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Abstract—One of the main problems during in the treatment 
of anal cancer with chemotherapy and radiation is the 
occurrence of Hematologic Toxicity (HT). In particular, during 
radiotherapy it is crucial to spare Bone Marrow (BM), since the 
radiation dose received by BM in pelvic bones predicts the onset 
of HT. In this direction, the most popular strategies are based 
on the identification of the hematopoietically active BM 
(actBM), that is the part of BM in charge of blood cells 
generation, using MRI, SPECT or PET, but no approached have 
been proposed based on CT. In this study we compare four 
different classifiers in recognizing actBM  from CT images using 
36 radiomic features. We used Genetic Algorithms (GAs) to 
simultaneously optimize the feature subsets and the classifier 
parameters, separately for three pelvic subregions: iliac bone 
marrow (IBM), lower pelvis bone marrow (LPBM), and 
lumbosacral bone marrow (LSBM). The obtained classifiers 
were applied to CT sequences of a cohort of 25 patients affected 
by carcinoma of the anal canal. Classifiers results were 
compared with the actBM identified from 18FDG-PET 
(reference standard, RS). It emerged that the performances of 
the 4 classifiers are similar and they are satisfactory for IBM 
and LSBM subregions (Dice > 0.7) whereas they are poor for 
LPBM (Dice < 0.5). 

Keywords— texture features, radiomics, machine learning, 
computed tomography (CT), hematopoietically active bone 
marrow. 

I. INTRODUCTION 
The usual treatment for anal cancer patients is concurrent 

chemo-radiation [1]. Even with the use of high-tech delivery 
approaches such as Intensity-Modulated Radiation Therapy 
(IMRT), toxicity remains a problem. Compliance to therapy 
may be affected by acute Hematologic Toxicity (HT) that can 
produce asthenia, bleeding, or infections [2]. Both 
chemotherapy and radiation play an important role for HT [3]. 
In adults, almost 60% of total Bone Marrow (BM) is contained 
in pelvic bones and lumbar spine [4] and the dose received by 
BM in these structures predicts the occurrence of HT. For this 

reason, it is important to develop methods for correctly 
identify BM in pelvic bones.  

One of the most popular strategies is based on the 
recognition of the hematopoietically active BM (actBM), that 
is the part of BM in charge of blood cells generation, using 
morphological and functional imaging [5], such as magnetic 
resonance imaging (MRI), single-positron emission 
tomography (SPECT), fluorodeoxyglucose (18FDG)-
labeledor fluorothymidine (FLT)-labeled positron emission 
tomography (PET) [6–8].  

International guidelines in the diagnostic work-out of anal 
cancer consider 18FDG-PET an optional exam. On the 
contrary, Computed tomography (CT) is mandatory for all 
patients before starting radiotherapy and the identification of 
actBM from this kind of images would have a potential 
broader applicability. However, to the best of our knowledge, 
no strategies in this direction have been developed. 

Radiomics is defined as “process designed to extract a 
large number of quantitative features from digital images” [9]. 
The extracted information can be used for developing 
Computer-Aided Diagnosis (CAD) and decision support 
systems. Radiomics essentially treats each image as a matrix 
of data and, thus, it can be used to process every kind of 
images, such as CT, MRI, etc.… For example, in the study by 
Rosati et al. [10] radiomics was applied to carotid ultrasound 
images to segment carotid vessel wall layers and recognize 
subjects with higher cardiovascular risk. In the study by  
Giannini et al. [11], radiomics was applied to MRI for 
improving the performances of a CAD system for prostate 
cancer detection.  

Feature extraction is the fundamental step of radiomics, 
allowing to obtain a set of variables that describes the structure 
of interest. Variables can be essentially grouped into three 
categories: first-order statistical features, measuring the 
statistical distribution of the intensities in a given area, second-
order or texture features, capturing the spatial distribution of 



the intensities, and higher-order features, able to identify 
specific patterns. 

In a previous work [12] we conducted an exploratory study 
in order to understand if radiomics could allow the 
identification of actBM from CT. Our results showed that 
actBM identification in lumbosacral and iliac structures using 
radiomics is feasible. The aim of this study is to compare four 
different classifiers in recognizing the actBM  from CT images 
using radiomics. In this case, the feature subsets and the 
classifier parameters were simultaneously optimized using a 
Genetic Algorithm (GA) and larger population of 25 subjects 
was used for results evaluation. 

