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ABSTRACT: 
 
In this research, an innovative comparison between 3D reconstructions obtained by means of Artificial Intelligence, in particular 
NeRF Neural Networks, and by Structure-from-Motion (SfM) and Multi-View-Stereo (MVS) open-source algorithms is proposed. 
The 3D reconstruction comparison is performed on two test cases, one of cultural interest, one useful only for technical discussion.  
It is known that the approaches are traditionally used with different objectives and in different contexts but they can however also be 
used with similar purpose, i.e., 3D reconstruction. In particular, we were interested in evaluating how NeRF reconstructions are 
accurate from a metric point of view and how the models obtained from the application of NeRF differ from the model obtained from 
the classical photogrammetry. By analyzing the results in the considered test cases, we show how NeRF networks, although 
computationally demanding, can be an interesting alternative or complementary methodology, especially in cases where classical 
photogrammetric techniques do not allow satisfactory results to be achieved. It is therefore suggested to expand efforts in this 
direction by exploiting, for example, the numerous improvement proposals of the original NeRF network. 
 
 

 
* Corresponding author 

1. INTRODUCTION: MOTIVATION AND STATE OF 
THE ART 

 
Historical images are often the only remaining traces of 
monuments that have been lost or changed over time. Starting 
from images, however, it is possible to virtually reconstruct the 
cultural assets, thus providing a non-material way of preserving 
the goods of great use in terms of historical memory. 3D 
reconstruction methodologies have been proposed and used for 
several years and are traditionally carried out through 
algorithms and photogrammetry pipelines, i.e., Structure-from-
Motion (SfM) and Multi-View-Stereo (MVS) approaches 
(Schönberger and Frahm, 2016). Actually, the 3D 
reconstruction starting from historical images poses several 
challenges such as the identification of the starting images from 
the vast archive material and the ability of photogrammetric 
algorithms to work with numerically reduced and low-quality 
images. We previously proposed an innovative approach based 
on deep learning image recognition, for the automatic selection 
of images of a specific monument from archive material, i.e., 
historical images or film footage. The strategy was designed to 
be used upstream of a standard photogrammetry pipeline and 
has proven effective in specific test cases (Condorelli et al., 
2020). 
In this work, we propose an exploratory application of an 
alternative 3D reconstruction technique that can be of help in 
the conditions of particular criticality of the starting material in 
which, as known, photogrammetric techniques can lead to 
reduced quality results. In particular we consider the recent 
NeRF neural networks (Mildenhall et al., 2020) as a 
complementary and alternative tool to traditional 
photogrammetry. Neural Radiance Fields (NeRF) approach 

