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The CCSDS 123.0-B-2 “Low-complexity Lossless
and Near-Lossless Multispectral and Hyperspectral

Image Compression” standard, explained
Miguel Hernández-Cabronero∗, Aaron B. Kiely, Senior Member, IEEE, Matthew Klimesh, Senior Member, IEEE,

Ian Blanes, Senior Member, IEEE, Jonathan Ligo, Member, IEEE, Enrico Magli, Fellow, IEEE, Joan
Serra-Sagristà, Senior Member, IEEE

Abstract—The Consultative Committee for Space Data Systems
(CCSDS) published the CCSDS 123.0-B-2 compression standard
for multispectral and hyperspectral images. This standard ex-
tends the previous Issue, CCSDS 123.0-B-1, which only supported
lossless compression, while maintaining backward compatibility.
The main novelty of the new Issue is support for near-lossless
compression, i.e., lossy compression with user-defined absolute
and/or relative error limits in the reconstructed images. This
new feature is achieved via closed-loop quantization of prediction
errors. Two further additions arise from the new near-lossless
support: first, the calculation of predicted sample values using
sample representatives that may not be equal to the reconstructed
sample values; second, a new hybrid entropy coder designed
to provide enhanced compression performance for low-entropy
data, prevalent when non-lossless compression is used. These new
features enable significantly smaller compressed data volumes
than those achievable with CCSDS 123.0-B-1, while controlling
the quality of the decompressed images. As a result, larger
amounts of valuable information can be retrieved given a set
of bandwidth and energy consumption constraints.

Index Terms—image compression, near lossless, hyperspectral
imaging, remote sensing, compression standards.

I. INTRODUCTION

During the past 30 years, multispectral and hyperspectral
imaging (HSI) has become a staple tool for geoscience remote
sensing and Earth observation [1], [2]. This type of imagery
enables simultaneous registration of multiple parts of the elec-
tromagnetic spectrum, which provide invaluable information
for many detection, classification and unmixing problems [3].
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As a result, remote sensing HSI is used nowadays in many
commercial, scientific, and defense areas including precision
agriculture, mining, forestry, coastal and oceanic observation,
intelligence, and disaster monitoring [3]–[6]. Due to the grow-
ing amount of deployed sensors [7], the number of public and
private remote sensing stakeholders [4], and the ongoing effort
to improve the analysis of the retrieved images [8]–[19], the
importance of HSI is likely to increase in the future.

Images produced by multispectral and hyperspectral sensors
consist of multiple spectral bands, instead of the three —red,
green and blue— present in traditional color images. Depend-
ing on the application and the available hardware, the number
of registered bands can be in the order of tens, hundreds and
even thousands [20]. Thus, HSI generates significantly larger
volumes of data compared to traditional imagers. Moreover,
the spatial resolution of the deployed sensors also follows a
rising trend, further increasing the amount of data produced.
For instance, the HyspIRI sensor developed by NASA can
produce up to 5 Terabytes of data per day [21]. However, the
downlink channel capacity between the remote sensing devices
and the ground stations is constrained, which limits the amount
and quality of the retrieved data [22].

Data compression is typically applied to reduce the amount
of data to be downloaded, hence improving effective trans-
mission capacity [23]–[27]. Due to hardware and energy
constraints, employed algorithms must be tailored to attain a
beneficial trade-off between complexity and efficiency [22],
[28]. When lossless compression is applied to the images,
the resulting compressed data suffices to reconstruct identical
copies of the originals. On the other hand, lossy compression
enables transmitting even smaller data volumes, at the cost
of reconstructed images not being identical to the originals.
Among lossy compression algorithms, those that provide user-
controlled bounds on the maximum error introduced in any
sample are referred to as near-lossless.

In spite of the distortion introduced by lossy and
near-lossless methods, several studies conclude that recon-
structed images can be successfully used for the intended
analysis tasks [29]. This is sometimes observed for compressed
images up to 25 times smaller than the original ones [30].
Notwithstanding, successful analysis can only be performed
when the amount of loss is adequate for the type of images
and the task at hand [29], [31]. One of the main advantages
of near-lossless compressors is that they offer a guarantee on
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the accuracy of all reconstructed samples in an image. This
is in contrast to regular lossy compression approaches, which
typically provide competitive average distortion results, but
no assurance about the fidelity of any given set of samples.
Regardless of the employed compression regime, compression
algorithms must meet very stringent limitations in terms of
complexity and required computational resources [32]. This
constraint is particularly relevant for small satellites and
CubeSats, which are attracting much scientific and industrial
interest recently [4], [33].

The Consultative Committee for Space Data Systems
(CCSDS), founded in 1982, publishes standards for spaceflight
communication used in over 900 space missions to date.1

CCSDS standards enable cooperation between space agencies
and with industrial associates, seeking enhanced interoper-
ability, reliability, and cost-effectiveness. The latest CCSDS
compression standard is CCSDS 123.0-B-2 [34] —titled Low-
complexity Lossless and Near-Lossless Multispectral and
Hyperspectral Image Compression, and the central topic
of this paper—, which supersedes CCSDS 123.0-B-1 [35]
while maintaining backward compatibility. In the CCSDS
naming convention, suffixes “-1” and “-2” denote respec-
tively the first and second issues of a standard. Hereinafter,
CCSDS 123.0-B-1 and CCSDS 123.0-B-2 are also denoted as
Issue 1 and Issue 2, respectively.

Perhaps the most relevant novel feature of Issue 2 is a
new near-lossless compression regime, enabled by a closed-
loop scalar quantizer in the prediction stage [36]. Note that
this in-loop quantization approach enables higher compres-
sion performance than quantization of input samples before
prediction [26]. With this new feature, users can specify the
maximum error limits —absolute and/or relative— introduced
in the decompressed images. Fidelity settings can vary from
band to band, and can be periodically updated within an
image. Another new feature of Issue 2 is a hybrid entropy
coder option. It is specifically designed to provide improved
performance on low-entropy data, i.e., for the case when
prediction errors tend to be small compared to the quantizer
stepsize. The hybrid encoder extends the sample-adaptive
codes of CCSDS 123.0-B-1 with 16 additional variable-to-
variable length codes, which can represent multiple input
symbols using a single codeword. To guarantee backward com-
patibility, both lossless and near-lossless compression can be
performed with either of CCSDS 123.0-B-1’s original entropy
coders, or with the new hybrid option. A third novelty in
the new standard is a new mode within the predictor stage
called narrow local sums, designed to facilitate the design
of efficient hardware implementations. Yet another change
introduced in the new standard is added support for optional
supplementary information tables, which can provide ancillary
image or instrument information, e.g., to identify wavelengths
associated with each spectral band.

This paper provides a comprehensive overview of Issue 2,
paying special attention to new concepts and capabilities not
present in Issue 1. Contents hereafter presented extend those

1An updated list of space missions using CCSDS standards can be found
at https://public.ccsds.org/implementations/missions.aspx.

presented in a previous conference work [36]. The following
overview is more in-depth, it assumes no previous knowl-
edge of Issue 1, and a performance evaluation is included.
Furthermore, experimental results discussed here complement
those in [37] by providing both a quantitative and qualitative
comparison to other relevant compression methods. The rest
of this paper is structured as follows: Section II describes
the general structure of the compression standard, as well
as its main functional parts; Section III characterizes the
new standard’s compression performance, based on images
acquired in real space missions; finally, concluding remarks
are provided in Section IV.

