
18 October 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On the Reliability Assessment of Artificial Neural Networks Running on AI-Oriented MPSoCs / Ruospo, Annachiara;
Ernesto, Sanchez. - In: APPLIED SCIENCES. - ISSN 2076-3417. - ELETTRONICO. - 11:14(2021).
[10.3390/app11146455]

Original

On the Reliability Assessment of Artificial Neural Networks Running on AI-Oriented MPSoCs

Publisher:

Published
DOI:10.3390/app11146455

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2912569 since: 2021-07-13T12:08:47Z

MPDI

applied
sciences

Article

On the Reliability Assessment of Artificial Neural Networks
Running on AI-Oriented MPSoCs

Annachiara Ruospo * and Ernesto Sanchez

����������
�������

Citation: Ruospo, A.; Sanchez, E. On

the Reliability Assessment of

Artificial Neural Networks Running

on AI-Oriented MPSoCs. Appl. Sci.

2021, 11, 6455. https://doi.org/

10.3390/app11146455

Academic Editor: Arcangelo

Castiglione

Received: 11 June 2021

Accepted: 9 July 2021

Published: 13 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Dipartimento di Automatica e Informatica (DAUIN), Politecnico di Torino, 10129 Turin, Italy;
ernesto.sanchez@polito.it
* Correspondence: annachiara.ruospo@polito.it

Abstract: Nowadays, the usage of electronic devices running artificial neural networks (ANNs)-
based applications is spreading in our everyday life. Due to their outstanding computational
capabilities, ANNs have become appealing solutions for safety-critical systems as well. Frequently,
they are considered intrinsically robust and fault tolerant for being brain-inspired and redundant
computing models. However, when ANNs are deployed on resource-constrained hardware devices,
single physical faults may compromise the activity of multiple neurons. Therefore, it is crucial to
assess the reliability of the entire neural computing system, including both the software and the
hardware components. This article systematically addresses reliability concerns for ANNs running
on multiprocessor system-on-a-chips (MPSoCs). It presents a methodology to assign resilience
scores to individual neurons and, based on that, schedule the workload of an ANN on the target
MPSoC so that critical neurons are neatly distributed among the available processing elements. This
reliability-oriented methodology exploits an integer linear programming solver to find the optimal
solution. Experimental results are given for three different convolutional neural networks trained
on MNIST, SVHN, and CIFAR-10. We carried out a comprehensive assessment on an open-source
artificial intelligence-based RISC-V MPSoC. The results show the reliability improvements of the
proposed methodology against the traditional scheduling.

Keywords: artificial neural network; reliability; fault tolerance

1. Introduction

In recent years, to face the growing complexity of emerging computing systems
and algorithms, artificial intelligence (AI)-based solutions and, specifically, brain-inspired
computing models have gained large interest in both industry and academia. Particularly,
researchers have developed artificial models named artificial neural networks (ANNs)
by imitating biological neurons and their functioning in the human brain. Since their
origin [1], a huge number of studies have made progress in improving the theory behind
brain-inspired computations to build highly complex artificial models, such as deep neural
networks (DNNs). The human brain is a complex and fascinating system able to bear
synapse or neuron faults and still keep working properly, thanks to its plastic ability to
remodel, repair, and reorganize its neural functions [2]. Today, ANNs are considered
attractive solutions, for example, in tasks such as image classification performed in safety-
critical applications, such as self-driving cars, radars, flight control, robots, and space
applications, due to their outstanding computational capabilities as well as their proven
human-level performance [3].

However, to use them safely in human contexts, there is a compelling need for assess-
ing their reliability and tolerance to faults.

Frequently, ANNs are considered inherently fault tolerant and tightly robust, brain-
inspired models. This is motivated by two principal reasons: the first is related to their
distributed and parallel structure; the second to the redundancy introduced because of

Appl. Sci. 2021, 11, 6455. https://doi.org/10.3390/app11146455 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2040-9762
https://orcid.org/0000-0002-7042-295X
https://doi.org/10.3390/app11146455
https://doi.org/10.3390/app11146455
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11146455
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11146455?type=check_update&version=1

Appl. Sci. 2021, 11, 6455 2 of 27

over-provisioning [4]. As a matter of fact, ANNs are furnished with a quantity of neurons
higher that the minimal number required to perform a computation. It means that they can
bear a bounded number of errors thanks to the excessive neuron budget: once this number
is exceeded, the precision degrades gracefully as the number of errors increases [5].

Nevertheless, we advocate that the theory claiming the intrinsic ANNs fault tolerance
may hold true only in two cases: if neural networks are merely viewed as a software and a
mathematical abstraction; if there is a one-to-one correspondence between the neurons and
the hardware processing elements (PEs) on which the ANN model runs. This mapping
is typical for systolic array structures, the first examples of digital architectures devised
for ANNs dating back to 1978 [6]. Although most of the existing ANN applications
are developed as software, there are specific models that demand real-time and parallel
processing capabilities. Dedicated ANN hardware implementations offer benefits in terms
of speed, power, and cost. However, not all hardware architectures are based on systolic
array structures, tearing down the theory claiming the ANNs’ inherent reliability. Since
their inception, several silicon implementations of neural networks have been proposed in
the literature [7]. Particularly worthy of note is the emerging trend toward the development
of custom hardware implementations of neural networks, which are extremely fast and
ultra-low-power, optimized for solving specific tasks. Examples are ANNs deployed on
resource-constrained application-specific integrated circuits (ASICs), such as miniaturized
robots (e.g., drones) [8], or even on pervasive embedded systems, such as wearable devices
and medical decision-making instruments [9]. Moreover, to face data confidentiality issues
and bandwidth limitations, a recent trend is to push deep learning computations from
the cloud into the edge [10,11], such as Internet-of-Things (IoTs) devices running deep
learning applications. Clearly, this requires the adoption of embedded devices, which
are low-power and low-cost on the one side, and powered for computationally intensive
calculations on the other. To meet all these requirements, multiprocessor systems-on-a-chip
(MPSoCs) currently represent the best option for running AI-based applications [12,13].
They are heterogeneous SoCs made of multiple CPUs and/or multiple PEs along with
other hardware subsystems, such as specific hardware accelerators [14–16].

The combination of the hardware architecture with the ANN software model in this
work is referred to as a Neural Computing System (NCS). From the reliability point of view,
it must be said that, due to the size and the resultant complexity of current ANNs, a single
PE is not connected to a single neuronal computation (as for systolic architectures) in the
state-of-the-art architectures. It would be unfeasible to develop a system with thousands or
millions of PEs. It also means that a single physical fault affecting a PE might compromise
the activity of multiple neurons.

Therefore, if neural networks can withstand a limited number of killed neurons
without compromising their performance [5], understanding the connections between the
neurons and the available hardware PEs is essential to trace a comprehensive reliability
assessment of the NCS. With respect to the limited number of killed neurons that an
ANN can withstand, it is worth underlying that individual network parts differ in their
error resilience [17]. Particularly, neurons exhibit different fault tolerance and resilience
levels. Some of them strongly contribute to the output classification of the neural network,
and their failures have a greater influence on the degradation of the final predictions.
All of these considerations justify the claim that neural networks running on hardware
designs cannot be considered inherently fault tolerant without investigating the entire
system’s reliability.

Motivated by the above-mentioned considerations, the intent of the article is many-
fold. The first goal is to tackle the reliability aspect of neural networks with the aim of
demonstrating that they are not generally intrinsically resilient; their reliability must be
evaluated with respect to the intended hardware implementation. In this regard, the
second goal of the article is to propose a methodology to improve the reliability of NCSs
based on resource-constrained MPSoCs. The main contributions of this paper are listed in
the following:

Appl. Sci. 2021, 11, 6455 3 of 27

• We present a methodology to identify the most critical neurons of a neural network
by assigning resilience values to each of them. The method bases on two levels of
analysis: first, the neuron is viewed as an element of each output class (class-oriented
analysis); second, the same is interpreted as belonging to the entire neural network
(network-oriented analysis). The method can be efficiently applied to neural networks
with any layers and any typologies. The methodology is validated by means of
software fault injection (FI) campaigns, using three different convolutional neural
networks (CNNs) trained on three different data sets: MNIST, SVHN, and CIFAR-10.