models the radiance field and density of a scene from a set of 
input images within the weights of a neural network and can 
render high-resolution photorealistic novel views of real objects 
and scenes from RGB images captured in natural settings 
(Mildenhall et al., 2020). NeRF method aims to generate 
volumetric representations of the scene and is typically not 
preferred for 3D reconstruction due to its inherent limitations. 
However, starting from the trained network, it is possible to 
reconstruct the triangulated mesh of the analyzed object, using 
well-established computer graphics algorithms (e.g., marching 
cubes, Lorensen and Cline, 1987). The potentiality of NeRF for 
3D reconstruction is that, differently from classical 
photogrammetry, it is able to 3D reconstruct objects that present 
features that could lead to a failure of the photogrammetric 
process, such as thin objects (trees, leaves), or reflecting (metal) 
objects, etc. The network can represent detailed scene geometry 
with complex occlusions, without any background isolation or 
masking. 
Our analysis focuses on the evaluation of two test cases – one 
properly of cultural interest, one useful only for technical 
discussion – and compares the reconstruction results using 
traditional photogrammetry against innovative NeRF strategy.  
We will only consider the original NeRF network, devised for 
images of static subjects captured under controlled settings. 
However, a number of subsequent elaborations have already 
been proposed to overcome some found limitations of NeRF 
technology. For example, in order to adapt the network to other 
types of images acquired under different situations, NeRF-W 
was proposed and applied to the reconstruction of famous 
monuments starting from the Photo Tourism dataset (Snavely et 
al., 2006). NeRF-W managed to synthesize novel views of 
complex outdoor scenes using only unstructured collections of 
in-the-wild photographs in which variable illumination or 
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transient occlusions are present (Martin-Brualla et al., 2020). 
Another remarkable attempt to address the different lighting 
condition issues was proposed in Srinivasan et al., 2020. The 
method takes as input a set of images of a scene illuminated by 
unconstrained known lighting, and produces as output a 3D 
representation that can be rendered from novel viewpoints under 
arbitrary lighting conditions. These studies could be particularly 
interesting in the case of historical images that present low 
resolution, black and white colour and bad illumination. 
Another interesting modification of the NeRF network is related 
to single shot reconstruction. PixelNeRF (Yu et al., 2020) is a 
learning framework that predicts a continuous neural scene 
representation conditioned on one or few input images allowing 
novel view synthesis and single image 3D reconstruction of a 
specific scene by implicitly encoding volumetric density and 
colour through a neural network. This network potentially 
addresses one of the most serious issues of image-based 
processes since photogrammetry requires two or more images in 
order to achieve reconstruction. Finally, it is worth mentioning 
the NeRFs related to the video process. D-NeRF could be of 
help for the 3D reconstruction of images taken from historical 
film footage. D-NeRF is a method that extends neural radiance 
fields to a dynamic domain, allowing to reconstruct and render 
novel images of objects under rigid and non-rigid motions from 
a single camera moving around the scene (Pumarola et al., 
2020). Another version of D-NeRF allows the reconstruction of 
non-rigidly deforming scenes using photos/videos captured 
casually from mobile phones from arbitrary viewpoints (Park et 
al., 2020). 
 

2. MATERIAL AND METHODS 

2.1 Photogrammetric pipeline 

The photogrammetric pipeline chosen as reference in this 
research is the COLMAP (Schönberger and Frahm, 2016) open-
source Structure-from-Motion and Multi-View Stereo (MVS) 
algorithm implementation, developed by ETH of Zurich 
(https://github.com/colmap/colmap, 2020). The SfM sequential 
processing pipeline is: 1) Feature detection and extraction, 2) 
Feature matching and geometric verification, 3) Structure and 
motion reconstruction (Schönberger and Frahm, 2016). 
After that, the MVS implementation in COLMAP is used for 
the generation of the mesh. Multi-View Stereo (MVS) in 
COLMAP uses the output of SfM to compute depth and/or 
normality information for each pixel in an image. Merging the 
depth and normal maps from multiple 3D images then produces 
a dense point cloud of the scene. Using the depth and normal 

information from the merged point cloud, algorithms such as 
Poisson surface reconstruction can recover the 3D surface 
geometry of the scene (Schönberger and Frahm, 2016). 
 
2.2 Neural Radiance Fields (NeRF) for View Synthesis 

According to the Neural Radiance Field (NeRF) approach 
(Mildenhall et al., 2020),  a continuous scene can be represented 
as a 5D function whose inputs are a 3D location  
and a 2D viewing direction. The viewing direction can be 
expressed in terms of angles ) or using a normalized vector 

. The outputs are an emitted RGB color  and 
volume density .  
The 5D scene representation is approximated with a deep fully-
connected neural network, also known as multilayer perceptron 
(MLP): 

               (1) 
 

where  are the weights to be optimized. 
In order to obtain a multiview consistent representation, the first 
part of the network predicts the volume density as a function of 
only the location . This part of the network is composed by 8 
fully-connected layers, ReLU activations and 256 channels per 
layer and outputs, in addition to , a 256-dimensional feature 
vector. In the second part of the network, the input is the 
concatenation between the previously identified feature vector 
and the camera viewing direction and is passed to one additional 
fully-connected layer: the final output is the view-dependent 
RGB color.  
Following principles from classical volume rendering (Kajiya 
and Herzen, 1984), the volume density can be interpreted as the 
differential probability of a ray terminating at an infinitesimal 
particle at location . To perform volume rendering, the 
expected color  of camera ray  may be computed 
integrating, along the ray, the volume density weighted by the 
accumulated transmittance from near to far bounds. To compute 
the integral, tailored quadrature rules have to be implemented.  
 