II. THE NEW CCSDS 123.0-B-2 STANDARD

A. Previous work

The CCSDS Data Compression (DC) working group (1995-
2007, 2020-present) and the Multispectral and Hyperspec-
tral Data Compression (MHDC) working group (2007-2020)
have developed and maintained several compression standards
applicable to remote sensing HSI, listed chronologically in
Table I. The CCSDS 121.0-B-1 standard describes a general-
purpose adaptive entropy coder. In CCSDS 121.0-B-2, the
efficiency and flexibility of this entropy coder was enhanced,
by allowing larger block sizes, and the possibility of using
a restricted set of codewords. Since this entropy coder is
available in the new CCSDS 123.0-B-2 standard, an overview
is provided later in Section II-D1. The CCSDS 122.0-B-1 stan-
dard was designed specifically for image data, and supports
both lossless and lossy regimes. It consists of a spatial discrete
wavelet transform, which is then followed by a bit-plane
coder. The CCSDS 122.1-B-0 standard extends CCSDS 122.0-
B-1 by allowing the application of spectral decorrelation
transforms. To provide compatibility between the 122.0 and
122.1 standards, a second issue of 122.0 (CCSDS 122.0-B-2)
was also published. Finally, the CCSDS 123.0-B-1 standard
formalizes a predictive coding scheme for multispectral and
hyperspectral data. This standard is the immediate predecessor
of the one being addressed in this tutorial, and their functional
blocks are described in subsequent subsections.

Several hardware implementations can be found in the
literature of the CCSDS 123.0-B-1 standard. In [44], a par-

TABLE I: Chronology of CCSDS data compression standards.
Active recommendations (Blue books) are shown in blue,
while retired (superseded) standards (Silver books) are shown
in gray. Lossless, lossy and near-lossless compression regimes
are denoted as LL, LS, and NL, respectively. The Multispectral
column indicates whether several bands can be compressed
simultaneously.

Name Release Status Regime Multispectral
121.0-B-1 [38] May 1997 Retired LL No
122.0-B-1 [39] May 2005 Retired LL, LS No
121.0-B-2 [40] Apr 2012 Retired LL No
123.0-B-1 [35] May 2012 Retired LL Yes
122.0-B-2 [41] Sep 2017 Active LL, LS No
122.1-B-1 [42] Sep 2017 Active LL, LS Yes
123.0-B-2 [34] Feb 2019 Active LL, NL Yes
121.0-B-3 [43] Aug 2020 Active LL No

https://public.ccsds.org/implementations/missions.aspx
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Fig. 1: Structure overview of the CCSDS 123.0-B-2 compressor. New functional blocks respect to CCSDS 123.0-B-1 are
highlighted in blue, while modified blocks are shown in green.

allelization technique is described that achieves from 31
to 123 Megasamples per second (Ms/s) on the Xilinx V-
7 XC7VX690T and V-5QV FX130T FPGAs, respectively.
In [45], parallelization using C-slow retiming is proposed,
which achieves a throughput of up to 213 Ms/s on a space-
grade Virtex-5QV FPGA. In [46], another implementation
is described, with a throughput of 147 Ms/s on a Xilinx
Zynq-7020 FPGA. The FPGA design discussed in [47] allows
parallel processing of any number of samples, provided that
resource constraints are met. This enables configurable trade-
offs between throughput and power consumption. In [48], a
low-cost FPGA design is described for the prediction block
of CCSDS 123.0-B-1, with throughput as high as 20 Ms/s
on a Xilinx Zynq-7000 FPGA. In [49]–[51], low-complexity
and low-occupancy FPGA designs are proposed. These imple-
mentations are designed to be independent, and combinable
in a plug-and-play fashion. The latest version of this system,
referred to as SHyLoC 2.0, yields a throughput of 150 Ms/s on
a Xilinx Virtex XQR5VFX130 FPGA. Hardware designs for
CCSDS 123.0-B-2 are currently ongoing, with the European
Commission funding two research projects within the frame-
work of the H2020 programme [52], [53], with NASA and
ESA funding other research projects [54], [55]. To the best of
the authors’ knowledge, there are no public implementations
of Issue 2 available.

Extensions to CCSDS compression algorithms have been
published as well. In [56], a method to extend lossless pre-
dictive coding schemes —in particular CCSDS 123.0-B-1—
was proposed. This method enables compression in lossy
regime, producing constant signal-to-noise ratio and accurate
rate control. In [57], a lightweight arithmetic coder was
proposed as a possible replacement of the entropy coder
of CCSDS 123.0-B-1. Some algorithms have been proposed
related to the prediction stage of Issue 2, based on recursive
least-squares theory. These algorithms describe more adaptive
prediction methods, at the cost of increased computational
complexity. In [58], the inverse correlation matrix of the local
differences is used to update the prediction weights. In [59],
this predictor is enhanced by adaptively selecting the number
of local differences to be used. In [60], two prediction modes
are described: the first one uses only spectral neighbors in the
weight update process, the second one also employs spatial
neighbors. The best of the two for each band in terms of

mean absolute error is selected for coding. In [61], the image
is divided into non-overlapping regions, which allows parallel
application of the methods described in [59] and [60].

B. Overview of the new standard

The CCSDS 123.0-B-2 standard is based on the FLEX
compressor [62]. In turn, FLEX is based on the FL compres-
sor [63], which was formalized as CCSDS 123.0-B-1. FLEX
improves upon FL by adding adjustable lossy compression
capabilities, while maintaining the option to perform lossless
compression. The latest CCSDS compression standard extends
FLEX by adding new features such as relative error limits,
periodic error limit updating, and new prediction modes to
facilitate hardware implementations. Very importantly, Issue 2
has been designed to retain many of FL’s desirable properties,
including low computational complexity, single-pass compres-
sion and decompression, automatic adaptation to the data being
compressed and the ability to operate requiring a constant,
reasonably sized memory space. Moreover, Issue 2 inherits all
capabilities of CCSDS 123.0-B-1, allowing decompression of
data output by the latter. These features make them suitable
for use onboard spaceborne systems, including small satel-
lite missions. Note that compressed images do not include
synchronization markers or any other similar scheme. It is
assumed that the transport layer will provide the ability to
locate the next image in the event of a bit error or data loss.

The general structure of the Issue 2 compressor is shown
in Fig. 1. Similar to CCSDS 123.0-B-1, input data —signed
or unsigned integers— go through a predictor stage, in which
previously coded information is employed to predict the value
of the next sample to be compressed. As a main novelty
of Issue 2, prediction errors are uniformly quantized. The
quantization bin sizes are determined by the user’s choice
of absolute error limit, i.e., the maximum allowed absolute
difference between original and reconstructed sample values,
and/or the relative error limit, which controls the maximum
ratio of the error to the sample’s predicted value. Quantized
data are then mapped to non-negative integers, which then are
input to the entropy coder.

When non-zero error limits are selected, quantizer indices
represent approximations of the aforementioned prediction
errors, instead of the actual values. In this case, data output
by the predictor stage typically exhibits lower entropy rates,
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TABLE II: List of symbols referenced in this paper.

Symbol Meaning

General

sz(t)
Original sample value
(t-th sample of spectral band z).

D Dynamic range in bits.
smin, smax Minimum and maximum allowed sample values.
smid Mid-range sample value.

NX , NY
Horizontal and vertical
spatial dimensions of the image.

NZ Number of spectral bands of the image.

Sample representative calculation
s′′z (t) Sample representative for sz(t).

Θ Sample representative resolution.
φz Sample representative damping for band z.
ψz Sample representative offset for band z.

Prediction
ŝz(t) Predicted value for sz(t).

Ω Prediction weight arithmetic resolution.
P Number of previous bands to use for prediction.

sz,y,x Alternative notation for sz(t).
σz,y,x Local sum for sz,y,x.

dz,y,x, dNz,y,x,

dWz,y,x, d
NW
z,y,x

Local differences for sz,y,x.

