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ABSTRACT

Dissipative particle dynamics (DPD) is a widely used coarse-grained technique for the simulation of complex fluids. Although the method is
capable of describing the hydrodynamics of any fluid, the common choice of DPD parameters, such as friction coefficient c, dissipative cutoff
radius rDc , coarse-graining factor Nm and weighting function exponent s, unrealistically leads to the simulation of liquid water with a low
Schmidt number Sc at standard pressure and temperature. In this work we explored the influence of these parameters, finding the set of
parameters needed to properly simulate liquid water. Particular attention was devoted to the numerical techniques to calculate the transport
properties from equilibrium simulations, especially in the calculation of the viscosity, comparing the most commonly adopted techniques
and formulating a recipe that can be used for further investigations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055344

I. INTRODUCTION

Multiscale modeling is attracting more and more attention in
chemical engineering as it allows us to account for phenomena occur-
ring at different length- and time scales. Because of that, numerous
simulation techniques have been developed during the past decades
and successfully used in theoretical studies and practical investigations,
ranging from the simulation of polyurethane foams1–3 to the modeling
of polymer particle flash nano-precipitation (or solvent displace-
ment).4 In these works a continuummodeling technique, such as com-
putational fluid dynamics (CFD) is often coupled with a particle-based
molecular/mesoscopic modeling approach. Because of the scale sepa-
ration the coupling is, however, performed off-line and only coarse-
grain (CG) methods allow, given the average computational resources
available nowadays, to perform on-line, on-the-fly, tight coupling. Due
to their potential scale-bridging role, CG methods are now more and
more popular in many engineering applications, such as for example
self-assembly of surfactants5 and polymers,6,7 modeling of binary mix-
tures,8 macromolecular dynamics9,10 or mixing in structured fluids.11

One of the CG methods, which will be further described and
used in this paper, is dissipative particle dynamics (DPD), introduced
originally by Hoogerbrugge and Koelman12 and later on developed by
Espa~nol and Warren.13 The main idea behind DPD is to reduce the
number of degrees of freedom in the system by grouping several atoms
or molecules into single beads, having no hard sphere-like cores any-
more. A soft, conservative potential between beads allows for their
overlapping and, therefore, it is possible to set much longer time steps
and larger simulation boxes than in typical molecular dynamics (MD)
simulations. The target of DPD is, in fact, the description of the hydro-
dynamics at the mesoscopic scales where thermal fluctuations are
relevant.

In the original DPD formulation, each bead experiences not only
conservative forces, but also dissipative and random forces acting
along the separation distance between two beads, satisfying the fluc-
tuation–dissipation theorem (FDT) and working as a thermostat.13

However, although standard DPD gives good results in equilibrium
simulations, it has been shown that the DPD method fails in
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recovering the transport properties of real fluids.14 Two important
transport properties are grouped into the Schmidt number, Sc, defined
as the ratio between the fluid kinematic viscosity, �, and the self-
diffusion coefficient,d

Sc ¼ �

d
: (1)

The Schmidt number is a measure of the relative importance between
fluid particle diffusion and momentum diffusion. For a typical liquid,
the Schmidt number is Oð103Þ, meaning that the momentum is usu-
ally transported more efficiently than fluid particles themselves,
because of the caging effect of the interparticle potential. In their work,
Groot and Warren14 showed that the original DPD scheme results in
Schmidt number of O(1), with a dependence on the various DPD
parameters that can be expressed as

Sc � c2q2r8c ; (2)

where c is the dissipative parameter, q is the density of DPD fluid and
rc is the cutoff radius for interparticle forces. However, even if these
parameters strongly affect the Schmidt number simply by increasing
them, also the computational costs would increase either directly, or
indirectly by having to decrease the time step in order to maintain the
simulation stability.14

Since the pioneering work of Groot and Warren, many research-
ers investigated the possibility to describe high Schmidt number fluids
with DPD. One of the proposed approaches was to modify the weight-
ing function for the dissipative and random forces, applying the so-
called generalized weighting function (GWF),10,15,16 which still satisfies
the FDT as standard DPD. The effect of this modification was the
increase in the fluid viscosity, allowing to investigate higher Sc num-
bers than standard DPD with a comparable computational effort.
Another modification to the weighting function was proposed by
Yaghoubi and coworkers.17 The drawback of these approaches, as in
standard DPD, is the lack of shearing dissipation which has a great
impact on the resulting viscosity of the simulated DPD fluid. In fact,
with the standard DPDmethod, the dissipative force vanishes, no mat-
ter how close the two particles are, whenever the relative velocity
between two beads is perpendicular to their distance. To overcome
this issue, Junghans and coworkers proposed an extended DPD ver-
sion in which the shearing dissipation is considered, by evaluating the
perpendicular contribution of dissipative and random forces.18 As
explained in their work, this extension can be interpreted as a different
thermostat for DPD, a transverse DPD thermostat, that is, able to
describe the damping perpendicular to the interatomic axis, mimick-
ing the shear of those degrees of freedom that were integrated out in
the CGing procedure. This extended DPD makes possible to increase
Sc number because the shearing dissipation is considered. In fact, the
dynamical properties, both viscosity and diffusion coefficient, are very
sensitive to the damping perpendicular to the interatomic axis.
Moreover, in the case of transverse DPD the friction coefficient and
the cutoff radius strongly affect the Schmidt number. From a qualita-
tive point of view the influence of these parameters is quite similar.
Increasing rc or c increases the mean value of the dissipative force
applied to the beads, resulting in a higher viscosity and a lower diffu-
sion constant. In a simulation with the Transverse DPD thermostat,
the effect of these two parameters on the Sc number is more accentu-
ated than in Eq. (2), which was derived from Groot and Warren14 in