The adopted rendering function is differentiable so that it is 
possible to optimize the scene representation by minimizing the 
residual between synthesized and ground truth observed images. 
Furthermore, two additional improvements were designed to 
enable the representation of high-resolution complex scenes.  
The first improvement is known as positional encoding and is 
used to enhance the reproduction of high-frequency variations 
in color and geometry.

 
 
Figure 1. Overview of neural radiance field scene representation. Images are synthetized by sampling 5D coordinates (location and 
viewing direction) along camera rays, feeding these locations into an MLP to produce a color and volume density (left and center). 

Volume rendering techniques are used to composite these values into an image. 
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To this aim,  is reformulated as the composition of two 
functions , where  is a predefined mapping from  into a 
higher dimensional space  and   is still simply a regular 
MLP. The  encoding function is chosen as: 
 

 
                                                                                               (2) 
and is applied to each of the three coordinate values in  and to 
the three components of . The second improvement is called 
hierarchical volume sampling. In practice, two networks are 
simultaneously optimized: one “coarse” and one “fine”. The 
procedure manages to allocate more samples to regions we 
expect to contain visible content.  
For each scene during the training stage a separate neural 
continuous volume representation network is produced. To 
perform the training, a dataset of RGB images of the scenes is 
required, alongside the camera poses, intrinsic parameters, and 
scene bounds. These quantities can be estimated by means of 
COLMAP structure-from-motion package, as it happens in the 
photogrammetric pipeline. At each training iteration, random 
samples of camera rays are extracted from the set of all pixels of 
the dataset, and hierarchical sampling is performed. Then, 
volume rendering procedure is used to calculate the color of 
each ray from both sets of samples. The final loss includes both 
coarse and fine sampling: 
 

                (3) 
 

where  is the set of rays in each batch, , ,  are 
the ground truth, fine volume predicted and coarse volume 
predicted RGB colors for ray , respectively.  As concerns the 
training configuration, each batch includes 4096 rays, each 
sampled at  and . Adam optimizer is 
adopted (Diederik et al., 2015).  
We adopted the publicly available implementation on GitHub 
(https://github.com/bmild/nerf) which is deeply described in 
Mildenhall et al., 2020. Starting from the trained network it is 
easily possible to generate novel views. To also obtain a 3D 
reconstruction, the implemented software takes advantage of the 
marching cube algorithm (Lorensen and Cline, 1987), a well-
established computer vision method able to extract a 
triangulated surface starting from a field known in an 
equispaced Cartesian mesh. 
 
Besides the evident potentiality of these algorithms for 3D 
reconstruction in general, in the architectural and Cultural 
Heritage field it is interesting to investigate how much these 
reconstructions are accurate from a metric point of view and 
how the models obtained from the application of NeRF differ 
from the models obtained from the classical photogrammetry. 
In order to assess the quality of the 3D reconstruction obtained 
from NeRF and to compare it with the model obtained from 
photogrammetry, the NeRF pipeline and the SfM/MVS pipeline 
were tested in parallel on the same case studies. 
 

3. CASE STUDIES AND DATASETS 

The comparison between NeRF and MVS reconstruction 
methods was performed using a case study approach. 
The first test was carried out on a dataset specifically created for 
this investigation. The dataset name is “flower” and consists of 
10 images acquired by the authors (Figure 2). 
 

     
 

     
 

Figure 2. A selection of the images contained in the dataset 
“flower”. 

 
Given the geometric characteristics of the object, i.e., the high-
frequency of similar patterns, photogrammetry is expected to 
perform poorly on such a dataset and the failure of the whole 
reconstruction procedure is likely. In view of NeRF training, as 
explained in Mildenhall et al., 2019, the optimal way to acquire 
data is to take a set of images of a static scene, where the 
maximum disparity between views is no more than ~1/8 of the 
horizontal field of view between images. The images were 
acquired following a rough grid pattern, starting from the top to 
the bottom. 
 