Uz,y,x Local difference vector for sz,y,x.
Wz,y,x Prediction weight vector for sz,y,x
d̂z,y,x Predicted central local difference for sz,y,x.
s̃z(t) Double resolution predicted value for sz(t).

vmin, vmax,

tinc, ζ
(i)
z , ζ∗z

User-specified weight update parameters.

Quantization
∆z(t) Prediction error for sz(t).
qz(t) Quantizer index of ∆z(t).
s′z(t) Clipped quantizer bin center for ∆z(t).
az Maximum absolute error in spectral band z.
rz Maximum relative error in spectral band z.

mz(t) Maximum reconstruction error |sz(t)− s′z(t)|.
Quantizer index mapping

δz(t) Mapped quantizer index for qz(t).

θz(t)
Scaled difference betweenŝz(t)
and the closest of smin and smax.

Entropy coding
Umax Golomb-power-of-2 length limit.
Σz(t) Accumulator value for δz(t).
Γ(t) Counter value for δz(t).
γ∗ Sample-adaptive rescaling counter size.
kz(t) GPO2 code index for δz(t).
Σ̃z(t) High-resolution counter value for δz(t).
i Hybrid code index.
Ti Hybrid code entropy threshold constants.
Li Hybrid code symbol limit constants.
X Hybrid code escape symbol.

which allows the coder to produce smaller compressed files.
In order to make decompression possible, the decoder must be
able to make the same predictions as the encoder. To guarantee
this, when non-zero error limits are selected, prediction is done
using so-called sample representatives instead of the original
samples.

The rest of this section provides an informative description
of the aforementioned functional blocks. For the sake of
readability, some definitions in this description are simplified
so as to not contemplate boundary cases, e.g., image edges
when neighboring samples are involved. The interested reader
is referred to [34] for complete, normative definitions. A list
of the symbols employed hereinafter is available in Table II
for ease of reference.

C. Predictor stage

The predictor stage is designed to process input samples
sequentially in a single pass, producing one mapped quan-
tizer index per input sample. While CCSDS 123.0-B-1 was
designed to accept input samples of at most 16 bits, Issue 2
accepts bit depths, D, up to 32 bits. Hereinafter, sz(t) denotes
the t-th sample of the z-th spectral band in raster scan order,
and δz(t) its corresponding mapped quantizer index. To obtain
δz(t), a prediction of the sample’s original value —denoted
as ŝz(t)— is computed as described in Section II-C3, and the
prediction error is computed as

∆z(t) = sz(t)− ŝz(t). (1)

This prediction error is then quantized as described in Sec-
tion II-C1, to produce a quantizer index qz(t). This index
is mapped to a non-negative value δz(t) —the output of the
predictor stage— as described in Section II-C4.

The quantizer index is also transformed into its correspond-
ing sample representative s′′z (t), as described in Section II-C2.
These representatives are then used to obtain the predicted
values ŝz(t) used in Eq. (1). As mentioned above, sample
value prediction must be based on s′′z (t) instead of sz(t) to
avoid compressor-decompressor prediction differences when
compression is not lossless.

1) Quantization: The CCSDS 123.0-B-2 standard allows
quantization of each prediction error ∆z(t) into a quantizer
index qz(t) so that ∆z(t) —and thus, also the input sample
sz(t)— can be reconstructed with maximum error mz(t). A
quantizer with uniform bin size 2mz(t) + 1 is used, i.e.,

qz(t) = sgn(∆z(t)) ·
⌊
|∆z(t)|+mz(t)

2mz(t) + 1

⌋
, (2)

where the sgn function is defined as

sgn(x) =

 1, x > 0
0, x = 0
−1, x < 0

. (3)

Users control mz(t) indirectly by selecting the maximum
absolute error az , the maximum relative error rz , or both,
for each spectral band z. When only absolute error limits are
specified,

mz(t) = az. (4)
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When only relative error limits are set,

mz(t) =

⌊
rz|ŝz(t)|

2D

⌋
, (5)

where ŝz(t) is the predicted value for the original sam-
ple sz(t). Setting relative error limits allows reconstructing
different samples with different degrees of precision. More
specifically, samples predicted to have smaller magnitude are
reconstructed with lower error. Note that predicted instead of
actual sample values are used in Eq. (5) to keep the encoder
and the decoder synchronized. Thus, absolute error bounds
are not guaranteed when only a relative error limit rz > 0
is specified. When both absolute and relative error limits are
used, mz(t) is set to the minimum of equations (4) and (5).
When lossless compression is desired in band z, users may
set az = 0 or rz = 0 so that mz(t) = 0. This guarantees that
qz(t) = ∆z(t), i.e., the original samples can be reconstructed
exactly.

It is worth emphasizing that error limits can be set indi-
vidually for each spectral band. With this mechanism, higher-
importance bands can be reconstructed with greater fidelity
(even perfect fidelity), whilst lesser-priority bands can be
represented with lower fidelity using smaller compressed data
volumes [56], [64]–[66]. Furthermore, the periodic error limit
update option can be activated so that different fidelity choices
can be adapted within a band. This option is useful to meet
a given downlink transmission rate constraint, and/or to better
preserve image regions expected to contain features of interest.
It should be highlighted that the standard does not define a
specific method for selecting error limit values, e.g., to meet
a given downlink rate. This is because error limit values are
encoded in the bitstream, and thus the decoder does not need
to know how those error limits were selected.

2) Sample representatives: The decompressor must dupli-
cate the prediction operation performed by the compressor,
but in general the original image samples sz(t) cannot be
perfectly reconstructed from the compressed bitstream because
of information lost during the quantization stage. Conse-
quently, the prediction calculation (in both the compressor
and decompressor) is performed using sample representatives
s′′z (t) in place of the original samples sz(t).

A naive solution to this problem is to use the central point
s′z(t) of the quantizer bin whose index qz(t) is transmitted to
the decoder. The quantizer bin center s′z(t) can be calculated
as

s′z(t) = clip (ŝz(t) + qz(t) · (2mz(t) + 1), smin, smax) , (6)

where smin and smax are respectively the minimum and maxi-
mum values allowed for an input sample, and

clip(x, a, b) = min(b, max(a, x)) (7)

guarantees that s′z(t) falls within the allowed value range.
However, using the quantizer bin center s′z(t) as the sample
representative s′′z (t) for prediction does not always minimize
compressed data volume [37]. This is true even for mz(t) = 0,
i.e., lossless compression.

In the CCSDS 123.0-B-2 standard, three user-specified pa-
rameters can be used to adjust the choice of s′′z (t). These are

the sample representative resolution (Θ), damping (φz), and
offset (ψz) parameters. Based on them, sample representatives
s′′z (t) are defined as an integer approximation to

φz
2Θ
ŝz(t) +

(
1− φz

2Θ

)(
s′z(t)− ψz

2Θ
sgn (qz(t))mz(t)

)
. (8)

Regardless of the parameter choice, sample representatives al-
ways fall between s′z(t) and ŝz(t). Parameter Θ determines the
precision with which representatives are computed. Parameter
φz limits the effect of noisy samples in the representative
calculation. In turn, parameter ψz establishes a bias towards
s′z(t) or ŝz(t), depending on its value. While Θ is defined
for the whole image, φz and ψz can be chosen on a band-by-
band basis. Setting φz = ψz = 0 causes sample representatives
to be equal to s′z(t), larger values of φz and/or ψz produce
representatives closer to ŝz(t). Note that, depending on the
parameter choice, s′′z (t) may not be contained in the quantizer
bin identified by qz(t). Empirical results indicate that setting
the damping and offset parameters to values different from
zero tend to provide larger benefits to compression perfor-
mance when spectral bands are closer in wavelength, and for
images with larger noise prevalence [37].