the case of standard DPD. In the case of the transverse DPD, another
relationship should be derived including the perpendicular contribu-
tion of dissipative and random forces in the derivation. However, it
should be noted that these analytical relationships are derivated
neglecting contributions from the conservative forces. Therefore, this
method results in higher Sc number than the standard DPD while pre-
serving within an acceptable error bar hydrodynamics. In fact, by
using the transverse DPD thermostat, Galilei invariance remains valid
by construction while hydrodynamics is conserved within acceptable
error bar, while the local angular momentum is not conserved, due to
the presence of non-central forces acting between particles.
Nevertheless, according to simulation results showed in the work of
Junghans and coworkers, these angular momentum fluctuations can-
cel out on average and hence the total angular momentum of the sys-
tem is almost a conserved quantity.18 For this reason, in this work the
requirement on angular momentum conservation, which is particu-
larly important when non-equilibrium simulations are used to mea-
sure the fluid viscosity, can be relaxed since equilibrium simulations
are performed. In this sense, a more complete method, called fluid par-
ticle model (FPM), was proposed by Espa~nol,19 in which both shearing
dissipation and conservation of angular momentum are considered.
Pan and coworkers15 proposed a modified version of FPM, which is
more similar to the transverse DPD thermostat and standard DPD
method, including all the modifications which have an impact on the
Sc number of the investigated fluid, such as the GWF and the shearing
dissipation, in a framework that preserves the total angular momen-
tum. With this approach, the beads experience not only parallel and
shear dissipation, but also a rotational damping contribution which
can be properly evaluated only if the total angular momentum is con-
served. This additional contribution has an impact on the resulting
fluid viscosity, as shown by Krafnik and Garcia.20 In their work
Krafnik and Garcia pointed out the influence of the different DPD
parameters on the resulting Sc number of the simulated DPD fluid.
However, the major drawback of this approach is the computational
time, which is significantly higher than standard or extended DPD due
to the evaluation of the rotational damping contribution.

Therefore, in this work we investigate in detail for the first time
the performance of the transverse DPD thermostat in simulating high
Sc number fluids with equilibrium simulations, aiming at finding the
DPD parameters capable of proper recovering the rheological behavior
of liquid water at room temperature and pressure. Moreover, special
attention was devoted to a peculiar aspect, which is often overlooked,
namely, the calculation of the fluid viscosity from simulations. In gen-
eral, the methods for the evaluation of the viscosity from atomistic
simulations are divided into two groups: equilibrium and non-
equilibrium methods. To the first category belong methods such as
Green–Kubo and Einstein–Helfand, while to the latter one the reverse
non-equilibrium molecular dynamics (RNEMD), the periodic
Poiseuille flow method and the periodic Lees–Edwards flow method.
Even though it was shown that non-equilibrium methods for viscosity
evaluation are generally more accurate and stable,21 they require sub-
jecting the investigated system under an extreme shear rate, impossible
to reach in real systems, while it is not feasible to explore low shear
rates, since the effect of the shear is covered by the dissipative and ran-
dom forces. When Newtonian fluids are investigated, non-equilibrium
measurement technique can be used, since the shear rate is indepen-
dent of the shear stress. On the contrary in the case of non-Newtonian
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fluids, such as polymer or surfactant solutions, the use of non-
equilibrium methods would result in viscosity values corresponding to
unphysically large shear rates. In addition, applying the non-
equilibrium viscosity measurement for self-assembled systems may
alter equilibrium morphologies, discriminating the non-equilibrium
approaches for the self-assembled systems. Equilibrium methods over-
come these issues and allow us to measure the zero-shear viscosity,
often presented in experimental studies of non-Newtonian fluids. For
this reason, in this work different viscosity estimation methods were
tested, but with the aim of finding a reliable equilibrium algorithm
that can be used in further studies on the dynamics of polymer or sur-
factant solutions.