• Based on the above criticality analysis, we describe an approach to evenly distribute
critical neurons among the available PEs of the MPSoC to improve the reliability of the
NCS. It exploits integer linear programming (ILP) to find the optimal and deterministic
solution to map ANNs elaborations onto the target hardware architecture. To prove
the effectiveness of this reliability-oriented approach, we carried out FI campaigns at
the register transfer level (RTL) on an open-source RISC-V MPSoC for AI at the edge,
i.e., the GAP-8 architecture [16]. Specifically, to understand the vulnerability of the
MPSoC-based NCS to random hardware faults, permanent faults are addressed in
this work. Recent works have highlighted that permanent faults in DNN accelerators
have a major impact on DNN accuracy with respect to, for instance, temporary faults
(soft errors) [18].

In this paper, it will be experimentally proven that, without recurring to retraining
or redundancy techniques, it is possible to mitigate the effects of hardware faults by
redistributing the neural computations. Indeed, conventional mitigation techniques that
are based on redundancy do not fit well with the compute-intensive nature of neural
networks, introducing huge overheads [19].

The rest of the paper is organized as follows. Section 2 provides the reader with
background knowledge on neural computing systems with a relevant focus on MPSoC-
based ones. In the same section, fault models and some of the most relevant works in the
literature are presented. Section 3 describes the proposed approach, and Section 4 outlines
the case study. Next, Section 5 reports on the experimental results. Finally, Section 6 draws
some conclusions and future directions.

2. Background

This section introduces background knowledge on the topics dealt with throughout
the article. Initially, Section 2.1 presents the concept of neural computing systems with
a special emphasis on AI-oriented MPSoCs. Then, to assist the reliability analysis, the
most-used fault models for NCS reliability analysis are described in Section 2.2. Finally,
Section 2.3 gives an overview on the related works in the literature.

2.1. Neural Computing Systems (NCS)

A neural computing system is a system that includes the neural network software
together with the target architectural implementation. It can be considered a unique block
comprising two non-independent levels:

1. Behavioral level : It includes the technology independent artificial neural network
software model.

2. Architectural level: It refers to the hardware exploited for running the ANN model.
Examples are graphics processing units (GPUs), field programmable gate arrays
(FPGAs), ASICs, and dedicated neurochips.

As stated before, the choice of the architectural implementation plays a crucial role
in the assessment of the NCS reliability. A survey on all major design approaches and
models is proposed in [7], where the main architectural solutions for NCSs are described,
including digital, analog, hybrid, FPGA-based, RAM-based, and neuromorphic implemen-
tations. Systolic array structures are the first examples of digital architectures devised for
ANNs [20]. Their design is suited to express the recurrence and parallelism associated
with neural networks. Considering multilayered back-propagation networks, the singular

Appl. Sci. 2021, 11, 6455 4 of 27

processing element implements the function of an associated neuron, while the weights are
stored in a circular memory. It means that a fault in a neuron can be mapped to a single
physical fault, e.g., stuck-at fault or transient fault. In this particular scenario, a single
physical fault corresponds to a single error in the neuron.

Traditionally, ANNs are executed on programmable high-performance GPUs. How-
ever, despite their excellent achievements, they are unsuitable for applications requiring
low-cost and, particularly, low-power devices, due to the excessive power consumption
for an inference task. For this class of applications, ASICs are gaining growing interest.
A growing number of NCSs, especially those intended for the IoT field and for the edge
computing paradigms, are built on ASIC design implementations [21,22]. One essential
reason is attributed to their flexibility, which makes them suitable for a wide range of
applications requiring low-power and low-cost embedded devices. Additionally, mod-
ern architectures of digital devices, especially those destined for the AI world, require
the parallelization of many computational units, due to the high computational demand.
Hence, they mostly exploit the data parallelism with the single-instruction multiple-data
(SIMD) computing paradigm, where the parallelism is achieved by applying a single in-
struction to multiple data items. This means that each PE elaborates the same instructions
simultaneously but on different data [23]. In this regard, a PE may correspond either to
a processor core [16] or a sub-unit including only the multiplier, the accumulator and an
on-chip memory for weights storage. It is worth saying that one of the main issues regard-
ing ASIC-based NCSs is the limited storage capacity. Their on-board memories are suited
to host network parameters, i.e., weights, biases. However, being resource-constrained
devices, they can hold a limited amount of data, approximately from a few kilobytes [16]
up to, in the best case, megabytes [14]. This restriction implies that only bounded-sized
ANNs can run inferences on top of resource-constrained embedded devices. In this light,
compression algorithms are proposed, such as in [24], where a synthesis tool is presented
to compact ANNs architectures during training. Furthermore, researchers have introduced
novel quantization models to face this issue [25]. It has been experimentally demonstrated
that, moving from a full precision representation (i.e., floating-point) to optimized models
exploiting reduced bit-width data types (i.e., fixed-point), the accuracy loss is negligible
and the memory footprint can be reduced [26,27]. In this work, we refer to AI-oriented
MPSoC to define a class of ASIC digital devices sharing all these features and conceived
for running ANNs [14–16].

2.2. Fault Models

In the literature, a well established cause–effect relationship exists between three
aspects: faults–errors–failures [28]. Depending on the abstraction level and on the fault
location, the following classification is drawn:

1. Fault: A fault is an anomalous physical condition or a defect in the system that
might occur at the architectural level of a NCS. In order to better study the impact of
physical faults in a given device, it is necessary to model them in an accurate way; in
the literature, different fault models have been proposed mimicking the fault behavior
through a simulable model. Considering their temporal characteristics, physical
faults can be mainly classified as permanent or transient. A permanent fault is an
unrecoverable defect in the system, such as wires assuming fixed logic values at 0
(stuck-at-0) or 1 (stuck-at-1). Being non-reversible, the fault is stable and fixed over
time and affects all the system computations. A transient fault is a defect in the system
that is present for a short period of time. It is also known as an intermittent fault or
soft error, and it may be due to external perturbations, radiations or disturbances. It is
fair to say that today, these two fault models are not able to cover the newer fault
mechanisms of the deep-submicrometer technologies: new fault models are needed to
deal with delays, stuck-opens, open-lines, bridgings, and transient pulses. A detailed
overview is provided in [29]. However, despite the category and the specific fault
model, a physical fault may or may not be activated, depending on several factors,

Appl. Sci. 2021, 11, 6455 5 of 27

such as the input conditions, and thus, may or may not lead to malfunctioning in the
application. In the literature, many reliability investigations and studies have been
made by exploiting both permanent [30,31] and transient fault models [32–34].

2. Error: An error, also referred to as behavioral error for exhibiting at the behavioral
level, is an unexpected system behavior, for instance, due to the activation of a
physical fault. In the neural network field, each neuron is considered a single entity
that can fail independently of the failure of any other [5]. Neural networks are viewed
as distributed systems consisting of two components: neurons and synapses, i.e.,
the communication channels connecting the neurons. As for neurons, the error of a
synapse is also independent of that of other synapses or neurons. Therefore, we can
distinguish between two typologies of errors at the behavioral level:

• Crash: Neurons or synapses completely stop their activity. A crashed synapse
can be modeled as a synapse weighted by value 0. Contrarily, to model a crashed
neuron, the dropout fault model is exploited, where the output of the neuron is
purposely set to 0.

• Byzantine: Neurons or synapses keep their activity but send arbitrary values,
within their bounded transmission capacity [35].

An error affecting a single neuron or synapses may not lead to a failure. This is not
only related to the intrinsic definition of an error, but also to the ANN property of
being over-provisioned.

3. Failure: A NCS failure occurs when the network, due to the manifestation of errors,
wrongly predicts the output. Clearly, it must be underlined that ANNs are usually not
100% accurate: they might wrongly predict the output, even without the occurrence
of errors.