3) Prediction: The predicted sample value ŝz(t) for an
input sample sz(t) is computed causally using sample
representatives from spectral bands z−P, . . . , z, where P ≥ 0
is a user-defined parameter. Within each band, previous sample
representatives are used to compute so-called local sums.
These can be regarded as a preliminary, scaled estimates of
the actual sample value. Local sums, in combination with the
sample representatives, are used to compute local differences.
The predicted value ŝz(t) is then calculated using the local
sum in the current band z, as well as a weighted sum of local
differences from the current and previous bands. Local sums
can be understood as a local mean subtraction, and prediction
as being made in the mean-subtracted domain. Fig. 2 shows
an overview of the prediction process. Its stages are more
precisely described in what follows.

Local sums are computed from previous sample represen-
tatives using one of the four available modes. Similar to
CCSDS 123.0-B-1, each mode is either neighbor-oriented or
column-oriented. As a novelty of Issue 2, modes can now
be narrow instead of wide. The sample representatives used
to calculate the local sums depend on the selected mode, as
depicted in Fig. 3. In the figure and hereinafter, sz,y,x is used
to denote the current sample sz(t), which makes explicit the
band index z, as well as the spatial coordinates (x, y) within
the band. In all modes, the highlighted sample representatives
are multiplied by the factor indicated in the aforementioned
figure, and added together to obtain the local sum σz,y,x
corresponding to sz,y,x. For instance, the narrow neighbor-
oriented local sums are computed as

σz,y,x = s′′z,y−1,x−1 + 2s′′z,y−1,x + s′′z,y−1,x+1. (9)

As can be observed in Fig. 3, column-oriented local sums em-
ploy sample representatives at the same x coordinate, whereas
neighbor-oriented sums also use sample representatives at
contiguous x coordinates. In turn, the new narrow option
removes dependency on s′′z,y,x−1, which facilitates pipelining
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Fig. 2: Overview of the prediction block in CCSDS 123.0-B-2.

(a) Wide neighbor-oriented. (b) Narrow neighbor-oriented. (c) Column-oriented.

Fig. 3: Local sum calculation modes available in Issue 2. The current sample position is highlighted in blue. Sample
representatives employed for the corresponding local sum are highlighted in orange.

in a hardware implementation, at the cost of some compression
performance loss [37]. Note that wide and narrow column-
oriented modes are identical in the general case. Notwithstand-
ing, only the wide column-oriented mode uses s′′z,y,x−1 for
calculating local sums at the first row —i.e., y = 0— of each
spectral band.

Local differences are computed based on the sample repre-
sentatives and the local sums. For an input sample sz,y,z , up to
four local difference types are computed: the central difference
(dz,y,x), and three directional differences, i.e., north (dNz,y,x),
west (dWz,y,x), and north-west (dNW

z,y,x). They are defined as
follows:

dz,y,x = 4s′′z,y,x − σz,y,x,
dNz,y,x = 4s′′z,y−1,x − σz,y,x,
dWz,y,x = 4s′′z,y,x−1 − σz,y,x,
dNW
z,y,x = 4s′′z,y−1,x−1 − σz,y,x.

(10)

The predicted sample value is then computed using either
the so-called full or reduced prediction modes. In the full
prediction mode, the local difference vector Uz,y,x is defined
using directional differences from the current spectral band,
and central differences from the previous bands:

Uz,y,x =
[
dNz,y,x, d

W
z,y,x, d

NW
z,y,x, dz−1,y,x, . . . , dz−P,y,x

]
. (11)

In the reduced prediction mode, the local difference vector
uses only central differences from previous bands:

Uz,y,x = [dz−1,y,x, . . . , dz−P,y,x]. (12)

In both modes, a prediction weight vector Wz,y,x is used to
obtain a weighted sum of local differences called the predicted
central local difference as

d̂z,y,x = WT
z,y,xUz,y,x. (13)

The predicted sample is then calculated as an integer approx-
imation to

ŝz,y,x ≈

⌊
d̂z,y,x + 2Ωσz,y,x

2Ω+2

⌋
, (14)

where Ω is a parameter that controls arithmetic precision.
The initial prediction weight vector for each band, Wz,0,0,

can be defined based on default or user-provided values.
In either case, vector elements are updated after processing
each input sample sz(t). Updates are based on the obtained
prediction error and several user-defined parameters —namely
vmin, vmax, ζ(i)

z , ζ∗z , and tinc—, which control the rate at which
weights are adapted to the original image statistics. More
precisely, smaller values of ζ(i)

z , ζ∗z , vmin, vmax, and 1/tinc
typically produce larger weight updates. This results in faster
adaptation to source statistics, at the cost of worse steady-state
compression performance [37].
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It is important to highlight that the existence of two pre-
diction modes (full and reduced), as well as two different
local mean types (column-oriented and neighbor-oriented) is
present in Issue 2 so that prediction is effective for image data
produced by different types of instruments. For instance, when
streaking artifacts are present in the images, reduced column-
oriented prediction tends to produce the best results [37].

4) Quantizer index mapping: Prediction errors ∆z(t) ob-
tained in Eq. (1), as well as their corresponding quantizer
indices qz(t) defined in Eq. (2), may be negative. However,
entropy coders available in CCSDS 123.0-B are defined for
non-negative input values. The quantizer index mapping stage
depicted in Fig. 1 provides a one-to-one mapping between
valid quantizer indices and non-negative values, referred to as
mapped quantizer indices, and denoted δz(t).

This functional block remains unaltered in respect to the
previous Issue of the standard [35]. A key property of this
mapping is that indices can be represented using the same
number of bits as the original image. This is true because
predicted values are guaranteed to satisfy ŝz(t) ∈ [smin, smax],
i.e., predictions do not exceed the range of allowed sample
input values given bit depth D. Thus, the number of possible
prediction errors equals the number of elements in the afore-
mentioned interval. Based on this, the mapping is defined as

δz(t) =


|qz(t)|+ θz(t), |qz(t)| > θz(t)
2|qz(t)|, 0 ≤ (−1)s̃z(t)qz(t) ≤ θz(t)
2|qz(t)| − 1, otherwise

(15)

where s̃z(t) is a double-resolution version of the predicted
sample value defined in Section II-C3 and θz(t) is the dif-
ference between the predicted value and the nearest interval
endpoint, i.e.,

θz(t) = min

(⌊
ŝz(t)− smin +mz(t)

2mz(t) + 1

⌋
, (16)⌊

smax − ŝz(t) +mz(t)

2mz(t) + 1

⌋)
. (17)

D. Encoder stage

The encoder stage compresses the sequence of mapped
quantizer indices δz(t) produced by the predictor stage into a
variable-length bitstream. This operation is reversible, meaning
that an identical sequence of mapped quantizer indices can be
recovered from the bitstream. These indices allow an exact or
an approximate reconstruction of the input image, depending
on the error limits set in the predictor stage.

In Issue 2, three coders are available for this purpose:
sample-adaptive, block-adaptive and hybrid. The user must
select one of them to code all mapped quantizer indices for
an image. The first two encoding options were already present
in the previous Issue of the standard [35], while the hybrid
coder is new in Issue 2. The hybrid coder tends to provide
better compression performance than the other two options,
but the benefit may be small when compression is lossless.
An overview of the three available coders is provided in the
rest of this section.

Fig. 4: Overview of the block-adaptive entropy coder. Coding
options executed in parallel for each block are highlighted in
orange.