II. MATERIALS AND METHODS 

A. Population and Image Acquisition Protocol 
In this study we involved a total of 25 patients affected 

with locally advanced squamous cell carcinoma of the anal 
canal. All the patients were treated with RT-CHT delivered 
with volumetric modulated arc therapy [13], [14]. A written 
informed consent was signed by all participants included in 
the study and the ethical principle of the Helsinki Declaration 
was adopted in this study. 

During the staging work-up, 18FDG-PET-CT on a Philips 
Gemini PET/CT tomography was performed. Data acquisition 
started 90 min after intravenous injection of approximately 30 
MBq/kg body weight of 18 F-glucose. After a full-body CT 
scan, PET scans were acquired for 2.5 min/bed position. A 
dedicated fusion workstation (Extended Brilliance Workspace 
2.0) was used for PET clinical interpretation. 

A non-contrast-enhanced CT of the pelvic region was 
acquired in the supine position with both an indexed shaped 
knee rest and ankle support (CIVCO Medical Solutions, 
Kalona, IA, USA), which was used for radiotherapy planning 
on a Philips ‘‘BigBore’’ CT scanner (Philips Medical System, 
Eindhoven, NL). Voxel spacing was (0.93 mm, 0.93 mm, 3 
mm) for CT.  

A detailed description of acquisition protocol can be found 
in [12]. 

B. Reference Standard Construction 
Pelvic bone marrow (PBM) was delineated on planning 

CT and manually divided in 3 subregions: iliac bone marrow 
(IBM) including the area between the iliac crests and the upper 
border of femoral head; lower pelvis bone marrow (LPBM) 
made up of bilateral pube, ischia, acetabula and proximal 
femura, from the upper border of the femoral heads to the 
lower aspect of the ischial tuberosities; lumbosacral bone 
marrow (LSBM), comprising the area between the superior 
border of L5 somatic body a nd the lower aspect of the coccyx. 

We used the VELOCITY platform (Varian Medical 
Systems, Palo Alto, CA), to co-register planning CT with 
18FDG-PET images.  

In order to identify ActBM, we calculated the 18FDG-PET 
standardized uptake values (SUVs) within the PBM volume 
of all patients, corrected for body weight and considered [8]. 
Then, we labeled as ActBM all areas within PBM with SUV 
values higher than the mean SUV within the pelvic bones. 
Finally, we divided them into the 3 subregions: ActIBM, 
ActLPBM, ActLSBM. The remaining PBM was labeled as 
inactive BM (inactBM) and separated into the three 

subregions, analogously. These areas we used as reference 
standard (RS) for classification and validation. 

C. Active bone marrow identification from CT 
In order to recognize ActBM from CT, we first removed 

the cortical bone from the whole PBM volume. Then we 
applied radiomics to extract a set of features to be used for 
classification.  Four different classifiers belonging to machine 
learning were implemented, each optimized in terms of 
parameters and input feature subset using a GA. Finally, the 
classifiers were applied for recognizing the areas containing 
actBM on CT sequences and compared among them in terms 
of agreement with the RS. 

• Removal of cortical bone 
Since cortical bone less likely contains BM, we removed 

it from the whole PBM volume using a clustering approach. 
In particular, we applied the k-means algorithm (k=2) to the 
PBM voxels for each CT slice. This procedure divided the 
voxels into two groups based on their intensity and we assign 
to cortical bone the group with the highest mean intensity, 
since it appears lighter than cancellous bone on CT sequences. 
All these voxels were not further processed in the following 
steps. 

• Extraction of Radiomic Features 
Radiomics was applied to describe the cancellous bone 

areas on CT. In particular, regions of interest (ROIs) made of 
5-by-5 voxels were moved by 1 voxel at time in both 
directions across each CT slice. ROIs completely overlapping 
BM areas were characterized by 36 features: 4 statistical 
features (mean, standard deviation, skewness and kurtosis of 
the voxels intensities) and 32 texture (second-order) features.  

In particular, we calculated 22 texture features from the 
grey-level co-occurrence matrices (GLCM), 5 texture features 
from the Gray Level Difference Method (GLDM) [15], and 5 
texture features from the Grey-Level Run Length Method 
(GLRLM) [15]. Since no preferential texture direction can be 
identified in the areas of interest, we evaluated the GLCM, 
GLDM and GLRLM in the four main directions (0°, 45°, 90°, 
135°) and we averaged before extracting the texture features. 
The complete list of 36 features can be found in [12]. 