II. DISSIPATIVE PARTICLE DYNAMICS

As previously mentioned, DPD is a CG simulation technique
which treats groups of atoms as single particles, often called beads. In
the DPD typically the mass of a single DPD particle, force cutoff radius
and thermal energy are taken as, respectively, mass, time and energy
basic units. The viscosity and diffusivity of the system are, thus, not
defined explicitly but in terms of these DPD units. Positions and
momenta of those interacting beads are then calculated with the fol-
lowing equations:

dri
dt
¼ vi;

dvi
dt
¼ f i

mi
; (3)

where ri and vi are position and velocity of the bead i with mass mi,
respectively. In the case of a simple DPD fluid, the force f i, acting on
ith bead, is a sum of three pairwise contributions

f i ¼
X
j 6¼i
ðFC

ij þ FD
ij þ FR

ijÞ: (4)

In Eq. (4), the sum runs over the indices of beads contained in the
closest vicinity of bead i within a certain cutoff radius. A conservative
contribution, FC

ij , is a soft-repulsive force acting between two beads
i and j is defined as

FC
ij ¼

aij 1� rij
rCc

� �
r̂ ij; rij < rCc ;

0; rij > rCc ;

8><
>: (5)

where aij denotes a maximum repulsion between beads i and j,
rij ¼ jrijj ¼ jri � rjj is the separation distance between a pair of the
beads, r̂ ij ¼ rij=rij is the unit vector of the bead–bead separation dis-
tance and rCc is the cutoff radius for the conservative interactions.
Dissipative and random forces, FD

ij and FR
ij , respectively, introduce vis-

cous drag and thermal noise to the system, respectively, and act
together as a thermostat.

In the standard DPD thermostat, as originally introduced,12

employed in many prior works,22–25 the dissipative and random forces
act, similarly as the conservative force, along the bead–bead separation
distance. However, in this work, the extended DPD thermostat, pro-
posed by Junghans and coworkers,18 was used. In this approach the
standard DPD thermostat is combined with the transverse DPD ther-
mostat acting in the plane perpendicular to the bead–bead separation
distance. The expressions for general dissipative and random forces
can then be written as

FD
ij ¼ �ckw

2
kðrijÞðr̂ ij � vijÞr̂ ij � c?w

2
?ðrijÞðI � r̂ ijr̂

T
ij Þvij; (6)

FR
ij ¼ rkwkðrijÞ

nijffiffiffiffiffi
Dt
p r̂ ij þ r?w?ðrijÞðI � r̂ ijr̂

T
ij Þ

nijffiffiffiffiffi
Dt
p : (7)

Here ck and c? are parallel and perpendicular dissipative parameters,
respectively, analogously rk and r? are parallel and perpendicular
noise parameters, wkðrijÞ and w?ðrijÞ are weighting functions for the
parallel and perpendicular parts of FD

ij and FR
ij ; vij ¼ vi � vj, nij and

nij are scalar and vector random numbers, respectively, with zero
mean value and unit variance, I is the identity second-rank matrix and
Dt is the simulation time step. The dissipative and noise parameters
are related to each other in order to satisfy the fluctuation–dissipation
theorem (FDT)

ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTca

p
; a 2 fk;?g; (8)

where kB denotes the Boltzmann constant and T the system tem-
perature. This paper utilizes, instead of the traditional quadratic
scheme usually adopted,22 the GWF, introduced by Fan and cow-
orkers10 as previously mentioned, but with the introduction of a
Dissipative cutoff radius, rDc . This parameter does not change the
range of conservative force and consequently has no influence on
the nature of the phase assumed by the simulated system,
described by the radial distribution function (RDF). Infact, the
equilibrium behavior of the system is determined solely by conser-
vative forces because the time average of the dissipative and fluctu-
ation forces is zero.22–24 Conversely, it is important for the
description of the transport properties. So we use the following
GWF:

waðrijÞ ¼ 1�
rij
rDc

� �sa
; a 2 k;?f g (9)

and its exponent, sa 2 ð0; 1�, plays an important role in modeling of
dynamic properties of a DPD fluid. In this work we do not study the
exponents separately but we simply assume that sk ¼ s? ¼ s and con-
sequently wkðrijÞ ¼ w?ðrijÞ ¼ wðrijÞ.

III. EVALUATION OF TRANSPORT COEFFICIENTS
IN DPD SIMULATIONS

The estimation of transport coefficients in DPD simulations takes
place with numerical techniques developed for atomistic simulations.
We review them in Secs. IIIA and III B.

A. Self-diffusivity

The self-diffusion coefficient in DPD simulations can be calcu-
lated either by the Einstein relation or with the Green–Kubo
approach.26 In the first method, the self-diffusion coefficient, propor-
tional to the mean square displacement (MSD) of the beads and for
the bulk phase, is expressed as follows:

d ¼ lim
t!þ1

h rðt0 þ tÞ � rðt0Þ½ �2i
6t

; (10)

where h� � �i denotes an ensemble average. While the Green–Kubo
approach relates the self-diffusion coefficient to the velocity auto-
correlation function (VACF) and reads as follows:
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d ¼ 1
3

ðþ1
0
hvðt0Þ � vðt0 þ tÞidt: (11)

It is worth noting that from a theoretical point of view both
approaches are equivalent and the choice of one over the other should
not give different results. On one side the Einstein relation uses the
MSD, which can be easily evaluated from DPD simulations, whereas
on the other side the Green–Kubo approach requires the calculation of
the time integral of the VACF, which can be tricky from a numerical
point of view as seen below. For this reason in this work, we used the
Einstein relation to calculate the self-diffusion coefficient.