1) Block-adaptive coder: The block-adaptive coder is a
separate CCSDS standard, originally specified in [38] and
later extended in [40], based on Rice coding. In this coder,
samples are partitioned into disjoint blocks of fixed length of
between 8 and 64 samples. Each block is encoded using the
most effective of five available coding methods: zero-block,
second extension, fundamental sequence, sample splitting,
and no-compression. A simplified diagram of this process is
shown in Fig. 4. The interested reader is referred to [67]
for a summary of key operational concepts and a detailed
performance analysis of this coder.

2) Sample-adaptive coder: In the sample-adaptive coder,
each mapped quantizer index δz(t) is compressed using a
variable-length codeword from a family of length-limited
Golomb-power-of-2 (GPO2) codes. Each GPO2 code is iden-
tified by an index k, which is selected based on the statistics
of previously coded samples. Given k and δz(t), the selected
codeword is denoted as Rk(δz(t)) and defined as follows:
(a) If

⌊
δz(t)/2k

⌋
< Umax, Rk(δz(t)) consists of

⌊
δz(t)/2k

⌋
zeros, followed by a one, followed by the k least signif-
icant bits of the binary representation of δz(t).

(b) Otherwise, Rk(δz(t)) consists of Umax zeros, followed by
the binary representation of δz(t) using D bits.

Here, Umax is a user-specified parameter used to limit the
maximum codeword length, and D is the image’s bit depth.

Two variables are used to keep track of the input data
statistics and choose the GPO2 family’s index kz(t) to code
δz(t): an accumulator Σz(t) and a counter Γ(t). The ratio of
these two variables determines kz(t):
(a) If 2Γ(t) > Σz(t) +

⌊
49Γ(t)/27

⌋
, then kz(t) = 0.

(b) Otherwise, kz(t) is the largest positive integer such that

kz(t) ≤ D − 2,
Γ(t)2kz(t) ≤ Σz(t) +

⌊
49Γ(t)/27

⌋
.

(18)

Mapped quantizer indices typically follow a non-stationary
geometric distribution, for which kz(t) is a good parameter
estimator. Note that the counter and accumulator variables are
initialized based on user-specified parameters.

The values of the counter and the accumulator variables are
updated after coding each input sample δz(t−1). More specif-
ically, Γ is increased by 1 and Σ is increased by δz(t− 1). In
addition, both Γ and Σ are periodically divided by 2 (rounding
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Fig. 5: Flow diagram of CCSDS 123.0-B-2’s hybrid coder. Logical decisions are highlighted in orange. Processes that update
the codes’ internal state are highlighted in green. Processes that emit codewords are highlighted in blue.

down) to enable calculation using finite-precision arithmetic.
This division is hereinafter referred to as renormalization.

3) Hybrid coder: The hybrid coder uses statistics of pre-
viously encoded data to classify each input mapped quantizer
index as either a high-entropy or a low-entropy sample. High-
entropy samples are compressed using a variation of the
length-limited GPO2 code family described in Section II-D2.
Low-entropy samples are coded using another family of 16
variable-to-variable length codes, i.e., several input samples
can be encoded with a single codeword. A detailed description
of these variable-to-variable length codes can be found in [68].
The ability to adaptively switch between GPO2 and variable-
to-variable length codes gives this code the name hybrid.

Variable-to-variable length codes enable very efficient com-
pression of highly predictable (low-entropy) samples, which
become more prevalent when near-lossless error limits are
used in the predictor stage. Meanwhile, variable-to-variable
length codes introduce variability in the latency between the
arrival of a low-entropy mapped quantizer index and the
output of a codeword that encodes it. To accommodate this,
codewords emitted by the hybrid coder are designed so that
they can be decoded in reverse order. This is possible thanks
to two main properties of the coder. First, output codewords
are suffix-free rather than prefix-free. Second, the compressed
image ends with a specification of the final state of the coder.
A set of so-called flush tables is provided in the standard
to signal the code states in an unambiguous an compact
manner. Reverse decoding allows simpler and more memory-
efficient implementations than FLEX’s original hybrid entropy
coder [62]. The rest of this section describes Issue 2’s hybrid
coder. A flow diagram of this coder’s logic is provided in
Fig. 5 to support this description.

Classification of samples as high or low entropy is per-
formed using a similar statistical approach to that of the
sample-adaptive coder. Two variables are used to keep track
of these statistics: a counter Γ(t) and a high-resolution accu-
mulator Σ̃z(t). These variables are updated as in the sample-
adaptive coder with two main differences. First, variables are
updated before coding the input sample. This is done so that
decoding can proceed in reverse order. To this effect, the least
significant bit of the accumulator variable is output before

renormalization so that the decoder can invert this process.
Second, Σ̃z(t) is increased by 4δz(t) instead of δz(t) to enable
a more precise estimation of the input data statistics. The ratio
Σ̃z(t)/Γ(t) determines whether a sample is a high-entropy or
low-entropy symbol. More specifically, δz(t) is defined to be
high entropy if and only if

Σ̃z(t) · 214 ≥ T0 · Γ(t), (19)

where T0 is a constant provided in the standard. This definition
allows image regions that are well predicted to be coded
with low-entropy codes, while using the high-entropy mode
otherwise.

Each high-entropy sample is encoded using a family of re-
versed length-limited GPO2 codes. As in the sample-adaptive
case, each code is identified by an index kz(t). For the hybrid
coder, kz(t) is the largest positive integer that satisfies

kz(t) ≤ max(D − 2, 2),

Γ(t)2kz(t)+2 ≤ Σ̃z(t) +
⌊
49Γ(t)/25

⌋
.

(20)

The codeword emitted for the high-entropy sample δz(t),
R′kz(t)(δz(t)) is defined as follows:

(a) If
⌊
δz(t)/2kz(t)

⌋
< Umax, then R′kz(t)(δz(t)) consists of

the kz(t) least significant bits of the binary representation
of δz(t), followed by a one, followed by

⌊
δz(t)/2kz(t)

⌋
zeros.

(b) Otherwise, R′kz(t)(δz(t)) consists of the D-bit binary
representation of δz(t) followed by Umax zeros.

Low-entropy samples are processed with one of 16 available
variable-to-variable length codes. The code index used to
process a low-entropy sample δz(t) is the largest i satisfying

Σ̃z(t) · 214 < Γ(t) · Ti, 0 ≤ i ≤ 15, (21)

where T0, . . . , T15 are constants provided in the standard, and
T0 is used in Eq. (19). This definition allows the magnitude
of recent prediction errors to determine the next variable-to-
variable length code to be used.

Each code i has a prefix of previously input samples. When
a sample is processed, a symbol is added to the corresponding
code’s prefix. The standard defines a list of complete prefixes
for each code. At this point, if code i’s prefix matches any of
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TABLE III: Summary of employed corpus properties. Entropy (in bits) is averaged for all images in each row.