It is worth pointing out that understanding the direct connections between single
physical faults and crashed/byzantine neurons is an open challenge today. An attempt
was recently made by He et al. in [36], where a framework was developed to study the
behavior of hardware transient errors in deep learning accelerators. The framework, named
Fidelity, is able to model transient faults in software with high fidelity, only leveraging
on high-level design information obtained from architectural descriptions. By relying on
these hardware-level faults derived from the architectural analysis, they injected random
bit-flips at specific input values, weights, and output neurons of the neural network under
assessment.

To sum up, the fault models explored in this work are permanent faults at the archi-
tectural level, crash errors (precisely, dropout) at the behavioral level, and failures at the
application output.

2.3. Related Works

Recent studies have demonstrated that hardware faults induced by an external per-
turbation or due to silicon wearout and aging effects can significantly impact the DNN
inference, leading to prediction failures [29,37,38]. Many attempts have been made in
recent years to understand the reliability and the fault tolerance of ANNs [27,34,39,40].
Among the existing techniques, fault injections have been intensively used to assess the
dependability of the systems under test: the procedure consists of introducing faults/errors
into the system and checking its behavior in response to them. Moreover, to perform fault
injection campaigns, many frameworks have been proposed at different abstraction levels
and by following specific injection procedures (e.g., [26,41,42]).

Among the existing topics, understanding the importance of individual neurons
took on great relevance when the problem of complex ANN models running on limited
computing and memory resources emerged. To tackle such problems, many researchers
provided network pruning techniques to remove either redundant neurons or connections
from over-parameterized neural models. The first pruning algorithm was proposed by
LeCun in the 1990s [43], causing many researchers to spend a lot of effort in the network
compression field. In [44], a three-step method is described to cut redundant connections

Appl. Sci. 2021, 11, 6455 6 of 27

by learning the important ones and retraining the remaining sparse network. Without
any loss of accuracy, they can reduce the number of connections by 9 to 13 times. A
second paper provides an algorithm to remove neurons whose importance is below an
optimal threshold [45]. To understand if neurons or connections can be removed, it is a
common approach to use tuned thresholds or explore machine learning approaches [46],
albeit rarer. Although our problem may seem to be a pruning related one, it departs
from it. Our scope is not to compress the network by removing unimportant neurons or
connections. Rather, our scope is to find where the most important neurons are and to
profile the application criticality. This will drive the subsequent ILP optimal scheduling.
Most importantly, contrary to pruning approaches, the methodology presented in this
work does not require additional learning steps or the adoption of a threshold, which are
computationally expensive.

The importance of neurons in a neural network is also addressed by
Venkataramani et al. [17] to design energy-efficient hardware implementations of large-
scale neural networks. To characterize the importance and the resilience of each neuron, the
backpropagation of error gradients is used to discover those neurons that impact output
quality the least. Neurons that contribute the least to the global error are more resilient and
can be approximated with energy-efficient neurons. The process implies that, for each input
in the training set, the error at the output is computed using forward propagation. Then,
the errors are backpropagated to the outputs of individual neurons to get their average
error contribution over all inputs in the training set. Finally, the errors are ordered based
on the magnitude of their average error contribution. On this base, the same methodology
is exploited by Liu et al. in [47] to determine the fault tolerance capability of each neuron,
albeit for a different scope. This measure, named δi, for the i-th neuron is computed as the
derivative of the cost function E with respect to the output node yi. A low δi corresponds
to a more resilient neuron, and vice-versa.

δi =
∂E
∂yi

(1)

We see two principal problems with the two above-mentioned techniques ([17,47]).
The first one is related to computational costs: to compute the average error contribution
(the neuron measure of resilience), it is required to perform both the forward propagation
and backpropagation for each instance of the training set. In the proposed approach, only
forward propagation is applied for each instance of the training set. Second, the derivative
of the cost function implies that the golden output must be available; in other words, the
training set must be labeled. This means that the method can be used only with supervised
learning neural networks.

A further contribution in this direction is given by Schorn et al. in [48], where the
authors propose a methodology to assign resilience values to individual neurons. It is based
on the deep Taylor decomposition of neural networks described in [49], which computes
the contribution of each neuron to the output function value of a neural network. For
each input image, the Taylor decomposition and layerwise relevance propagation (LRP)
algorithm computes the value Ri,j for each neuron j belonging to the layer i, as described
in [48]. This rule is used with the intent of calculating the average contribution of each
neuron (with a score between 0 and 1) over a set of M training images. In more details,
based on the training set, the resilience score r of each neuron yi,j is computed as follows:

ri,j =
M

∑M−1
m=1 Ri,j(y0,m, tm)

(2)

where t is the output label vector related to the input image y0. Similar to [17,47], this
methodology requires the output labels to be available, and thus, it restricts the applicability
of the technique to neural networks that are trained with a supervised learning procedure.
Additionally concerning the computational cost, the backpropagation phase must be
repeated twice: first to compute the contribution of each neuron to the output function

Appl. Sci. 2021, 11, 6455 7 of 27

value with the Taylor decomposition and LRP (Ri,j); next, to compute the contribution of
each neuron to the output function value ri,j.

Although the above-mentioned problems can be considered to be of relative impor-
tance, it is possible to highlight that all these approaches can be classified as network-oriented:
they do not consider the importance of neurons as entities linked to the single output classes.
As described in the following, in Section 3, neurons that are critical for individual output
classes may take a low resilience score in network-oriented approaches. In this work, we
propose to strengthen the network-oriented analysis with a class-oriented one to improve
the accuracy of the process that must provide an order set of important neurons, helping,
in this way, to improve the reliability level of the system under assessment. To the best
of our knowledge, this is the first time that the importance of neurons as related to the
single output class is taken into account. However, since this stands in close relation to our
research and they pursue a very analogous objective to ours, we compare our approach
with a similar method ([48]) later in Section 5.

Finally, as for the proposed reliability-oriented ILP-based methodology, a similar work
was recently proposed by Hanif et al. in [50]. The authors described SalvageDNN, a
fault-aware mapping methodology that permutes neurons and weights in a DNN such
that the least critical weights are mapped to faulty PEs. In this way, they are bypassed
by fault aware pruning (FAP) without impacting the accuracy of the DNN. Despite the
interesting results, we differ from [50] in the way we assign criticality scores. While Hanif
et al. considered only the static parameters (i.e., weights, bias, filters), in our work, we
consider also the contribution of the inputs (dynamic approach).

The above analyses have mostly motivated the following proposed methodology.

3. Proposed Approach

The proposed methodology is based on the identification of the most critical neurons
inside the ANN to then determine the best scheduling of the ANN application workload
in the targeted MPSoC. We assume that the ANN is ready to be deployed on the intended
hardware architecture and any modifications of the ANN application are not required.
Indeed, only the pretrained ANN application and the available hardware resources are
considered. As experimentally demonstrated, the proposed technique is capable of increas-
ing the reliability of the NCS. In this work, we present a methodology that is built on the
following three steps:

1. Ranking of the criticality of single neurons: Resilience scores are assigned to indi-
vidual neurons of the ANN.

2. Mapping and variance assignment: Based on the previous phase and on the avail-
able PEs of the target AI-oriented MPSoC, a value is given to each chunk of neu-
rons assigned to a single PE. We adopt a mathematical metric as a decision-making
parameter—the variance. This value indicates the criticality of the chunk; in other
words, the amount of critical neurons in that chunk that are assigned to a PE.

3. ILP-based optimal scheduling: By leveraging on the chunks variance, an ILP solver
is set up to obtain the optimal reliability-oriented scheduling for mapping ANN
inferences on a specific hardware device.

These three phases are shown in Figure 1 and detailed in the following.

Appl. Sci. 2021, 11, 6455 8 of 27

Mapping and Variance
Assignment

ILP-based
Optimal Scheduling

MPSoC
Architecture

Ranking of the
criticality of individual

neurons

Figure 1. Proposed approach to improve the reliability of a neural computing system based on
a MPSoC.

