels belong-
ing to the catheter. The average IoU obtained with this 
former method was 0.339 (σ = 0.195) versus an IoU of 
0.894 (σ = 0.076) of the new proposed approach, as shown 
in Table 3. After extracting the segmentation mask, we 
computed the rotation angles and the pivot point to posi-
tion the 3D model. In Fig. 5, representative samples of the 
network’s output together with the subsequent 3D overlay 
are shown. We then evaluated our technique using 100 
frames extracted from video E and testing the precision of 

Table 4  Comparison between the proposed approach based on Deep 
Learning (DL) and the former approach based on Computer Vision 
(CV) techniques for the 3D overlay performances with standard devi-
ation σ.

Euclidean Distance Geodesic Distance # Images

DL approach 4.160 ( σ = 1.448) 0.169 ( σ = 0.073) 100
CV approach 

[17]
12.569 ( σ = 4.456) 0.266 ( σ = 0.131) 100

Fig. 5  Some segmentation masks returned by our network and the 
consequent error of the 3D overlay. It is possible to notice how the 
network performs good even in borderline situations: when the cath-

eter is partially occluded a, when a tool is featured in the foreground 
b and when the camera is far from the scene c 
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the predicted anchor point and rotation angles, obtaining 
an Euclidean Distance of 4.160 (σ = 1.448) and a Geo-
desic Distance of 0.169 (σ = 0.073), compared to the pre-
vious 12.569 (σ = 4.456) and 0.266 (σ = 0.131), as shown 
in Table 4. In Fig. 4, a visual comparison of our approach 
with the previous approach is shown: given a wrong seg-
mentation map, the approach based on CV (1) predicted 
an anchor point 

(

p̂1, p̂2
)

 with a wrong value of p̂2 com-
pared to the actual point (p1, p2) and (2) returned values 
of rotations X and Z slightly wrong, while in our approach 
it is possible to notice that the value of X is correctly rotate 
the catheter toward the camera and the value of Z match 
the left-right rotation of the catheter. However, there are 
still challenges to overcome. As shown in Fig. 6, the seg-
mentation network is still vulnerable to abrupt light 
changes (a) and blood occlusion (b). These issues conse-
quently affect the 3D overlay performances: in Fig. 4 it is 
possible to notice, also underlined with a dashed white 
circle, that in (a) the anchor point of the catheter is 
wrongly detected as the area related to a high presence of 
light; in (b) the value of rotations are conditioned by the 
lower part of the catheter, affected by blood occlusion. In 
future works, we will address this problems by increasing 
the variability of data samples in the training set acquiring 
more footage from RARP procedures showing different 
light and surgical conditions. Concerning the 3D overlay 
performances, the main problem is related to the anterior 
posterior rotation along the Z-axis, which is often mispre-
dicted. For this reason, we are planning to implement a 
second CNN to identify the correct Z rotation keeping an 
overall acceptable frame rate.

Conclusion

In this work, we compared the IoU performances of different 
neural network architectures, to identify the most precise 
one to be used for the catheter segmentation. This feature 
is leveraged on to correctly overlay the 3D prostate model 
during a specific phase of the robot-assisted radical prosta-
tectomy procedure. We applied an encoder-decoder structure 
with U-Net as segmentation architecture and MobileNet as 
base network, the best compromise between precision and 
speed. We tested the network with different training data-
set extracted from different videos to obtain generalizable 
results. We finally implement a pipeline to map a 3D model 
to the 2D video stream starting from the output of the seg-
mentation, and compare it with the previous approach-based 
solely on CV techniques. The former approach was also 
tested and validated during in-vivo surgery, and the results 
obtained in the improving of the quality of the biopsy are 
documented in [17] and [35]. This demonstrated that the 
post prostatectomy biopsy’s precision increases with the 
application of our general approach. We are now testing the 
new improvements introduced in this paper. The evaluation 
is performed on two equal groups of patients. The first group 
undergoes biopsy without the aid of the presented system 
while the second group biopsies were guided by our sys-
tem. An increased accuracy in biopsies of the second group 
demonstrates the added value our system is able to provide. 
The preliminary results are encouraging: of the few cases 
tested so far with this system, 70% showed an improvement 
in accuracy in locating the tumor tissue with biopsy thanks 
to the positioning operated by our system, compared to 50% 

Fig. 6  Some examples which shows the errors of the network due to lights a and blood presence b and the consequent error of the 3D overlay
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of the previous approach. The tests will have to be confirmed 
using a larger number of cases, but we are confident that 
since in this paper we proved the technical improvement 
of the overlay precision, and the biopsy is guided by this 
overlay, the biopsy precision will increase accordingly. In 
a future publication, we will discuss more precisely the 
improvements achieved in targeted biopsies using the pre-
sented approach, computed with a larger test set of patients. 
Finally, we will also attempt to extend this approach to other 
RARP stages with the due adjustments, in order to correctly 
identify the prostate’s boundaries.
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