Instrument Short name Image Type Bit depth D Entropy #Bands Width Height #Images
Atmospheric Infrared Sounder AIRS raw 12 11.2 1501 90 135 1

Airborne Visible/Infrared
Imaging Spectrometer AVIRIS

raw 15 12.6 224 680 512 1
raw 10 8.6 224 614 512 1
calibrated 13 10.3 224 677 512 13

Compact Airborne Spectrographic Imager CASI raw 12, 13, 15 11.6 72 406 1225 3

Compact Reconnaissance Imaging
Spectrometer for Mars CRISM

FRT, raw 11 10.1 107 640 510 2
FRT, raw 12, 13 10.4 438 640 510 2
FRT, raw 12, 13 10.6 545 640 510 2
HRL, raw 12, 13 11.2 545 320 450 2
MSP, raw 11 9.8 74 64 2700 2

Hyperion Hyperion raw 12 8.5 242 256 1024 3

Infrared Atmospheric
Sounding Interferometer IASI calibrated 12 11.0 8461 66 60 1

Landsat Landsat raw 8 6.6 6 1024 1024 3

Moon Mineralogy Mapper M3 target, raw 12 9.7 260 640 512 2
global, raw 11, 12 9.4 86 320 512 2

Moderate Resolution Imaging
Spectroradiometer MODIS

night, raw 12 10.8 17 1354 2030 2
day, raw 12, 13 8.6 14 1354 2030 2
500 m, raw 12, 13 11.1 5 2708 4060 2
250 m, raw 12 10.4 2 5416 8120 2

Meteosat Second Generation MSG calibrated 10 8.2 11 3712 3712 1

PLEIADES High Resolution PLEIADES HR, simulated 12 10.8 4 224 2465 1
HR, simulated 12 10.2 4 224 2448 3

SWIR Full Spectrum Imager SFSI calibrated 15 9.9 240 452 140 1
raw 9, 11 7.4 240 496 140 2

Système Pour l’Observation de
la Terre 5 High Resolution Geometric SPOT5 HRG, processed 8 6.8 3 1024 1024 1

Vegetation Vegetation raw 10 9.4 4 1728 10080 2

those complete prefixes, a codeword is emitted that uniquely
identifies that prefix and its associated sequence of input
samples. After that, the prefix for that code is cleared.

It is worth noting that complete prefixes defined for code i
cannot contain sample values satisfying δz(t) > Li, where
L0, . . . , L15 are constants defined in the standard. When
such a sample is processed —i.e., referred to as an unlikely
sample—, R′0(δz(t)−Li−1) is emitted and an escape symbol
X is added to the prefix instead of δz(t). Adding X to any
code’s prefix is guaranteed to make it complete, and trigger
emission of an output codeword. The input symbol limit Li

limits the size of the input alphabet in the low-entropy codes,
by treating all unlikely symbols in the same way. This allows
us to reduce the number of codewords in a code. Since escape
symbols occur with low probability, the efficiency with which
these residual values are encoded has only a small impact on
overall coding effectiveness.

III. COMPRESSION PERFORMANCE

A. Experimental setup

The lossless and near-lossless compression performance of
Issue 2 is illustrated in this section. Results are provided
for the block-adaptive and sample-adaptive entropy coders,
already present in Issue 1, and compared to those of the new
hybrid coder defined in Issue 2. Its computational complexity
is comprehensively addressed in [69], so execution time results

are not presented here. Empirical results have been obtained
using a very varied corpus of 17 multispectral images, 38 hy-
perspectral images, and 2 sounder data samples. These were
generated by 14 different instruments deployed in real mis-
sions, except for the PLEIADES images, which are simulated.
Most of the images included are raw, giving more weight to
the direct compression of images as they are acquired, while
non-raw instances that were processed after acquisition are
also included to represent some possible on-board calibration.
Both pushbroom and whiskbroom sensors are covered in the
corpus, and include the streaking artifacts that characteristic
of pushbroom instruments (such as Hyperion) in uncalibrated
images. A varied range of spectral separations are considered,
and examples of images with significant noise levels (M3)
or that are acquired with airborne instruments (CASI) are
included as well. Regarding dynamic range, all hyperspectral
and sounding instruments produce data with bit depths of at
least 11 bits, whereas for multispectral instruments samples of
lower bit depths are available too.

A summary of this corpus, which was produced by the
CCSDS’ MHDC working group, is provided in Table III. All
images are publicly available, except for those produced by
the IASI and MSG instruments due to licensing restrictions.2

The Entropy column in the table represents the zero-order

2Download links for the test images can be found at at http://cwe.ccsds.
org/sls/docs/sls-dc/123.0-B-Info/TestData.

http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData
http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData
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entropy of the images. Note that this is not a strict bound
on compression efficiency, and should only be regarded as an
assessment of the difficulty of compressing the images.

Performance results are obtained by invoking Issue 2’s com-
pressor with the default set of parameters described in [37],
except for the Hyperion, IASI, MODIS, and SPOT5 instru-
ments. For these, the following parameters are modified to
enhance compression performance: tinc = 29, vmin = vmax = 0,
Umax = 32, γ? = 11 and γ0 = 4. Full prediction with wide,
neighbor-oriented local sums is used in most images, including
the four aforementioned instruments. Column-oriented local
sums are employed for images that present streaking artifacts,
i.e., when average sample values exhibit strong differences
for contiguous x positions. A full analysis of the impact on
performance of parameter tuning, as well as an identification
of images with streaking artifacts, can be found in [37].

To provide a comparison baseline, the authors’ implementa-
tion of CCSDS 122.1-B-1, the reference implementation of the
JPEG-LS standard3 and the original authors’ implementation
of M-CALIC [70] have been included in the comparison
as well. For CCSDS 122.1-B-1, the best-performing con-
figuration in terms of rate-distortion, i.e., float DWT and
spectral POT, is used. JPEG-LS is arguably the best-known
compression standard that offers low complexity and supports
both lossless and near-lossless regimes. In turn, M-CALIC is
another low-complexity algorithm well-known for its competi-
tive compression performance. Note that, since JPEG-LS does
not admit an arbitrary number of spectral bands, images are
reshaped by concatenating the bands along the Y axis. More
specifically, an image with width, height and number of bands
respectively equal to NX , NY and NZ is transformed into
a one-band image with the same width and height equal to
NY ·NZ . No attempt is made to perform decorrelation across
spectral bands for JPEG-LS. In contrast, M-CALIC is designed
specifically to exploit spectral redundancy in hyperspectral
images.

B. Lossless compression results

Lossless compression results are obtained for all Issue 2’s
entropy coders, for JPEG-LS, and for M-CALIC by setting
the absolute error limit to zero. For each image I in the test
corpus, the compression ratio is defined as

CR(I) =
NX ·NY ·NZ ·D

compressed data size (bits)
. (22)

Based on this definition, higher compression ratio values
indicate better compression. A distribution of the obtained
compression ratios for each compressor is shown in Fig. 6.
Vertical bar heights indicate the relative frequency of each
range of compression ratios. The average compression ratio,
plus/minus one standard deviation is denoted with a dot and
two horizontal bars. Note that aggregated results presented
here and in Section III-C are not necessarily representative of

3The employed JPEG-LS implementation is available at https://github.
com/thorfdbg/libjpeg. To attain lossless and near-lossless compression, this
compressor is invoked with parameter -ls 0.
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Fig. 6: Distribution of lossless compression ratios.

any particular image or instrument. This is due to their differ-
ent statistical properties, and the fact that different number of
images are available for each instrument.

As can be observed, all three entropy coders in Issue 2 yield
similar compression ratio distributions and average values. In
turn, JPEG-LS and M-CALIC produce average compression
ratios respectively 25% and 13% lower than those of Issue 2.
These differences can be explained by a more advanced
predictor stage used in Issue 2.

To provide further insight, average compression ratios
grouped by instrument are shown in the “Lossless” columns of
Table IV for Issue 2 using the hybrid coder, for JPEG-LS, and
for M-CALIC. Consistent with the previous discussion, the
CCSDS compressor yields higher compression efficiency than
JPEG-LS and M-CALIC for most instruments. Improvements
of up to 63.7% and 63.4%, respectively, can be observed.
Only for the MODIS instrument does JPEG-LS perform
better, yielding an average compression ratio 7.7% higher than
Issue 2’s with the hybrid coder. In turn, M-CALIC improves
upon JPEG-LS in all cases, and is able to yield results between
0.3% and 8.9% better than Issue 2 for five of the tested
instruments. These differences can be explained by the fact
that M-CALIC employs an arithmetic entropy coder, which
enables better modeling of the source’s statistics, although at
the cost of higher computational complexity.