3.1. Ranking of the Criticality of Single Neurons

If a neuron contributes more to the final prediction, it is considered critical or impor-
tant; otherwise, it is considered resilient or redundant. An error in critical neurons may
significantly compromise the accuracy of the final neural network prediction. From another
perspective, determining the most critical neurons of a neural network means identifying
all those neurons carrying more information than others. The investigation of ANNs as
mathematical models induced us to reflect that a neuron’s output is nothing but the result
of a summation. Based on the above insight, we demonstrate that critical neurons are those
producing at their output the highest absolute values during the inferences. Moreover, our
theoretical-based criticality analysis is founded on a further key observation. According
to behavioral theories in neuroscience [51], brain memories occur when specific groups of
neurons are reactivated. Based on precise stimuli, neurons become active in a particular
pattern of neuronal activity. It means that if our brain thinks of a sky or a meadow, different
ensembles of neurons become active. By transferring this concept to the world of artificial
neural networks, in a multi-output neural network, the contribution of a single neuron
can be seen in two ways. One is meant for guaranteeing the correct prediction of the
single output class, and the other is meant for guaranteeing the correct predictions of
the entire multi-output neural network. In other words, imagine you have a two-output
neural network classifying apples and pears pictures; there will be neurons that are more
significant for the class apple and others for the class pear. At the same time, all the neurons
guarantee overall correct predictions. To this end, we propose a methodology to assign
resilience scores to individual neurons. It is built in three steps:

1. Class-oriented analysis (CoA): For each single output class, the most important
neurons are extracted with Algorithm 1 and sorted in descending order based on their
criticality. This sorting is saved on a final list, named the score map, which is created
for each output class.

2. Network-oriented analysis (NoA): The process is repeated for the entire neural net-
work (without distinguishing between output classes), and a single score map is
obtained.

3. Final network-oriented score-map: The network-oriented score map is updated
based on the outcomes of the class-oriented analysis.

These three phases are carefully described in the following.
In the first class-oriented analysis, we consider the importance of a neuron related to

each single output class. In particular, it is worth specifying that we refer to the neuron as
the following: each pixel in the output feature maps of a convolutional layer, each node in
the pooling (min, max, average) or fully connected layers. Typically, batch normalization
and activation functions (e.g., rectified linear unit, sigmoid, Gaussian) are not considered
independent layers, and thus, they do not come with additional neurons. In Algorithm 1,

Appl. Sci. 2021, 11, 6455 9 of 27

scores are assigned to neurons considering both static and dynamic parameters of the ANN:
by catching the neuron’s output (y), both the weights (static parameters) and the inputs
(dynamic parameters) are taken. At the beginning, an initial score equal to zero is assigned
to each neuron (line 6). Therefore, for each output class of the neural network (line 7), a new
score map is created (line 8). For each instance in the training data set related to the specific
output class, a forward propagation cycle is performed (line 10). In the meantime, a score
is given to each neuron (lines 13–15), by averaging the absolute output values produced
during all the inferences (line 20). The score is updated at every inference iteration. At the
end of the process, each class keeps its own score map, where every neuron holds a score
value (line 22). The highest absolute scores are relative to the most critical neurons for that
given class. In more detail, the score map is represented as a list sorting the neurons from
the highest to the lowest value. It is worth noting that the output is sampled for every
neuron after the eventual batch normalization or activation function.

Algorithm 1: Assignment of resilience scores to individual neurons

1 N← Total neurons;
2 C← Output classes;
3 Ii, i∈[0,C] ← Inputs for a specific class;
4 scorek, k∈[0,N] ← Score assigned to a neuron;
5 yk, k∈[0,N] ← Output value of a neuron;
6 scorek, k∈[0,N] ← 0;
7 for each output class of the network c∈[0,C] do
8 new()
9 for each instance in the training dataset i, i∈[0,Ic] do

10 inference()
11 for each neuron k, k∈[0,N] do
12 if i = = 0 then
13 scorek ← | yk |
14 else
15 scorek ← scorek + | yk |
16 end
17 end
18 end
19 for each neuron k, k∈[0,N] do
20 scorek ← scorek/IC
21 end
22 save()
23 end

Starting from the classes’ score maps, it is possible to extract a subset (t) of critical
neurons in the form className_critical_t. The subset parameter (t) determines the amount
of neurons that are considered critical and it is not a fixed value. Defining that number
means tuning the reliability of a NCS: in other words, the larger the size, the larger the set
of neurons that are considered critical.

Next, in the network-oriented analysis (NoA) phase, we build a final score map where
neurons are sorted based on the magnitude of their average contribution over the training
set, without differentiating between the output classes. It is worth pointing out that both
the score maps resulting from the NoA and the one from the CoA contain all the neurons
of the neural network: only their values change, and consequently the ordering. To this
end, Algorithm 1 is run again: line 7 is removed and line 9 is modified so that the inputs
are picked up from the entire training data set. Then, since it might happen that the
neurons that were found to be critical for individual classes take on a low value in the NoA,
the outcome of this score map is updated considering the score maps resulting from the
CoA. All neurons assuming a higher value in the class-oriented score map (given a subset
parameter t) are overwritten. The set of critical neurons to take into account for the final

Appl. Sci. 2021, 11, 6455 10 of 27

network-oriented score map is computed by executing the union without repetitions of all
the classes’ score maps (C), as follows:

critical_t←
C⋃

i=1

ci_critical_t (3)

As an example, the whole process is illustrated in Figure 2 for a generic neural
network trained on MNIST. First, a percentage of critical neurons is selected (t) from the
class-oriented score maps. Among these neurons, all those with a lower value in the
network-oriented score map are overwritten with the highest value in the classes, i.e.,
the red squares, whereas neurons, such as Neuron 27 in Class 0, having a value lower in
the t% of the CoA, are not updated in the final score map. Interestingly, Neuron 653 in
Class 9 assumes the lowest value in the network-oriented score map and, being part of
the t%, is updated. In the end, as depicted in the right side of Figure 2, the final updated
network-oriented score map is produced, where the per-class criticality is considered with a
t factor. The larger t is, the more neurons are considered critical and therefore, strengthened
in the final network-oriented score map.

101 345 5.32

1225 5.10

27 5.08

Neuron ID Score

19821 0.02

653 0.01

3621 4.98

42 4.81

54 5.22

27 5.06

2783 4.99

152 0.21

892 0.14

333 4.80

47087 4.71

4.89

3631 4.01

12 3.54

38221 0.18

8672 0.09

17001 3.12

653 2.99

Network-oriented AnalysisClass-oriented Analysis

t [%]

345 5.32

54 5.22

1225 5.10

39 0.08

19821 0.02

27 5.08

2783 4.99

Final
Network-oriented

Score map
More critical

Less critical

Figure 2. The critical neuron identification process: a practical example with the MNIST data set.

In Section 2.3, similar approaches developed to identify the network’s critical neurons
are described. As stated before, they are based only on a network-oriented analysis [17,47,48].
In this paper, we demonstrate that our methodology obtains a stronger analysis in terms of
reliability. Although this approach is applied on an ANN performing image classification,
it can also be extended to other tasks.

3.2. Mapping and Variance Assignment

In state-of-the-art architectures, a DNN inference task is scheduled, using the one-to-
many paradigm (one PE elaborates many neuronal computations). To optimize the memory
accesses and to ease the inference process, a typical approach is to assign each PE always
the same range of neurons throughout the network inference. Such an approach, named
static scheduling, doubtlessly leads to gains in terms of performance and latency, but turns
out to be disadvantageous from the reliability point of view. Indeed, a single physical fault
affecting a PE insists always on the same range of neurons, no matter their importance.

Traditionally, to improve parallelism, AI-oriented MPSoCs distribute the ANN work-
load, exploiting the SIMD paradigm. As shown in Figure 3, the neurons N={0, . . . , n}
are neatly distributed among all the P={0, . . . , p} PEs, and it is known exactly which neu-
rons that a PE handles when launching the inference of a L-layer neural network, where
L={0, . . . , l}. Thus, it is possible to split the total amount of neurons in well-defined chunks,
consisting of fixed groups of neurons assigned, at each layer l, to a specific PE p. Neverthe-
less, the amount of critical neurons belonging to each chunkl,p is not equally distributed
among the P computing resources. From the reliability point of view, this might open

Appl. Sci. 2021, 11, 6455 11 of 27

serious concerns. According to the motivation of the work, a physical fault affecting the
architectural level may negatively affect the computation of many neurons at the behavioral
level. In addition, most interestingly, what happens if a physical fault hits the PE that
processes the greatest number of critical neurons? The hypothesis is that it will emphasize
even more the errors, leading to a significant drop in accuracy.