The second test was carried out on a case study concerning the 
cultural heritage field, this being the main application field of 
our investigation. The selected monument is the Tour Saint 
Jacques in Paris. This bell tower is in flamboyant gothic style 
and it has been inscribed in the UNESCO Heritage List since 
1998 for its historical importance.  
 

   
 

    
 

Figure 3. A selection of the images contained in the dataset 
“tower”. 

 
The building, although existing today, has been moved from its 
initial configuration and is therefore a significant representative 
of a monument that requires historical material for 
documentation. In fact, the tower is present in several historical 
archive images, both as photographs and as film footage. On the 
other hand, since it is still accessible, it is also possible to carry 
out surveys or in any case obtain high quality images. In short, 
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given its hybrid nature, it represents an ideal case study for 
testing reconstruction methods under optimal conditions as well 
as under realistic conditions from a historical point of view. 
The dataset “tower” includes images which were acquired by 
the authors during a survey on the place. They were not 
acquired in view of NeRF methodology, and for this reason they 
do not follow the standard acquisition rules for the NeRF. The 
main challenge related to the usage of this dataset with respect 
to NeRF reconstruction is that, given the considerable height of 
the tower, the dataset images were taken very close to the 
object. As a consequence, the conditions significantly different 
from the laboratory images considered for NeRF training and 
discussed in Mildenhall et al., 2020. The dataset, however, 
represents a more realistic scenario when dealing with cultural 
heritage and for this reason it was considered suitable for this 
type of investigation. Indeed, the aim of this experiment is to 
test the NeRF reconstruction under challenging conditions 
somehow similar to the real-world historical case that typically 
involves the usage of  random images of an object.  
 

4. RESULTS AND DISCUSSION 

As explained in Section 2, for both the datasets the poses were 
generated by means of the SfM pipeline implemented in 
COLMAP. After this step, the two reconstruction 
methodologies were applied.  
As concerns NeRF, the network training required a considerable 
computing power and was performed using High Performance 
Computing resources, i.e., Marconi100 cluster equipped with 
NVIDIA V100 GPUs available at Cineca HPC Department. 
Around 300,000 iterations were needed to complete the training 
and the complete run lasted about 24 hours. This is a clear 
limitation of NeRF approach if compared to photogrammetry 
which is in general much more lightweight from the 
computational point of view.  
As anticipated in section 3, the MVS reconstruction step failed 
when applied to the “flower” dataset. All the other attempts 
completed successfully at least from the software point of view. 
The summary of the attempts/outcomes is provided in Table 1.  
 

Dataset NeRF MVS Reference 
Flower   Direct survey 

Tower   UAVs 

 

Table 1. Summary of the reconstruction methods applied to the 
two case studies: success/failure of each attempt is provided. 

 
In the following figures, the results of the NeRF trained using 
the “flower” dataset are reported: in Figure 4 some example 
images automatically generated by the network application as 
novel views of the same training scene are shown.  
 

 
 

Figure 4. Images of two novel views generated by NeRF 
trained using the “flower” dataset. 

 

 
 
Figure 5. A lateral view of the mesh generated by the NeRF on 

the “flower” dataset. 
 

 
 
Figure 6. Distances directly measured on the surface of the 
“flower” object. 
 
 

Distance Mesh [cm] Reference[cm] Residuals[cm] 
AB 0.09 0.10 0.01 
DC 0.04 0.05 0.01 
EF 0.04 0.06 0.02 
GH 0.05 0.07 0.02 

Table 2. Distances extracted from the mesh and from the object 
(reference) and the computation of the residuals. 

 
To discuss the metric results of the NeRF reconstruction applied 
to this dataset, a direct survey on the object was carried out. 
Some distances were directly measured on the object surface 
(Figure 6) and reported in Table 2, chosen as reference for the 
comparison. Then, the same distances were measured in the 
obtained mesh and used, together with the reference measures, 
for the computation of the residual values between the two 
reconstructions (Table 2). 
 
As shown in Table 2, the difference between the two 
reconstructions is between 1 cm and 2 cm. Given the limited 
values of the residuals, it is proved that the reconstruction 
obtained from a NeRF is suitable for the extraction of matrix 
information. 
 