• Training Set Construction 
Since our aim is to construct a classifier for each pelvic 

subregion, three different training sets were created containing 
IBM, LPBM and LSBM voxels respectively. First, we 
randomly extracted 5 patients from our population. Then, for 
each subregion, 5 slices were randomly extracted from the CT 
sequence and, for each slice, 1/5 of the ROIs totally included 
in actBM areas were randomly inserted in the training set. The 
same number of ROIs completely overlapping inactBM areas 
were added, in order to obtain balance training sets. The final 
training sets were made up of 2400 ROIs for IBM, 2200 ROIs 
for LPBM, and 2500 ROIs for LSBM. Every ROI was 
characterized by the set of 36 radiomic features and labelled 
with the portion of PBM to which it belonged: active or red 
marrow (RM) if it overlaps an actBM area, inactive or yellow 
marrow (YM) otherwise. 

• FS and Classifier Optimization using GA 
In this study, we construct and compare the performances 

of the following 4 classifiers belonging to machine learning: 
K-Nearest Neighbors (KNN), Feedforward Neural Network 



(FNN), Support Vector Machine (SVM) and Decision Tree 
(DT). 

For each classifier, three Genetic Algorithms (GAs), one 
for each subregion, were used to simultaneously select the 
input features and define the classifier parameters [16], [17]. 
For this purpose, the GA solutions were codified as binary 
vectors composed of 2 parts: the first part, made of 36 bits (1 
bit for each feature), was used for selecting the most relevant 
features to be used for classification, and the second part was 
used to set the classifier parameters. Since each classifier 
requires a different set of parameters, the codification of the 
second part was adapted to each situation as follows. 

1) KNN: only the number of the K neighbors must be set 
for the KNN classifier. Usually, an approximate initial value 
for K can be obtained with the formula  𝐾 = √𝑁, where N 
was the number of elements in the training set [18]. Since in 
this study we decided to explore 64 values around this starting 
value, the second part of the GA solutions was made of 6 bits 
(2^6=64) and each value was associated to a specific K value 
for the classifier.   

2) FNN: for this application a basic structure was defined 
for the network: an input layer and a hidden layer with a 
number of neurons equal to the number of features selected 
in the first part of the GA solution; an output layer containing 
one neuron and returning the voxel class between actBM and 
inactBM. The second part of GA solutions, made of 3 bits, 
was used to add from 1 to 8 further hidden layers to this basic 
structure.  Each new layer included half of the neurons if the 
previous layer. We set the sigmoid transfer function for all 
hidden layers and the linear transfer function for the output 
layer. 

3) SVM: this classifier requires to set both the penalty 
term C that allows to balance margins and misclassification 
error, and the kernel function. These two paramenters were 
codified in the second part of GA solutions: two bits were 
used for selecting the kernel function among linear, Gaussian, 
polynomial of order 2 and polynomial of order 3, and four 
bits were adopted for defining the C value according to the 
following equation: 

𝐶 = 0.5     𝑖𝑓 𝐶 = 0 1     𝑖𝑓 𝐶 = 1(𝐶 − 1) ∗ 10    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      (1) 

where 𝐶  is the decimal value of the 4 bits codifying the 
C term. Using eq. (1) we were able to explore values between 
0.5 and 140. 

4) DT: the CART algorithm [19] and the Gini Index [19] 
were used for the tree construction and the identification of 
the best splitting rule for each node, respectively. Once these 
methods have been selected, no other parameters must be set 
for DT construction and running. For this reason, in our GA 
the optimization of the DT did not require bits associated to 
the second part of the solution. 

 

For each GA solution, the corresponding classifier was 
constructed:  it was fed with the feature subset defined by the 
first part of the solution whereas the second part defines the its 
parameters. We evaluated the goodness of GA solutions based 
on accuracy (acc), sensitivity (sens) and specificity (spec) 
returned by the classifier trained and tested using the training 

set extracted from a specific subregion. These three 
parameters were used to evaluate the goodness of GA 
solution, according to the following fitness function: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 1 − 𝑎𝑐𝑐 + 0.3 ∗  |𝑠𝑒𝑛𝑠 − 𝑠𝑝𝑒𝑐|         (2) 

Lower fitness values correspond to better solutions.  

In our GAs, we started from an initial population of 500 
solutions randomly generated. From this initial population, 
350 solutions were selected by means of the roulette wheel 
algorithm [20] and evolved for 100 iterations. We set the 
mutation probability to 0.5 and the crossover probability to 1.  

Each GA was run five times starting from the same initial 
population of solutions, in order to manage the random nature 
of the algorithm. Since each run returned the solution with the 
lowest fitness value (called best solution), we obtained five 
best solutions for each subregion and each classifier. Among 
them, we identified those with the lowest fitness value, the 
highest sensitivity and the highest specificity. We constructed 
the corresponding three classifiers and we used them for voxel 
classification.  