Cluster

L2 Memory

L1 Shared Memory

DMA

ROM

Pe
rip

he
ra

ls

PE
0

Logarithmic Interconnect

Shared Instruction Cache

HWCE

Main
Core

PE
1

PE
2

PE
3

PE
4

PE
5

PE
6

PE
7M
ic

ro
 D

M
A

Debug Debug

Lay
ers

W
C

H

Output
Prediction

Input

Chunk0
Chunk1
Chunk2
Chunk3
Chunk4
Chunk5
Chunk6
Chunk7

SchedulingL0

Chunk3 - PE3

Figure 3. Static scheduling: Neurons assignment in a multiprocessor SoC.

In this work, we provide a way of balancing the assignment of the chunksl,p to the P
processing elements, thereby reducing the likelihood that a physical fault on a PE may
jeopardize the correct functionality of a large number of critical neurons. In more detail, this
study proposes a scheduling mechanism to allocate the chunks of neurons to the available
PEs. Since we are not considering any retraining of the ANN, the trend of neurons cannot
change. The only way is to redistribute their allocation to the available PEs so that the
computation of the most critical neurons is not assigned to just one PE, or a subset of them.

To measure the criticality of a group of neurons (also referred to as chunk), we use the
variance parameter. Seeing that it measures how far a data set is spread out, the variance
of a chunk of neurons can provide a measure of the number of critical ones contained in
that chunk. Mathematically, it is defined as the average of the squared differences from
the mean µ. In the beginning, the variance figure for each chunk is computed, with the
aim of evaluating their criticality. Given subset of neurons xi,i∈[1,N] assigned to a PEp,p∈[1,P],
the variance of the chunkl,p can be computed as described in (4). N represents the total
number of neurons in the chunk. A large variance figure suggests that a significant number
of critical neurons are enclosed in that chunk. In contrast, a small variance value indicates
that the chunk holds a small number of critical neurons.

σ2
l,p =

N

∑
i=1

(xi − µ)2

N
(4)

3.3. ILP-Based Optimal Scheduling

We propose an ILP and variance-based scheduling with the aim of mitigating the
ANN criticality by redistributing chunks of neurons over the existing PEs. An ILP model
is built to feed a solver in charge of finding the optimal solution. The final optimized
scheduling is deterministic and it is wholly decided at compile-time. Therefore, no choices
are made at run-time during the network inference.

The following method takes inspiration from the existing scheduling on parallel
machines [52–54], where a set of identical machines M = {1, . . . , m} has to process in parallel
a set of jobs J = {1, . . . , j}. Jobs can be split into multiple sections that can be processed
on several machines simultaneously, and each job j∈J has weight wj and processing time
ptj. In line with this, we may consider the machines m∈M as the processing elements p∈P
of our NCS and the jobs j∈J as the layers l∈L of our ANN. From this point on, the terms
machines and processing elements as well as jobs and layers are equivalent, i.e., m = p
and j = l . Hence, the problem looks very similar but we change the criterion adopted
to find the optimal solution. Indeed, depending on the criteria defining the problem, an

Appl. Sci. 2021, 11, 6455 12 of 27

optimal scheduling solution can be provided by exploiting, for example, integer linear
programming. For instance, if the goal is to to minimize the maximum completion time
of machines, scheduling provides a solution for that purpose by assigning those jobs j∈J
to the machines m∈M. Although our problem is approaching very closely, our purpose is
not to minimize the maximum completion time of machines; rather, it is to equalize the
amount of critical neurons that each PE has to elaborate. Therefore, instead of considering
the weights wj or the processing time ptj, the criterion on which our scheduling is built is
the variance σ2

j,m of the job’s sections (i.e., the chunks), that measures their criticality (4).
In other words, the objective of the proposed method is to uniform the variance of the jobs
over the machines.

An optimal and deterministic solution for this problem can be obtained by resorting
to optimization solvers. More formally, our approach formulates the problem as an ILP
problem, which can be expressed through mathematical formulas. We built an ILP model
by defining the decision variables, the objective function, and the constraints, all compliant
with the following formulas. The optimal solution is the one that is able to minimize the
distance between the machines’ cumulative variance and the average one.

Let us make the following definitions, assuming that 1 ≤ l ≤ L and 1 ≤ p ≤ P, where
L is the total number of layers and P is the total number of available PEs. Then, we need to
introduce a third index 1 ≤ k ≤ K that refers to the order of the chunks. Such a parameter
indicates also how many chunks can be obtained by distributing the workload of layer l
over the available PEs (if P is equal to 8, then K will correspond to 8). In static scheduling,
the index k is always equal to p: for instance, the chunk1 is always assigned to PE1. With
the proposed ILP and variance-based mapping, we change this order and so we need to
differentiate between p and k.

As decision variables, integer variables x(l,p)k are used to indicate whether the chunk k
of the layer l is assigned to the processing element p or not.

Specifically, x(l,p)k is a binary variable and is equal to the following:

x(l,p)k =

1 if chunk k of layer l is assigned to

processing element p;
0 otherwise.

(5)

The variance of the chunk k of the layer l is fixed (σ2
(l,p)k), regardless of the PE to

which it is associated. Hence, we can avoid the index p and only refer to σ2
(l,k).

The objective function of our ILP problem is the following:

Minimize
K

∑
k=1

L

∑
l=1

P

∑
p=1

σ2
(l,k) ∗ x(l,p)k (6)

This is subject to the following constraints:

• Each chunk k must be assigned to a single processing element p, multiple assignments
of sections of the same layer to a certain machine are not allowed:

P

∑
p=1

(x(l,p)k) = 1, ∀l ∈ L, ∀k ∈ K (7)

• Each processing element p must compute the same amount of chunks k equal to the
total amount of layers L:

L

∑
l=1

K

∑
k=1

(x(l,p)k) = L, ∀p ∈ P (8)

Appl. Sci. 2021, 11, 6455 13 of 27

• Each processing element p in each layer l has to process a single chunk k:

K

∑
k=1

(x(l,p)k) = 1, ∀l ∈ L, ∀p ∈ P (9)

• The cumulative variance elaborated by every PE must be close to the average one:

K

∑
k=1

L

∑
l=1

(σ2
(l,k) ∗ x(l,p)k) ∼

P

∑
p=1

σ2
p

(TOT)

P
, ∀l ∈ L (10)

• The cumulative variance of each layer must stay the same:

K

∑
k=1

P

∑
p=1

(σ2
(l,k) ∗ x(l,p)k) = σ2

l
(TOT), ∀l ∈ L (11)

4. Case Study

To prove the effectiveness of the proposed methodology, we used three different
convolutional neural networks (CNNs) trained on three representative and popular data
sets: MNIST [55], SVHN [56], and CIFAR-10 [57]. The MNIST data set is used to recognize
handwritten digits and consists of a training set of 60,000 28 × 28 gray-scale images, and a
test set of 10,000 examples. The street view house numbers (SVHN) data set is a real-world
image data set obtained from house numbers in Google Street View images. It contains
more than 600,000 digit images: 73,257 digits are used for training, 26,032 digits for testing,
and additional ones as extra training data. SVHN comes in two formats: the original and
32 × 32 cropped. We used the latter. The CIFAR-10 data set is an object recognition data
set made of 60,000 32 × 32 color images comprising 50,000 training images and 10,000 test
images [57].