B. Viscosity

In principle, we can distinguish between two classes of methods
for the calculation of shear viscosity in MD/DPD. The first one, usually
denoted as non-equilibrium molecular dynamics (NEMD), is based on
the measurement of the system response after imposing on it either a
velocity gradient, ð@uxÞ@z , (by Lees–Edwards boundary condition27 or
boundary-driven shear flow) or a momentum flux (RNEMD)28 and/or
a body force (Poiseuille method).29 The viscosity is then calculated,
l ¼ �=q, from the generalized-Newton-viscosity law

jzðpxÞ ¼ �l
ð@uxÞ
@z

; (12)

where jzðpxÞ is the flux of the x� component of the momentum, px, in
the z� direction. The second class of methods calculates the viscosity
by means of an equilibrium simulation, using either the Green–Kubo
approach or the Einstein–Helfand relation. As previously mentioned,
in this paper we are interested in the use of equilibrium methods to
estimate the viscosity from the simulation. However, the RNEMD
method by M€uller-Plathe28 is used as a benchmark to double-check
and verify the evaluation of viscosity by the equilibrium methods.

1. Green–Kubo approach

Similarly to the self-diffusion coefficient calculations,
Green–Kubo30,31 relation allows to calculate the viscosity by integrat-
ing the autocorrelation function. In this case, however, the stress auto-
correlation function (SACF) is used

l ¼ V
kBT

ðþ1
0
hrabðt0Þrabðt0 þ tÞidt; ða 6¼ bÞ; (13)

where V is the system volume and rab is the off diagonal component
of the stress tensor. In DPD simulations, the stress tensor can be evalu-
ated by the Irving–Kirkwood formula

rabðtÞ ¼
1
V

X
i

X
j<i

rij;aðtÞFij;bðtÞ þ
1
V

X
i

mvi;aðtÞvi;bðtÞ; (14)

where Fij;b ¼ FC
ij;b þ FD

ij;b þ FR
ij;b, and subscripts a and b are reserved

for vector or tensor indices while subscripts i and j for bead indices.

2. Einstein–Helfand approach

Another equilibrium method for calculating viscosity was pro-
posed by Helfand32 and is analogous to the Einstein (MSD) approach
for evaluating the self-diffusion coefficient

l ¼ lim
t!þ1

V
2kBT

D
GabðtÞ � Gabð0Þ
� �2E ða 6¼ bÞ; (15)

where Gab is the Helfand moment given by

GabðtÞ ¼
X
i

miri;aðtÞvi;bðtÞ: (16)

Since the Einstein–Helfand method is equivalent to the
Green–Kubo approach, it can also be expressed in terms of the
Irving–Kirkwood stress tensor as follows:

GabðtÞ ¼ Gabð0Þ þ
ðt
0
rabðsÞds: (17)

3. Non-equilibrium method

As mentioned above, RNEMD method, originally introduced by
M€uller-Plathe,28 is based on imposing a momentum flux on the sys-
tem and then calculating the velocity gradient in order to measure the
viscosity of the fluid. It is conducted in the way that the system (a peri-
odic box) is divided into a finite number of layers perpendicular to
the z�direction. Then, a bead with the largest momentum in the
x�direction is chosen from the top layer, as well as a bead with the
smallest momentum in the x�direction from the middle layer. The
momenta of both the beads are swapped. The momentum flux created
in this way can be controlled by changing the rate of the momentum
swaps. Figure 1 shows the schematic representation of the simulation
box with the velocity profile imposed by RNEMDmethod.

The momentum flux is then calculated by using the total trans-
ferred momentum, Px, over a time interval, Dt, as follows:

jzðpxÞ ¼
Px

2tLxLy
; (18)

where Lx and Ly are box lengths in the x� and y�directions, respec-
tively. The factor 2 in the denominator arises because the momentum
is transferred in two directions—above and below the middle layer.
Due to the momentum flux imposed by the momenta swap, the mean
temperature of the domain deviates from the initially specified value
and, therefore, the use of a smaller time step and of an additional ther-
mostat may be required when RNEMD method is used. In this work,
we used Dt ¼ 0:001 and the Berendsen thermostat as additional ther-
mostat. In addition, this method has three parameters to be specified
by a user: (i) the number of momenta pairs to exchange—usually set
to one, (ii) the number of layers in which the domain is divided and
which depends on the size of the computational domain, and (iii) the

FIG. 1. Schematic representation of the RNEMD method. Velocity field is repre-
sented by red arrows.
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frequency of momentum swap which has a significant influence on
the development of the linear velocity profile inside the box. While the
first two parameters are usually selected without any issues, it may
require a few attempts to find the proper value for the frequency of the
momentum swap.28 Figure 2 displays as an example the velocity pro-
files for different momentum exchange frequencies, showing a clear
linear velocity profiles for a momentum swap every 25 and 50 time
steps.