• Voxel Classification and Post-processing 
For each subregion, all 5-by-5 ROIs were assigned to RM 

or YM class using the classifiers obtained by GA. Since each 
voxel belonged to more than one ROI, we applied the majority 
voting to obtain the final class, reducing errors due to a single 
classification and improving the overall accuracy [21].  

We constructed a binary mask of the actBM for each CT 
slice, taking into account only the RM voxels. These masks 
were post-processed by means of a morphological closing 
operation with a disk-shaped structuring element with radius 
equal to 3. This procedure allowed to fill small holes and 
remove very small regions.  

The described procedure was repeated for the three best 
GA solutions of each classifier. Finally, the three binary masks 
were combined by means of the majority voting procedure. 

D. Validation 
For validation, the masks obtained from classification 

(CL) were compared with the RS using the Dice index, 
evaluating the overlap between the two segmentations:  𝐷𝑖𝑐𝑒 = 2 ∙ 𝑅𝑆 ∩ 𝐶𝐿𝑅𝑆 + 𝐶𝐿             (3) 

The parameter was measured slice by slice for the three 
subregions separately.  

E. Training set analysis 
The difference among the patients were analyzed by 

means of the characteristics of the training set.  

Hierarchical clustering was applied separately to divide 
the ROIs of each patients in homogeneous groups. Five 
dendrograms for each of the three subregions were 

TABLE I. NUMBER OF VARIABLES INCLUDED IN AT LEAST ONE OF THE 
3 BEST SOLUTIONS USED FOR CONSTRUCTING THE 4 CLASSIFIERS 

DT kNN FNN SVM
IBM 27 22 32 31
LPBM 29 24 34 29
LSBM 32 26 32 33



constructed. The aim of the hierarchical clustering was to look 
for differences in the training set among the patients. 

The best cut every dendrograms in two clusters. To 
characterize the cluster the two centroids were calculated. For 
each subregion, the centroids of all the clusters were compared 
by means of the Euclidean distance. 

III. RESULTS AND DISCUSSION 
Table I reports the number of variables that are included in 

at least one of the three best solutions used for constructing 
the four classifiers. It should be noted that the number of 
selected variables is high. This fact highlights the difficulties 
in discriminating the red from the yellow marrow.  

Table II presents the dice values (average and standard 
deviation) obtained with the different classifiers for the three 
subregions. Table II(a) refers to the 5 patients included in the 
training set while Table II(b) to the 20 patients of the 
validation set.  

Comparing the two tables we can make several 
observations. First, there are 2 subregions (IBM and LSBM) 
with acceptable results while the results for LPBM are not 
acceptable. The performances decrease on the validation set 
patients, as it is expected. Looking at the training set patients, 
the performances of the 4 classifiers may be considered 
similar. Also, for the validation set patients the differences are 
very small but in the 2 subregions with acceptable results. 
Comparing the results of the training set patients with those of 
the validation set, it seems that the performances obtained 
with the DT classifiers have a smaller decreasing than those 
achieved the other classifiers. 

Standard deviations are not so small, letting us think that 
there is variability among the patients. This hypothesis is 
confirmed by the results showed in Fig. 1 in which the 
performances of the DT classifier for the three subregions are 
displayed. 

The results on the single patients show that there are a few 
patients that have results extremely below average. Among 
the critical patients there is patient #5 for IBM. The fact is 
particularly strange because this patient is part of the training 
set. 

Looking for an explanation of this anomaly, we decided to 
compare the ROIs of the training set by means of hierarchical 
clustering. Table III presents the mean differences between the 
centroids of each cluster of a patient and the clusters of the 
other patients. The values are quite similar demonstrating that 
the variability among the performances are probably due to a 
training set that does not represent all the possible types of 
ROIs. 

With respect to our previous work [12], in this study we 
included 20 more subjects in our population, that were used 
for validation. Moreover, since it was an exploratory study in 
this direction, in [12] we proposed only one kind of classifier 
(DT) that was constructed subject by subject and considering 
all subregions together. Here we compared four kinds of 
classifier and we proposed one classifier for each subregion, 
optimized using GA in terms of features subset and 
parameters.  

IV. CONCLUSIONS 
In this work we used radiomics to recognize active bone 

marrow in pelvic bone from CT images. We compared 4 
different classifiers optimized using GA and trained with the 
same training set.  

The results show that the performances of the 4 classifiers 
are similar. On average they are satisfactory for IBM and 
LSBM subregions, but also in these cases there are patients 
with poor results. 

Looking at the training set we were not able to explain the 
differences. More work is needed to investigate the 
differences among the patients and to obtain satisfactory 
results also for LPBM subregion. 
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