We implemented three CNNs, using PyTorch [58] on a Linux server equipped with
a dual Intel Xeon CPU E5-2680 v3 and 256 GB of RAM. PyTorch is a fast and flexible
framework widely used by both industry and academia for deep learning and machine
learning based applications. The first neural network is a custom version of LeNet-5 and
is composed of 7 layers (i.e., 3 convolutional, each one followed by max pooling and the
last fully connected) with an input size of 28 × 28 × 1. After each convolutional layer, the
rectified linear (ReLU) activation function was used. It was trained and tested on the MNIST
data set reaching a 99.31% of accuracy over the MNIST test set. Next, we implemented a
second neural network following the ConvNet [59] model. It was trained and tested over
SVHN dataset, classifying correctly the 92.01% of test images. It consists of 2 convolutional
layers, each one followed by LP-pooling and normalization layers (also known as 2-stages
or multistage features). They were fed to a 2-layer classifier (fully connected layers). The
last CNN was built with the all-CNN configuration [60], an architecture that consists solely
of convolutional layers ([60] demonstrates that max-pooling can simply be replaced by
a convolutional layer with increased stride without loss in accuracy). The architecture is
made of 9 convolutional layers. We exploited the CIFAR-10 data set for this last CNN.
The final accuracy was equal to 90.57% over the test set. Further details, such as the total
amount of neurons, are provided in Table 1.

Table 1. ANN benchmarks.

CNN Model Data Set Application Accuracy Total Neurons

Custom LeNet-5 MNIST Image Classification 99.31 48,650
ConvNet SVHN Object Recognition 92.01 185,374
All-CNN CIFAR-10 Object Recognition 90.57 361,046

Appl. Sci. 2021, 11, 6455 14 of 27

Furthermore, to demonstrate the effectiveness of the proposed ILP-based scheduling,
we carried out fault injections at RTL on a NCS, comprising the custom LeNet CNN
(Table 1), running on an open-source AI-oriented RISC-V MPSoC. This ASIC platform is
the PULP cluster of RISC-V based processors, named GAP-8 [16]. It comprises two separate
domains. The principal one consists of an advanced microcontroller unit, called the fabric
controller. It is built around a main RISC-V core, which is intended to handle the SoC
principal functionalities. This is aided by a second domain, i.e., a cluster of eight RISC-V
cores used by the main core for offloading highly computational-intensive SIMD operations.
Hereinafter, the 8 RISC-V cores are named PEs and represent our target hardware elements.
Regarding the cluster, the eight cores are identical and are allowed to run the same binary
code on different data (SIMD paradigm). The MPSoC hosts in the fabric controller a 512 kB
of L2 memory and a ROM storing the primary boot code. In the cluster, each core can access
a shared L1 memory. The DMA unit is in charge of handling the transfers between the L2
and the L1 memories. Specifically, a complete CNN inference cycle (a single prediction)
takes 276,529 clock cycles (15,772 ms at 18 MHz). Initially, the network parameters (weights,
biases) are stored in the 512 KB L2 memory; before each layer computation, the DMA is
in charge of transferring the current layer parameters from L2 memory to the cluster’s
shared 128 KB L1 memory. Further architectural details are provided in [16]. Moreover, the
RISC-V cores of GAP-8 do not have a hardware floating-point unit, and all computations
are executed in fixed-point arithmetic. Therefore, the targeted LeNet CNN was quantized
to comply with the PULP-NN library requirements [61] and to fit into PULP memories.
Unfortunately, due to memory constraints, full-precision neural networks cannot be easily
ported into resource-constrained devices, as stated in Section 2. Then, the CNN parameters
were quantized to 8-bit signed integers. Specifically, the full-precision PyTorch model’s
parameters (weights and biases) were quantized, and then a new model running on the
multiprocessor SoC was created in the C programming language by exploiting the kernel
functions of PULP-NN. The accuracy of the new quantized network was computed by
running the MNIST test set, and it slightly decreased by 1.1%. The reader should note that
the final network-oriented score map did not change after the quantization step.

5. Experimental Results

In this section, the experimental analysis and corresponding results are provided
along with accurate discussions. First, we performed the analysis of critical neurons for the
three CNNs described as case study (Section 5.1). Then, to demonstrate the effectiveness
of the proposed scheduling, we executed FI campaigns at the architectural level on the
RTL design of the open-source PULP platform running the custom LeNet CNN. All the
experiments were performed on a Linux server equipped with a dual Intel Xeon CPU
E5-2680 v3 and 256 GB of RAM. The experimental results are provided in Section 5.2.

5.1. Ranking of the Criticality of Single Neurons

To profile the criticality of the three CNNs, Algorithm 1 was executed to assign
resilience scores to individual neurons. As stated before, the MNIST, SVHN, and CIFAR-10
training data sets were used to assign resilience scores. In contrast, their test data sets were
used for the fault injections experiments (both at the software and RTL level).

5.1.1. Class-Oriented Analysis (CoA)

Initially, each training data set was divided into subclasses, i.e., the number of outputs.
More specifically, in our case study, we had ten outputs for all CNNs, but the same
reasoning applies to a different number of output classes. Each sub-class contained only
the images representing the selected output class. Hence, the proposed algorithm was
executed to obtain the ten final score maps for each CNN. Each of them ordered the total
neurons from the one activated with the highest average value to the one with the lowest
(from the most critical to the least one) for that particular output class.

Appl. Sci. 2021, 11, 6455 15 of 27

Next, we performed software FI campaigns (i) to shed light on the importance of
the class-oriented analysis, and (ii) to show that individual output classes hold different
robustness levels with respect to errors. This certainly depends on the training phase and
the structure of the data set that is used to train the network (typically, in the training set,
training images are not evenly distributed among the output classes). We exploited the
dropout probability fault model (p-dropout) in which a fraction of the neurons outputs is
set to zero, and thus, their contribution is canceled. The same fixed amount of neuron
outputs (p) was set to zero in two scenarios and, after the injection, the resulting accuracy
of each CNN was measured by running the total test set of images (which was different
from the training set used to gather the resilience scores). For each output class, in the first
scenario (Random), neurons were randomly chosen from the class score map. In the second
(Critical), the same number of neurons was neatly selected always starting from the top of
the class score map, i.e., from the most critical neurons. As for the Random scenario, since
we relied on a random choice of neurons to kill, the experiments were repeated 1000 times
(every time picking up different p random neurons); we report in Figures 4–6 the average
percentage obtained through the experiments. The experiments were conducted for each
output class of the targeted CNNs and, particularly, they were replicated for growing
p-percentages: p equal to 0.1% (Figures 4a, 5a and 6a); p equal to 0.5% (Figures 4b, 5b and
6b); p equal to 1% (Figures 4c, 5c and 6c); p equal to 1.5% (Figures 4d, 5d and 6d).

The experimental results for the three FI campaigns are reported in Figures 4–6. The
scenario Fault-free is the golden accuracy of the class and, as for the Random and Critical
scenarios, it was computed by running only the inferences of the images belonging to the
given output class. As shown, it is evident that random injections do not affect, or only to
a negligible extent (when p gets bigger), the behavior of the neural network. Indeed, in
all cases, the accuracy fluctuates around the Fault-free one, apart from the third and fourth
cases (p = 1% and p = 1.5%) where it slightly decreases. This confirms the theory under
which neural networks are equipped with more neurons than they need [4]. In fact, up to
a certain point, they can obtain enough of some neurons and still work correctly. On the
other hand, this is not confirmed in the Critical scenario. The accuracy of the output classes
considerably drops when killing the p highest neurons.

(a) p = 0.1% (b) p = 0.5%

(c) p = 1% (d) p = 1.5%
Figure 4. MNIST LeNet: software fault injection campaigns on random and critical neurons. A fixed
percentage p of neurons is dropped.

Appl. Sci. 2021, 11, 6455 16 of 27

Concerning MNIST LeNet, for p = 0.1% (Figure 4a), the maximum percentage variation
from the Fault-free accuracy to scenario Critical is equal to 6.13% and corresponds to the
last class (digit 9). Then, when killing p = 0.5% critical neurons (Figure 4b), the highest
percentage variation drastically increases, reaching 44.33% for the second class (digit 1),
where the CNN accuracy drops from Fault-free 99.33% to 54.54%.