IV. SIMULATION DETAILS

All simulations were performed by using the open-source software
LAMMPS33 with our newly developed LAMMPS pair_style for the
general dissipative and random forces. DPD fluid was represented by
single beads with different degrees of CGing, Nm, which affect the evalu-
ation of the repulsion parameter a of the conservative force, i.e.,

a ¼ Nmj�1 � 1
0:2q

kBT; (19)

where Nm corresponds to the number of real molecules per bead, j�1

is the inverse of the dimensionless isothermal compressibility of DPD
fluid (e.g., j�1 ¼ 16 for water) and q is the DPD number density cor-
responding to the number of beads inside a volume of ðrCc Þ

3. All the
equilibrium simulations were performed in a cubic box of the length
equal to 15 DPD length units with periodic boundary in all directions,
considering rCc as the DPD length unit. In cases of RNEMD simula-
tions, the box was a cuboid of size 15� 15� 45 DPD length units to
capture the velocity gradient in the direction of transferred momen-
tum. The system bead density and system temperature were the same
for all the cases and set to q ¼ 3 and kBT ¼ 1. DPD equations of
motion were integrated by using the velocity-Verlet algorithm, pro-
posed by Groot and Warren,14 and used in several prior studies,22,34

with Dt set such that temperature fluctuations were lower than about
3% of kBT . This results in Dt ¼ 0:01 in the case of equilibrium simula-
tions (apart from some specific test cases highlighted below), and
Dt ¼ 0:001 for non-equilibrium cases. The simulation time statistics
were collected within 5� 106 time steps.

Regarding the calculation of the viscosity with the Green–Kubo
approach, it is worth mentioning that LAMMPS uses an approximate
algorithm to evaluate SACF. First, the algorithm makes use of the
ergodic hypothesis to evaluate the ensemble average as a time integral,
and for this reason the final simulation time needs to be sufficiently
long to carry out a correct estimation. Then, the SACF is not evaluated
according to its definition, since it would be too expensive from the
computational point of view. Instead, the SACF averages are com-
puted every Nfreq time steps and only a limited dataset is actually
employed in the SACF evaluation, namely the data points correlated
every Nev th time step for Nev � ðNrep � 1Þ time steps. For further
details on this algorithm readers are referred to the LAMMPS code.33

Therefore, the choice ofNev,Nrep andNfreq is critical in the proper eval-
uation of SACF and, in general, in the viscosity evaluation. After
numerous tests performed, we found that by selecting Nev ¼ 1, Nfreq

¼ 1000 and Nrep ¼ 1000, the best results are obtained in the evalua-
tion of the SACF. In the cases where Dt ¼ 0:005, Nfreq and Nrep are
taken equal to 2000 to be consistent in the evaluation of the SACF.

V. RESULTS AND DISCUSSION
A. Robust viscosity evaluation procedure

The challenge for the Green–Kubo viscosity calculation stands
mainly in the numerical evaluation of the time integral of the SACF
from time t¼ 0 up to þ1. A first issue is related to the fact that the
SACF is numerically evaluated at each simulation time step, and after
a first clear decaying trend the values of the SACF oscillate around
zero with a certain noise, assuming also negative values. An example
of this well-known behavior,30 is reported in Fig. 3. Therefore, the cal-
culation of such time integral with a simple trapezoidal rule is affected
by the tail oscillations.

To overcome this issue, we tested several procedures. A first
attempt was to use a procedure proposed by Jung and Schmid.35 The
procedure involves the numerical integration by using the trapezoidal
rule until the SACF values reached about 1% of their initial values.
Then, the tail is fitted using a power-law, i.e.: At�B, and integrated ana-
lytically. This first will be denoted as “Procedure A” in the following.
An alternative is the use of a moving average filter to smooth out the

FIG. 2. Velocity profile for different momentum exchange frequencies. Black circles:
momentum swap every 25 time steps. Red circles: momentum swap every 50 time
steps. Blue circles: momentum swap every 500 time steps. Green circles: momen-
tum swap every 2000 time steps.

FIG. 3. Two different representations of the tail of the same SACF. Top: procedure
A. Black circles: points of the SACF. Red line: power-law fit. Bottom: procedure B.
Black line: SACF after a moving average filter. Red line: power-law fit.
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tail oscillations. This involves the choice of the moving average span
and then performing the power-law fitting. This is denoted as
“Procedure B.” Also in Procedure B the analyzed tail starts at about
1% of initial values of SACF. After preliminary tests on the value of
the moving average span, the best result was obtained with an interval
of 20 time steps. Figure 3 shows examples of Procedure A and
Procedure B for a generic DPD simulation.

However, a second issue associated with the power-law fitting
procedures must be addressed. In fact, the fitted power-law always
approaches zero slower than the actual numerical value of the SACF,
which oscillates between positive and negative values when the power-
law fit has not reach its asymptotic value. For this reason, we tried to
use two approaches for the analytical integration of the fitted power-
law. In the first approach, the final integration time is the final SACF
available from the simulation post-processing, depending on the Nrep

and Dt, and is labeled with number 1 in Table I. In the second
approach, the analytical integration is carried out up to þ1 and is
labeled with the number 2 in Table I. As it can be seen in Table I, the
second approach has a significant impact on final viscosity values,
which may increase in about 3%–8% if the analytical integration up to
infinity is carried out. Moreover, the effect of the tail noise is still not
quantified by using these procedures.