C. Near-lossless compression results

Near-lossless compression results are obtained for all three
entropy coders in CCSDS 123.0-B-2, as well as for JPEG-
LS and M-CALIC, by limiting the maximum absolute error in
any pixel of the reconstructed images. This error is hereinafter
denoted as peak absolute error (PAE). Two illustrative exam-
ples of near-lossless compression using Issue 2 and JPEG-LS
are provided in Fig. 7. In the top row, it can be observed
that Issue 2’s hybrid coder enables higher image quality –i.e.,
lower PAE– at similar albeit smaller compressed data sizes.
Furthermore, for sufficiently low PAEs, reconstructed images
are hardly distinguishable from the originals. In turn, the
bottom row illustrates how moderately larger PAEs introduce

https://github.com/thorfdbg/libjpeg
https://github.com/thorfdbg/libjpeg
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TABLE IV: Average compression ratios results grouped by instrument.

Instrument CCSDS 123.0-B-2 (Hybrid coder) JPEG-LS M-CALIC
Lossless PAE 1 PAE 2 PAE 5 PAE 16 Lossless PAE 1 PAE 2 PAE 5 PAE 16 Lossless PAE 1 PAE 2 PAE 5 PAE 16

AIRS 2.86 4.56 6.09 10.76 35.74 1.89 2.51 2.95 3.97 6.68 2.87 4.51 5.92 9.95 27.51
AVIRIS 3.11 5.28 7.66 15.29 37.52 1.90 2.56 3.03 4.09 7.06 3.01 4.82 6.31 10.23 21.36
CASI 2.29 3.22 3.96 5.91 12.21 1.66 2.08 2.36 2.96 4.38 2.27 3.17 3.87 5.63 11.09
CRISM 3.10 5.05 6.87 11.15 22.93 2.20 3.08 3.71 5.14 8.17 2.21 3.21 4.01 6.08 13.43
Hyperion 2.86 4.57 6.09 10.80 44.75 2.44 3.56 4.48 6.76 13.22 2.79 4.36 5.72 9.59 28.38
IASI 2.53 3.75 4.70 7.17 14.96 1.92 2.56 3.01 4.05 7.12 2.48 3.64 4.55 6.94 15.75
Landsat 2.35 4.12 6.24 12.80 41.88 2.13 3.68 5.09 8.46 20.33 2.37 3.97 5.40 9.25 19.51
M3 4.38 7.44 9.61 14.27 24.28 2.72 4.15 5.29 7.27 10.33 2.68 4.17 5.42 8.86 22.49
MODIS 1.94 2.60 3.07 4.12 7.35 2.09 2.77 3.24 4.27 6.95 2.13 2.72 3.22 4.35 7.39
MSG 2.77 4.49 6.06 10.01 24.18 2.64 4.20 5.39 8.08 14.78 2.73 4.12 5.31 8.22 17.45
PLEIADES 1.66 2.12 2.43 3.11 5.04 1.62 2.06 2.36 3.01 4.64 1.68 2.16 2.49 3.23 5.18
SFSI 3.07 5.18 7.02 11.97 53.21 2.58 3.75 4.65 6.99 16.50 2.91 4.39 5.65 9.13 30.05
SPOT5 1.55 2.21 2.74 4.22 10.00 1.45 2.03 2.48 3.63 6.69 1.54 2.22 2.74 4.07 8.90
Vegetation 1.95 2.77 3.40 5.04 10.54 1.87 2.61 3.16 4.42 7.78 2.03 2.86 3.51 5.08 10.05

All 2.67 4.20 5.55 9.07 22.98 2.12 3.00 3.67 5.17 9.20 2.35 3.44 4.34 6.70 15.43

(a) (b) (c)

(d) (e) (f)

Fig. 7: (a) Crop (256 × 256) of band 220 of original AVIRIS f060925t01p00r12 sc00 image (calibrated, 16 bit); (b) and
(c) co-located crops of the same AVIRIS image after reconstruction with CCSDS 123.0-B-2’s hybrid coder (compressed
at 2.4 bps) and JPEG-LS (2.9 bps) with absolute error limits 2 and 16, respectively; (d) Crop (128 × 128) of original
SPOT5 toulouse spot5 xs extract1 image (processed, 8 bit); (e) and (f) co-located crops of the same SPOT5 image after
reconstruction with CCSDS 123.0-B-2’s hybrid coder (1.1 bps) and JPEG-LS (1.4 bps) with absolute error limit 12. Brightness
and magnification have been adjusted in all images to facilitate comparison. The SPOT5 images are presented using false color.
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Fig. 8: Average compressed data rate in bits per sample as a
function of the maximum absolute error.

some texture artifacts but retain the image’s structure, and
might not hinder analysis tasks performed on it [30], [31].
Visual inspection of this row also reveals that Issue 2 intro-
duces distortion patterns similar to those of JPEG-LS. This
is as expected, since both algorithms apply quantization after
prediction. It is worth noting that the choice of entropy coder
in CCSDS 123.0-B does not affect the obtained reconstructed
image, only the compressed data size. Compressed data rate
differences aside, a similar discussion regarding visual quality
applies for M-CALIC too. Notwithstanding, it is omitted here
in the interest of space.

The rest of this section provides quantitative discussion
of the compression performance of the aforementioned algo-
rithms, in relation to the fidelity of the reconstructed images.
For each compressor, PAE, and input image I , the compressed
data rate expressed in bits per sample (bps) is computed as

compressed data rate =
compressed data size (bits)

NX ·NY ·NZ
. (23)

In turn, the peak signal-to-noise ratio (PSNR) between I and
its reconstructed counterpart Î is defined as

PSNR(I, Î) = 10 · log10

(
MAX2

I

MSE(I, Î)

)
(dB). (24)

Here, MAXI denotes the dynamic range of an image —i.e.,
2D − 1, where D is I’s bit depth—, and MSE(I, Î) is the
mean squared error between I and Î , i.e.,

MSE(I, Î) =

NX∑
x

NY∑
y

NZ∑
z

(
Iz,y,x − Îz,y,x

)2

NX ·NY ·NZ
. (25)
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Fig. 9: Average PSNR results as a function of the average
compressed data rate.

The spectral angle is computed at each (x, y) position for each
original and reconstructed image pair, defined in [71] as

α(x, y) = cos−1

 ∑Nz

z Iz,y,x · Îz,y,x√∑Nz

z I2
z,y,x ·

√∑Nz

z Î2
z,y,x

 . (26)

The mean spectral angle and maximum spectral angle metrics
are defined, respectively, as the average and maximum spectral
angle for all (x, y) positions in the image.

Fig. 8 provides near-lossless compressed data rate results
for the three entropy coders of Issue 2, for JPEG-LS, and for
M-CALIC, setting PAE limits between 0 (lossless) and 32.
For each coder and PAE value, the plotted value is the mean
compressed data rate for all images in the corpus. Markers
have been included in the figure at the integer PAE values
for which data have been obtained, and linear interpolation is
used between them for the sake of readability. Results indicate
that for larger PAE values, differences between Issue 2’s
coders become more apparent than for the lossless case. When
compared to the block-adaptive and sample-adaptive coders,
the hybrid coder yields compressed data rates up to 0.2 bps
and 0.6 bps better, respectively. For PAE values up to 5,
both JPEG-LS and M-CALIC are outperformed by all entropy
coders of Issue 2. For PAE value from 20 onwards, M-CALIC
improves upon the block-adaptive coder. For PAEs larger than
25, JPEG-LS produces results better than the sample-adaptive
coder. Notwithstanding, for PAE values of 2 and above, the
hybrid coder’s average results are consistently better than all
other compressors for all tested PAE values.