The situation worsens with p = 1% for all the classes, except for digits 5 and 7, where
the accuracy keeps close to 60% (Figure 4c). In the last scenario, when dropping p = 1.5%
critical neurons from the classes, the correct predictions become zero or close to it. As
illustrated in Figure 4d, it turns out that for LeNet trained on MNIST data set, the most
robust class corresponds to digit 5, while the least robust is digit 4.

(a) p = 0.1% (b) p = 0.5%

(c) p = 1% (d) p = 1.5%
Figure 5. SVHN ConvNet: software fault injection campaigns on random and critical neurons. A fixed
percentage p of neurons is dropped.

The outcome of the software fault injection for the SVHN network (ConvNet) is shown
in Figure 5. When crashing p = 0.1% Critical neurons, the CNN accuracy decreases until
reaching a maximum percentage variation equal to 7.3% for digit 9 (Figure 5a). With
the increase in the dropped critical neurons p = 0.5%, we observe a considerable drop in
accuracy, with a maximum of 61.9% of variation percentage still for digit 9 (Figure 5b). The
correct functionality of the neural network worsens considerably for p = 1% until it reaches
zero in almost all classes for p = 1.5% (Figure 5c,d). Overall, the most robust class turns out
to be the third one, i.e., digit 2. In fact, despite the dropped neurons, it is able to keep an
accuracy close to 80% with the highest neurons dropped of 927 (p = 0.5%). On the other
hand, the least resilient class is the last one (digit 9). In fact, it is significantly sensitive to
removed neurons (starting from p = 0.1%).

With respect to LeNet (MNIST) and ConvNet (SVHN), All-CNN (CIFAR-10) demon-
strates greater sensitivity. As shown in Figure 6a, we can observe a greater reduction in
accuracy from p = 0.1% (the maximum drop in accuracy is for Class "Horse" and corre-
sponds to 16.2% from the Fault-free value). In addition, for p = 0.5%, all the classes’ accuracy
stays under 60%, with the maximum variation percentage from the golden accuracy equal
to 69.82% for the class "Horse" (Figure 6b). When the dropped neurons become p = 1% from
each class (meaning about 1854 neurons over the total 185,374), the accuracy of the classes
drops below 20%, except for the class "Car" with 21.4% (Figure 6c). The experimental

Appl. Sci. 2021, 11, 6455 17 of 27

results indicate that the most robust class is the class "Car", while the least resilient one is
class "Horse" (Figure 6d).

(a) p = 0.1% (b) p = 0.5%

(c) p = 1% (d) p = 1.5%
Figure 6. CIFAR-10 All-CNN: software fault injection campaigns on random and critical neurons.
A fixed percentage p of neurons is dropped.

Overall, data from Figures 4–6 suggest similar conclusions, and the different per-class
resilience is confirmed in the three targeted CNNs. It is clear that the p-percentage refers to
different CNNs of different sizes: the CIFAR-10 network contains almost 7.54× and 4× the
number of neurons than the MNIST and SVHN networks, respectively. It means that the
former starts misbehaving with about 361 neurons crashed (p = 0.1%), while the other two
(with the same percentage) with about 49 and 185, respectively. Finally, these outcomes
experimentally demonstrate the initial assumption stating that there are neurons playing a
key role, and therefore, are defined critical for the output classes.

To avoid confusion, we used the p parameter to indicate the amount of neurons
dropped from the individual classes, and the t parameter to represent the set of critical
neurons in the network-oriented score map. They are both percentages working on the
score maps, but the first is used in the class-oriented analysis and is used to drop neurons,
while the second in used in the network-oriented analysis and serves as a parameter to
indicate the reliability level of the system.

5.1.2. Network-Oriented Analysis (NoA)

So far, we have performed software FI campaigns to demonstrate that each output
class owns a set of neurons that are more important than others for correctly predicting their
images. If this is considered when ranking the network’s neurons based on their criticality,
we experimentally demonstrate that the reliability analysis becomes more accurate. In
this phase, we computed the neurons’ resilience scores without differentiating among the
output classes. Hence, the entire MNIST, SVHN, and CIFAR-10 training data sets were
used to collect the neurons’ scores. We obtained a network-oriented score map for each
CNN (LeNet, ConvNet, All-CNN). For the sake of clarity, these lists do not consider the
contribution of the classes yet.

Appl. Sci. 2021, 11, 6455 18 of 27

5.1.3. Final Network-Oriented Score Map

After the CoA and NoA, a final network-oriented score map was obtained based
on the analysis of the class-oriented approach and given the t parameter. This t value
represents the amount of neurons taken from the classes score maps (always starting
from the top positions). By applying (3), i.e., the union (without repetition) operation, we
removed duplicate neurons by keeping the highest values assumed among the classes
rankings. Therefore, with each t value, we computed the percentage of neurons with the
Equation (3) in the CoA: their value will be compared with that obtained in the initial NoA.
Then, for each neuron in the set (3), if its value was higher than that in the NoA, its value
was updated in the final score map; otherwise, the highest from the NoA was kept.

Next, to study the influence of the CoA on the NoA with a growing t percentage, we
performed a further study on the three CNNs. The first experiment is shown in Figure 7a
and targets LeNet (MNIST). The x-axis represents the increasing t percentage, whereas the
y-axis shows the corresponding percentage of neurons over the total. The red line outlines
the percentage of critical neurons calculated with (3) after the CoA, for the corresponding
t value. The blue line illustrates the percentage of neurons that are updated in the final
network-oriented score map due to their higher criticality value. As it turns out, the lower
the t percentage, the higher the percentage of neurons in the set (3), whose value is updated
in the final network-oriented score map. For example, when t = 5% in LeNet (MNIST),
the union without repetition (3) includes 6291 critical neurons (red point), meaning the
12% of the total 48,650 neurons. A total of 6212 neurons (blue point) over 6291 (red point)
are overwritten with the values obtained from the CoA (3). In other words, 98.74% of
neurons has a different level of criticality when moving from the class-oriented to the
network-oriented methodology. For higher t values, this percentage reduces, reaching 45%
for t = 80%.

(a) LeNet (MNIST) (b) ConvNet (SVHN)

(c) All-CNN (CIFAR-10)
Figure 7. Network-oriented analysis with a growing t percentage of critical neurons from the class-
oriented analysis (CoA). A study on the influence of the CoA on the NoA with a growing t percentage.

Appl. Sci. 2021, 11, 6455 19 of 27

Furthermore, as illustrated in Figure 7b,c, the same analysis was reproduced for
ConvNet (SVHN) and All-CNN (CIFAR-10). Similar to what was discussed for LeNet, the
lower the set of critical neurons in (3) (determined by the t percentage and showed as a
red line), the higher the percentage of neurons in this set that will be updated in the final
network-oriented score map (blue line). Overall, we can say that even with the highest t
= 80%, the number of neurons with a criticality higher in the CoA is approximately half
of the total neurons and, as experimentally demonstrated, it depends also on the size of
the neural network. Specifically, when t = 80%, we updated 45.57%, 55.64%, 69.04% of
neurons (respectively for LeNet, ConvNet, and All-CNN) in the final network-oriented
score map. A further observation related also to the size of the targeted neural networks is
that the initial set of critical neurons for t = 5%. The smaller the network size, the higher the
probability of having replicated neurons. In other words, when t = 5%, the union without
repetition yields the following figures: 12.93%, 19.18%, and 35.93% for LeNet, ConvNet,
and All-CNN, respectively.

Finally, to demonstrate how the proposed profiling methodology behaves with respect
to the existing methodology [48] discussed in Section 2.3, we present a further analysis.
As stated, the final network-oriented score map contains the network’s neurons ordered
based on their criticality, reinforced by a t percentage with the CoA.