For this reason, we tried to use an approach based on the calcula-
tion of the viscosity cumulative integral function of time, denoted as in
what follows as “Procedure C.” The idea behind this latter procedure
is to evaluate the viscosity by using Eq. (13) progressively extending
the integration interval up to the final SACF time. The result of
Procedure C should theoretically be a monotonic curve that
approaches an asymptotic value that corresponds to the system viscos-
ity. However, this is impossible to reach exactly due to the intrinsic
stochastic noise within DPD simulations and an example of such cal-
culation is depicted in Fig. 4. In Fig. 4, viscosity values monotonically
increase up to approximately three DPD unit time, when the value of
the viscosity starts to oscillate around a constant value due to the cor-
responding oscillations in the SACF. Therefore, we opt to evaluate the
system viscosity as the average value of the curve considering only the
last five DPD time units, avoiding the initial transient period.
Moreover, Procedure C is particularly convenient since it allows us to
evaluate a coefficient of variation, providing therefore not only the
expected viscosity value but also the associate uncertainty.

Table I summarizes the values of the viscosity calculated using
various Green–Kubo procedures together with viscosity values
obtained by using the Einstein–Helfand and RNEMD methods, which
were used as benchmark. The simulations were run using a standard
DPD thermostat, so c? ¼ 0, and s¼ 1, rDc ¼ 1 and Nm ¼ 1. Results

are shown for different values of ck to see the effect of changing one
DPD parameter on the viscosity. As it can be seen from Table I, the
procedures involving the power-law fit seem to perform quite poorly
when compared to other procedures, especially procedure B which has
the largest deviations. Procedure C gives instead results that are very
close with the other two benchmark methods, and this procedure is
then used in the rest of the work. Eventually, it is interesting to see that
the coefficient of variation of the viscosity calculation for the reported
simulations ranges between 0.2% and 0.4%, which is approximately
the range found for all the other evaluations carried out in this work.
This is due to the fact that that the whole numerical methodology to
evaluate the viscosity of a fluid has an intrinsic accuracy, that derives
from the stochastic nature of the DPDmodel.

B. Schmidt number scaling

Once a reliable procedure for calculating the viscosity was found,
the effect of different DPD parameters on SACF and Sc number of
DPD fluid was investigated by performing different simulations, aim-
ing to reproduce the Sc number of water at 25 �C equal to about 370.
The parameters varied are the dissipative cutoff radius, rDc , the weight-
ing function exponent, s, the degree of CGing, Nm, and the dissipative
parameters, ck and c?. For simplicity and reducing parameter space,
we consider c? ¼ ck ¼ c. Table II provides a summary of all DPD
simulations performed.

As expected, the standard choice of DPD parameters reported in
the first row of Table II, results in a low Sc number, even if the trans-
verse DPD thermostat is used. Moreover, the Sc number does not
increase significantly by reducing the GWF exponent s, unless the
degree of CGing Nm is increased as well. In Fig. 5, we can see the rea-
son for this trend: the SACF goes to zeromore rapidly when the degree
of CGing is small, regardless of the value of the weighting function
exponent, resulting therefore in lower viscosity values according to
Eq. (13). This means that the conservative force parameter a has a
clear influence on the resulting viscosity and self-diffusion coefficient,
sinceNm is an input to evaluation of a. In fact, by using a higher degree
of CGing, the beads in a DPD simulation tend to move less and to
exchange more momentum with the surrounding beads, behaving

TABLE I. Viscosity values (in DPD unit) calculated with various approaches.
Procedure A: power-law fitting. Procedure B: moving average filter before power-law
fitting. The superscripts 1 and 2 correspond, respectively, to a final integration time
of Nrep � Dt and infinite. Procedure C: cumulative integral. E–H and RNEMD refers to
Einstein–Helfand and Muller-Plate methods.

ck A1 A2 B1 B2 C E–H RNEMD

4.5 0.8535 0.8846 0.8706 0.9399 0.8606 0.002 0.847 0.860
9 0.9699 1.0018 0.9892 1.0613 0.9576 0.004 0.923 0.930
15 1.1128 1.1468 1.1308 1.2065 1.0656 0.002 1.071 1.055

FIG. 4. Cumulative integral of viscosity calculated using the Green–Kubo approach.
Black line: viscosity cumulative integral. Red line: mean value and coefficient of var-
iation calculated between t¼ 5 and 10.
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more like a real liquid.36 Furthermore, as it will be shown in the fol-
lowing, the choice of Nm equal to 10 (i.e., a¼ 265) gives an RDF indic-
ative of the liquid state, as displayed in Fig. 9. Conversely, for Nm > 10
(a> 265) the radial distribution function (RDF) may present second-
ary peaks revealing the presence of a crystalline structure.37 Another
interesting aspect to note is an increase in noise in the SACF, evident

in Fig. 5 when a lower value s is investigated. Nevertheless, the result-
ing viscosities have a coefficient of variation in the same range as in all
the other investigated cases, between 0.2% up to 0.8%, confirming the
validity of the proposed methodology to assess the rheological proper-
ties of a DPD fluid.