The global results presented in Fig. 8 are complemented
by Table IV, reporting also average compression ratios for
several PAE values. In it, average compression ratios for each
instrument are provided. It can be observed that per-instrument
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Fig. 10: Spectral angle metrics as a function of the compressed data rate: (a) mean spectral angle; (b) maximum spectral angle.

results are generally consistent with global averages, with
similar exceptions as for the lossless case.

These behaviors are explained by the different predictor
stages, and by the way in which each coder handles the
low-entropy data prevalent in near-lossless compression. The
sample-adaptive coder does not have a mode in which multiple
input symbols are compressed in a single codeword. Therefore,
the minimum length of any sample-adaptive codeword sets
a lower bound for the compression rates achievable by this
coder. Both JPEG-LS and the block-adaptive coder have so-
called run-length modes that allow coding of consecutive zeros
in a single codeword. Thus, their compression performance
is increased as the prevalence of such runs is increased. In
turn, the 16 stateful codes featured by the hybrid coder enable
a more efficient processing of low-entropy data, including
inputs that are not sequences of only zeros. Finally, M-
CALIC’s performance improvement for higher PAEs is due
to its arithmetic entropy coder, which is close to optimal for
most data distributions.

In addition to considering the compressed data rates and
PAE of the reconstructed images, it is useful to consider
other distortion metrics to better understand the efficiency
of each coder. To complete the rate-distortion compression
performance comparison, the average PSNR as a function of
the average compressed data rate is plotted in Fig. 9. The
mean spectral angle and maximum spectral angle metrics are
plotted in Fig. 10a and Fig.??, respectively. All metrics are
computed for each coder, PAE value (or target bitrate, for
CCSDS 122.1-B-1), and test image, and the mean values
are used in the plots. Markers are placed at the obtained
data points, and linear interpolation is used between them to
enhance readability. As in the previous case, the hybrid coder
yields better fidelity results than the other near-lossless coders
for all metrics, especially at low compressed data rates. This
and other differences between compressors are comparable to

those shown in Fig. 8, for similar reasons as above. When
compared to CCSDS 122.1-B-1, all near-lossless codecs yield
significantly better PAE results. This is as expected, since
the CCSDS 122.1-B-1 standard is not designed to bound the
maximum introduced error, but instead to minimize MSE. At
low bitrates, i.e. below 1.25 bps, CCSDS 122.1-B-1 yields
the best PSNR results of all tested codecs. Again, this can
be explained by the minimization goal of this standard. At
higher bitrates, the Hybrid coder of Issue 2 produces the best
PSNR results, which illustrates the competitive performance
of CCSDS 123.0-B-2. When spectral angles are considered,
the relative performance of the near-lossless coders is very
similar to the PAE and PSNR cases. In turn, for the mean
spectral angle metric, CCSDS 122.1-B-1 improves upon all
other coders for bitrates up to 2 bps. This can be explained by
the fact that CCSDS 122.1-B-1 applies a spectral transform
across all bands, instead of predicting pixel values using a
local spatial and spectral neighborhood. Interestingly, when
the maximum spectral angle is considered, CCSDS 123.0-B-2
yields better results than CCSDS 122.1-B-1 except for low
bitrates, below 0.75 bps. This can be explained by the fact
that CCSDS 123.0-B-2 is near-lossless, i.e., it bounds the
maximum error introduced in any pixel of the image.

IV. CONCLUSIONS

Multispectral and hyperspectral imaging has become an
invaluable tool for many commercial, scientific and defense
applications of remote sensing. With the advent of sensors with
enhanced spatial and spectral resolution, data compression is
paramount to maximize the amount of valuable information
retrieved from spaceborne systems. In particular, near-lossless
compression can significantly improve the effective capacity
of transmission channels, while providing strict control of
the distortion introduced in the images. Even if rate-control
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strategies are possible, strong quality guarantees are prior-
itized over obtaining constant data rates in near-real-time
transmission. The CCSDS 123.0-B-2 compression standard
published by the Consultative Committee on Space Data
Systems enables specification of absolute and/or relative error
limits at the image or band level. This is achieved via uniform
in-loop quantization of prediction errors, obtaining higher
performance at the expense of a simpler implementation.
Since the decompressor does not have access to the original
image samples, sample representatives are used instead in
the predictor stage. To fully exploit the lower entropy rates
exhibited by quantized data, a new hybrid entropy coder is
defined for Issue 2. This coder includes 16 variable-to-variable
length codes, which are selected on a sample-by-sample basis
depending on the statistics of previously coded information.
One last improvement over CCSDS 123.0-B-1 is the definition
of narrow local sums that facilitate the design of highly
efficient hardware implementations. Experimental results with
a comprehensive corpus of test images indicate that the new
hybrid coder yields competitive compression performance
results, measurably improving upon other coding modes of
Issue 2 as well as upon the JPEG-LS compression standard
and the M-CALIC algorithm. The standard obtains state-of-
the-art performance in absolute or relative error measurements,
while other approaches may provide better performance in
terms of quadratic error at very low rates.

Regarding future developments related to this standard, it is
unlikely that major changes are introduced soon.
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Sagristà, “The Hybrid Entropy Encoder of CCSDS 123.0-B-2: Insights
and Decoding Process,” in 7th International Workshop on On-Board
Payload Data Compression (OBPDC), Sep. 2020.

[69] M. Hernández-Cabronero, J. Portell, I. Blanes, and J. Serra-Sagristà,
“High-Performance Lossless Compression of Hyperspectral Remote
Sensing Scenes Based on Spectral Decorrelation,” MDPI Remote Sens-
ing, vol. 12, no. 18, p. 2955, 2020.

[70] E. Magli, G. Olmo, and E. Quacchio, “Optimized onboard lossless and
near-lossless compression of hyperspectral data using CALIC,” IEEE
Geosci. Remote Sens. Lett., vol. 1, no. 1, pp. 21–25, 2004.

[71] F. A. Kruse, A. Lefkoff, J. Boardman, K. Heidebrecht, A. Shapiro,
P. Barloon, and A. Goetz, “The spectral image processing system (SIPS)-
interactive visualization and analysis of imaging spectrometer data,” in
AIP Conference Proceedings, vol. 283, no. 1. American Institute of
Physics, 1993, pp. 192–201.

https://public.ccsds.org/Pubs/123x0b2c1.pdf
https://public.ccsds.org/Pubs/123x0b1ec1s.pdf
https://public.ccsds.org/Pubs/121x0b1sc2.pdf
https://public.ccsds.org/Pubs/121x0b1sc2.pdf
https://public.ccsds.org/Pubs/122x0b1c3s.pdf
https://public.ccsds.org/Pubs/121x0b2ec1s.pdf
https://public.ccsds.org/Pubs/122x0b2.pdf
https://public.ccsds.org/Pubs/122x1b1.pdf
https://public.ccsds.org/Pubs/121x0b3.pdf
https://cordis.europa.eu/project/id/776151
https://cordis.europa.eu/project/id/776151
https://cordis.europa.eu/project/id/776311
https://cordis.europa.eu/project/id/776311
http://esamultimedia.esa.int/docs/EarthObservation/Copernicus_CHIME_MRD_v2.1_Issued20190723.pdf
http://esamultimedia.esa.int/docs/EarthObservation/Copernicus_CHIME_MRD_v2.1_Issued20190723.pdf
http://esamultimedia.esa.int/docs/EarthObservation/Copernicus_CHIME_MRD_v2.1_Issued20190723.pdf
http://esamultimedia.esa.int/docs/EarthObservation/Copernicus_CHIME_MRD_v2.1_Issued20190723.pdf
http://esamultimedia.esa.int/docs/EarthObservation/Copernicus_CHIME_MRD_v2.1_Issued20190723.pdf