As concerns the “tower” dataset, both the NeRF and the MVS 
reconstructions were successfully completed.  
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The results are shown in Figure 7. It is worth noting that, since 
the images of the dataset were not sufficiently distributed, MVS 
was unable to reconstruct the lateral views of the tower. On the 
other hand, the NeRF reconstruction was able to achieve better 
results with respect to this feature. However, the mesh 
resolution is higher in the MVS model if compared to the NeRF 
one. 
 

            
                   (a)                                                       (b) 
Figure 7. Models obatained processing the same image dataset 
“tower”of the Tour Saint Jacques: (a) mesh from MVS in which 

only one façade was reconstructed; (b) mesh from NeRF, in 
which two views were reconstructed. 

 
As for the metric comparison between the two reconstructed 
meshes, the model obtained from a recent UAV survey (by 
Iconem) was used and chosen as reference, because of the 
missing parts in the MVS reconstruction. 
 
The comparison was performed using the Mesh-to-Mesh 
distance comparison algorithm in Cloud Compare software 
(https://www.danielgm.net/cc/, April 2021). This open-source 
software allows the comparison of point clouds by estimating 
their distances using the Multiscale Cloud Model Comparison 
(M3C2) plug-in, which uses the normal directions of one of the 
two surfaces to calculate local distances and provides 
estimations of the confidence intervals for each measurement 
(Lague et al., 2013). 
The results are shown in Figure 8. It is noted that the distance 
values between the two meshes are generally very small (around 
0.003 m). Concluding, the results are acceptable in the 
architectural context. 
 

 
 
Figure 8. Mesh-to-Mesh distance comparison between the mesh 

from the NeRF and from photogrammetry (chosen as 
reference). 

 

The potentiality of the use of NeRF is that it could help to 
reconstruct other views of the building that normally 
photogrammetry struggles to obtain for different reasons: 
dataset not acquired for the scope of the reconstruction, images 
from the web, historical images, etc. The combination of the 
two techniques is the strength of the proposed method. 
 

5. CONCLUSIONS 

In this work we proposed an exploratory analysis of comparison 
between two methodologically very different techniques for 
obtaining 3D reconstructions starting from images. In particular, 
we considered traditional photogrammetry pipelines based on 
Structure-from-Motion (SfM) and Multi-View-Stereo (MVS) 
open-source algorithms. Then, we considered a recent approach 
based on the use of Neural Radiance Fields (NeRF) neural 
networks. Both approaches rely on input image datasets but, 
while photogrammetry is geared towards 3D reconstruction, 
NeRF networks are designed to generate volumetric 
representations of the scene and render high-resolution 
photorealistic novel views of real objects and scenes. However, 
through classical computer vision techniques, it is possible to 
obtain 3D reconstructions also starting from the results of 
suitably trained NeRF networks. Analyzing the results of the 
comparison in a first test case, we have highlighted how NeRF 
networks are able to provide a 3D reconstruction, albeit of 
limited quality, even in conditions in which the photogrammetry 
algorithms are unable to offer any results. Considering a 
monument test case,  we have instead highlighted how both 
methods allow to achieve reasonable results for 3D 
reconstruction, each with specific strengths and weaknesses. We 
also attempted to make a metric comparison between the two 
results and to interpret the obtained results. Overall, the 
analyzed test cases offer interesting insights relating to our 
specific field of interest which is the 3D reconstruction of lost 
cultural assets. In fact, it is known in this context that the 
number and quality of available images can be very limited, and 
this means that NeRF networks can be an alternative and 
complementary tool for the most difficult cases. 
The proposed analysis is a preliminary analysis based on the 
original NeRF network structure. The work can and deserves to 
be extended in different directions. For example, in addition to 
the variations of the NeRF network presented in the 
introduction, it is interesting to consider other recently proposed 
evaluation studies such as those proposed by Zhang et al. 2020, 
or, in the same line of thought, in Wu et al., 2021 or Giegler and 
Koltun, 2020. 
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