Figure 6 shows the influence of the other DPD parameters on the
SACF. A larger area below the curve corresponds to a higher value of
the viscosity according to the Green–Kubo approach. From Fig. 6, we
can see the following trends. The viscosity increases when the dissipa-
tive parameter and dissipative cutoff radius increase, and when the
GWF exponent decreases, since these increases/decreases enhance
bead momentum dissipation. It is worth mentioning that not all the
simulations were run with the same set of all the other DPD parame-
ters and also, the time step was reduced for the sake of simulation sta-
bility when the dissipative cutoff radius was increased.

The effect of the variation of individual DPD parameters on the
Sc number is presented in Fig. 7, where s was varied between 1 and
0.125, rDc between 1 and 1.8 and c between 4.5 and 72. Figure 7 shows
that the Sc number can be increased by up to two orders of magnitude.
As previously mentioned, we also noticed a strong dependence of Sc
number on Nm as depicted in Fig. 8. Dependencies of the Sc number
on the DPD parameters were fit with a single-variable power-law,
since the number of performed simulations does not allow for a multi-
variable fitting.

C. Tuning water transport properties

In the following, we show in detail the results for the three sets of
DPD parameters (highlighted in bold font in Table II), that give a Sc
number about 370, which corresponds to the Sc number of liquid
water at 25 �C. The corresponding simulation results are reported in
Table III where we compare the viscosity obtained via Green–Kubo
approach with that from the Einstein–Helfand and RNEMDmethods.
We can see that all the viscosities are similar, confirming once again
that our procedure based on the Green–Kubo approach can be
adopted for evaluating the viscosity. In addition, other aspects are
worth to be highlighted. First, the conversion of viscosity and self-
diffusion values from DPD units to real units, reported in Table III,
gives realistic results for liquid water at 25 �C. To evaluate the conver-
sion factors, we adopted the approach of Groot and Rabone,38 in
which the value of the characteristic length rc is estimated from the
physical volume occupied by qNm water molecules, namely

rc ¼ 3:107ðqNmÞ1=3; ðÅÞ (20)

the characteristic mass of a beadm using the mass of a water molecule
mw ¼ 2:992� 10�26 kg in the following manner:

m ¼ Nmmw (21)

and the characteristic time by matching the experimental self-
diffusion coefficient d exp of the liquid water by using the following
expression:

s ¼ Nmd
DPDr2c

d
exp : (22)

The simulation results corresponding to the three sets of DPD
parameters are very close to the experimental values of 0:9� 10�6

m2/s for viscosity and 2:4� 10�9 m2/s for the self-diffusion coefficient

TABLE II. Summary of all DPD simulation performed, including the results in terms
of viscosity, self-diffusion coefficient and Schmidt number; all properties are in DPD
units. All simulations are carried out with q ¼ 3. Rows highlighted in bold font are
close to the Schmidt number of water at 25 �C equal to about 370.

Nm s c rDc Dt � d Sc

1 1 4.5 1 0.01 0.430 0.173 2.489
1 0.5 4.5 1 0.01 1.078 0.075 14.373
1 0.25 4.5 1 0.01 2.446 0.038 64.377
1 0.125 4.5 1 0.01 3.687 0.026 141.82
3 1 4.5 1 0.01 0.748 0.099 7.560
3 0.5 4.5 1 0.01 1.612 0.047 34.291
3 0.25 4.5 1 0.01 2.914 0.026 112.06
3 0.125 4.5 1 0.01 4.919 0.017 289.33
10 1 4.5 1 0.01 3.116 0.029 108.53
10 0.733 4.5 1 0.01 3.949 0.024 166.07
10 0.633 4.5 1 0.01 4.245 0.021 203.12
10 0.533 4.5 1 0.01 5.013 0.018 276.35
10 0.5 4.5 1 0.01 5.021 0.017 290.24
10 0.48 4.5 1 0.01 5.055 0.017 300.38
10 0.46 4.5 1 0.01 5.619 0.016 349.02
10 0.434 4.5 1 0.01 5.890 0.016 368.54
10 0.432 4.5 1 0.01 5.950 0.015 384.92
10 0.43 4.5 1 0.01 6.053 0.015 404.09
10 0.42 4.5 1 0.01 6.106 0.015 423.13
10 0.4 4.5 1 0.01 6.253 0.014 444.77
10 0.32 4.5 1 0.01 7.757 0.012 636.88
10 0.3 4.5 1 0.01 7.758 0.011 681.18
10 0.28 4.5 1 0.01 7.834 0.010 725.40
10 0.26 4.5 1 0.01 8.135 0.010 813.46
10 0.25 4.5 1 0.01 8.743 0.010 892.11
10 0.125 4.5 1 0.01 12.13 0.007 1784.1
10 1 9 1 0.01 4.289 0.024 177.00
10 1 18 1 0.01 5.414 0.017 319.96
10 1 20.2 1 0.01 5.880 0.016 367.70
10 1 22 1 0.01 5.879 0.015 397.25
10 1 24 1 0.01 6.361 0.014 453.40
10 1 25 1 0.01 6.387 0.014 458.62
10 1 30 1 0.01 7.862 0.012 650.81
10 1 36 1 0.01 7.999 0.010 767.75
10 1 72 1 0.01 15.33 0.005 2797.2
10 1 4.5 1.2 0.005 4.472 0.021 209.19
10 1 4.5 1.38 0.005 5.870 0.016 366.88
10 1 4.5 1.4 0.005 5.990 0.015 395.63
10 1 4.5 1.6 0.005 14.32 0.007 1962.1
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of the liquid water. This thus indicates that the transverse DPD ther-
mostat can reproduce the proper momentum and mass transport
behavior of liquid water, with at least three different sets of DPD
parameters. Another confirmation of this behavior can be seen in
Fig. 9, which displays the RDFs calculated from the DPD simulations
with the three sets of DPD parameters. As it can be seen, the RDFs for
all three cases overlap, as expected, since the only contribution that
defines its shape is that of conservative interactions, which are identical
in all three cases.

Another important parameter reported in Table III is the so-
called effective friction coefficient,39 defined as follows:

ceff ¼
ðrDc
0

cwðrijÞ gðrijÞ4pr2drij; (23)

where gðrijÞ is the RDF. The effective friction coefficient is a measure
of the overall bead friction and combines the effects of s, rDc , c and
implicitly of Nm into one single characteristic quantity. We can see
from Table III that values of ceff for the three sets are rather similar,
supporting the following conclusion: sets of parameters (s, rDc , c) hav-
ing the same ceff give the same dynamical properties. A last consider-
ation involves the computational time. Set 2 requires more
computational resources than the other two cases since Dt for Set 2 is
half of Dt for the other cases to keep under control temperature

oscillations and to guarantee simulation stability. To allow a consistent
comparison of the time statistics for all the three cases, the simulation
time was doubled for Set 2. Moreover, a dissipative cutoff radius
greater than the conservative cutoff radius in Set 2 decreases the code
efficiency, since the use of different cutoff radius values for the differ-
ent forces significantly increases the computational time. Therefore,
changing c or s to increase the Sc number has no or minimal effect on
the computational time and simulation stability, unlike tuning rDc
which can be rather computational demanding.

VI. CONCLUSIONS

The main conclusions of this work are the following. First we
observed that the viscosity coefficient estimated via the Green–Kubo
approach is comparable with that obtained by using other methods
(i.e., Einstein–Helfand equilibrium and non-equilibrium RNEMD
methods) with the advantage that there is no limitation on its usage
for equilibrium simulations. This becomes crucial for viscosity predic-
tion in self-assembled non-Newtonian systems. Moreover, the pro-
posed method of treating the noise of the SACF tail is capable of
giving not only the mean viscosity value, but also the uncertainty of
the numerical procedure associated with the viscosity evaluation. In
this work, we show that such uncertainty is lower or comparable to
the uncertainty of the experimental measurements.

FIG. 5. Effect of the degree of CGing, Nm,
on the SACF for two different values of
the GWF exponent s.

FIG. 6. Effects of the (left) dissipative parameter c, (center) GWF exponent s and (right) dissipative cutoff radius rDc on the SACF.
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Then we demonstrated that the transverse DPD thermostat can
be used to simulate high Sc number fluids, especially when the degree
of CGingNm higher than the standard Nm is adopted. The dependence
of the Sc number on the dissipative parameter c, the dissipative cutoff
radius rDc and the GWF exponent s were also explored and quantified.

Eventually we observed that three different sets of DPD
parameters lead to the same Sc number, RDF and effective friction
coefficient. Essentially, we obtained the same fluid with the same
rheological behavior with three different sets of DPD parameters.
Moreover, we also found that increasing rDc to increase the Sc num-
ber of the fluid is computational costly when compared to chang-
ing c and s.

FIG. 7. The Schmidt number as a function of (left) dissipative parameter c, (middle) GWF exponent s and (right) dissipative cutoff radius rDc . Dependencies of the Schmidt
number on the DPD parameters were fit to the power-law.

FIG. 8. The Schmidt number as a function of the degree of CGing, Nm, for different values of the GWF exponent s.

TABLE III. The properties of DPD fluid corresponding to the three sets of DPD
parameters, calibrated against the Schmidt number of liquid water at 25 �C equal to
about 370.

Set 1 Set 2 Set 3

s 0.434 1 1
rDc 1 1.38 1
c 4.5 4.5 20.2
Dt 0.01 0.005 0.01
Nm 10 10 10
q 3 3 3
�DPD (RNEMD) 5.76 5.26 4.67
�DPD (E–H) 5.74 5.53 5.74
�DPD (G–K) 5.89 5.87 5.88
� (m2/s) 0:895� 10�6 0:892� 10�6 0:893� 10�6

d
DPD 0.016 0.016 0.016

d (m2/s) 2:43� 10�9 2:43� 10�9 2:43� 10�9

Sc 368.54 366.88 367.70
ceff 4.36 3.90 4.00

FIG. 9. Radial distribution function evaluated for the three sets of DPD parameters,
calibrated against the Schmidt number of liquid water at 25 �C equal to about 370.
Black line: Set 1, red line: Set 2, blue line: Set 3.
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