We carried out software FI campaigns for the three CNNs. Specifically, a fixed percent-
age of critical neurons was set to zero in three scenarios: the proposed methodology (CoA
+ NoA), the proposed methodology without the CoA, and the Taylor-based [48]. Then,
the accuracy of the neural network over the entire test set was computed. Specifically, we
removed 2%, 5%, 10%, 20%, 50%, and 70% of critical neurons from the respective ordered
network-oriented lists. For the purpose, two different network-oriented score maps were
created following our proposed approach, each one with a growing set of critical neurons
(t = 10%, t = 20%). The aim was to demonstrate that with a growing t, we obtained a more
robust network-oriented score map. Figure 8 shows the results of our FI simulations with
the dropout model for the MNIST, SVHN, and CIFAR-10 CNNs. Moreover, its effective-
ness is compared against [48] (green line) and our proposed methodology without the
contribution of the class-oriented analysis (red line). As it turns out, the accuracy that the
CNN under assessment achieves is always lower when removing the same percentage of
critical neurons from our network-oriented score map. It means that, first, the ordering
of the critical neurons greatly affects the reliability of the system; second, our final score
map holds (in the highest positions) neurons that are critical not only to the entire neural
network, but also to individual output classes. Finally, the time required to perform the
process described in [48] is 3×, 4.1×, and 4.7× larger than the proposed one for the custom
LeNet-5, ConvNet, and All-CNN, respectively.

Appl. Sci. 2021, 11, 6455 20 of 27

(a) LeNet (MNIST) (b) ConvNet (SVHN)

(c) All-CNN (CIFAR-10)
Figure 8. Showing the robustness of the proposed approach based on the contribution of the CoA
and the NoA (blue lines).

5.2. Mapping and Optimal Scheduling

To demonstrate the reliability improvements of the proposed ILP scheduling, we
compared two different approaches:

• Traditional static scheduling: It is the traditional method where the same range of
neurons are assigned always to the same PE, as depicted in Figure 3.

• Proposed ILP and variance-based scheduling: It is the proposed approach described
in Section 3.3. It assigns portions of neurons to PEs depending on their criticality.

First, we computed the number of critical neurons that each PE has to elaborate in a
static scheduling. As illustrated in Figure 3, in static scheduling, chunks are assigned to
PEs in an orderly fashion. In other words, the first chunk of the first layer is assigned to the
first PE0, the second chunk to the second PE1, and so on. It is, thus, fairly straightforward
to compute the number of critical neurons assigned to each PE. In our case study, the
LeNet (MNIST) was scheduled on an AI-oriented multiprocessor SoC with 8 identical
PEs (Figure 9). Hence, the workload of each layer was split into 8 chunks of neurons and
statically assigned to the 8 PEs of the cluster. To determine the criticality of each chunk in a
static scheduling, we relied on the final network-oriented score map and assigned a value
to each chunk of neurons by computing the variance metric, i.e., Equation (4) described
in Section 3.2. Figures are provided in Table 2. It should be noted that the numbers are
converted into integers for complying with the next ILP-based methodology. The second
column provides the total amount of neurons for each layer: each chunk is composed of
that number divided by the available PEs. This reasoning cannot be applied for the last
fully connected layer since there is not a precise division during the inference: having the
neurons all connected between them, every PE elaborates all neurons. From the third to the
last columns, the variance numbers are provided for each chunk of the layer. In the main,
data in Table 2 suggest that the PE elaborating the highest quantity of critical neurons is
PE0: the sum of the variances is equal to 83, the highest. On the contrary, PE7 is the one

Appl. Sci. 2021, 11, 6455 21 of 27

with least critical load: the sum of the variances is the lowest among the PEs and is equal
to 28.

Cluster

L2 Memory

L1 Shared Memory

DMA

ROM

Pe
rip

he
ra

ls

PE
0

Logarithmic Interconnect

Shared Instruction Cache

HWCE

Main
Core

PE
1

PE
2

PE
3

PE
4

PE
5

PE
6

PE
7M
ic

ro
 D

M
A

Debug Debug

Figure 9. Overview of the GAP-8 architecture and RTL fault injection location.

Table 2. Figures of variance when the chunks of neurons are assigned following static scheduling.

Chunks Variance-Static Scheduling

Layer Neurons PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

L0 32,768 12 10 8 6 5 5 6 4
L1 8192 31 11 12 11 21 10 18 5
L2 4096 18 15 17 9 13 8 11 9
L3 1024 19 7 3 2 5 6 2 3
L4 2048 1 3 3 4 4 4 4 4
L5 512 1 1 2 2 1 1 2 2
L6 10 1 1 1 1 1 1 1 1

Total 48,650 83 48 46 35 50 35 44 28

To prove the efficacy of the proposed scheduling as well as the reliability improve-
ments of the targeted NCS (i.e., LeNet CNN running on GAP-8), a FI campaign was
executed at the architectural level (RTL). We injected permanent faults (stuck-at-0 or stuck-
at-1) into the RTL design of the PULP platform running the LeNet CNN.

A specific FI framework was built relying on a commercial simulator: Modelsim
from Mentor Graphics. The reader should note that simulation-based FIs at RTL are
computationally intensive and extremely time consuming. A single LeNet inference cycle
at RTL took, on average, 25 min (the faults were placed in the GAP-8 RTL design so
we could not take advantage of higher level FI frameworks). For this reason, massive
injection campaigns were out of our computational scope. However, to speed up the RTL
simulations, we exploited the pipelined fault injector proposed in [42]. It uses the pipeline
concept to parallelize the inference cycles and introduces a high-level controller in Python
language for moving the fault location and advancing the inferences. In the end, we were
able to obtain an inference result about every 10 min. Despite the non-negligible FI time,
the real advantage of simulation-based FIs at RTL is that they allow for the possibility of
evaluating the NCS reliability before the fabrication process. In this way, the designer can
coshape the software application with the target architecture to pursue a wished reliability
level by carrying out precise injections on definite locations of the RTL architecture.

The choice of the faulty location was an arduous task. Indeed, when working at RTL,
the injection locations are limited to some data path units, microarchitectural units such as
registers [62] or memories. We bounded our analysis to the stuck-at faults on the inputs
and outputs of the Flip-Flops composing the registers. In more detail, permanent faults
were injected, one at a time, into the 8 RISC-V cores belonging to the cluster domain of
the GAP architecture (as illustrated in Figure 9). To remark, the inference process was
completely executed by the cluster’s cores (PEs) in a SIMD configuration. The main core
sitting in the fabric controller area was only in charge of turning on the cluster, so assessing
its reliability is out of the scope of this paper.

Faults were classified depending on their effect and in line with the ranking proposed
in [34]. However, to cover the NCS in both the application and architectural level, we
introduced a component-level metric, which is typically more connected to the hardware

Appl. Sci. 2021, 11, 6455 22 of 27

but, as suggested in [63], can be interestingly applied to classification problems: the mean
squared error (MSE) of the output vector. Therefore, a fault was detected when one of the
following situations occurred:

• SDC-1: A silent data corruption (SDC) failure is a deviation of the network output
from the golden network result, leading to a misprediction. Hence, the fault causes
the image to be wrongly classified.

• Masked with MSE > 0: The network correctly predicts the result, but the MSE of the
faulty output vector is different from zero. It means that the top score is correct but
the fault causes a variation in the outputs compared to the fault-free execution.

• Hang: The fault causes the system to hang and the HDL simulation never finishes.

In the remaining cases, the fault was said to be masked with MSE = 0.
In particular, we propose an ILP and variance-based methodology to schedule portions

of neural network layers on the available computing resources, to avoid critical portions
of a network all being assigned to a single PE. The approach is described in Section 3.3
and takes as input the results shown in Table 2. It should be remarked that the variance
figure for each chunk is fixed, regardless of the PE it is assigned to. Therefore, to obtain
an optimal scheduling solution able to unify the “critical” load of the PEs, an ILP model
was created by following (5)–(11), detailed in Section 3.3. Going into more detail, the
constants were tuned to our target NCS, thus, P = 8 and L = 6. The reader should note that,
as anticipated, the chunk assignment for fully connected layers does not make sense for
topological reasons. Hence, in Table 2 the row L6 was excluded from the ILP formulation.
Once all the formulas were created in a form suitable for the solver, they were passed to the
ILP engine. The tool used was Opensolver [64], an open-source optimizer, and the specific
optimization engine was CBC (COIN-OR Branch-and-Cut) solver. Apart from Table 2,
the solver also takes the compilation constraints and the objective function as input. The
outcome of the optimizer was the optimal scheduling shown in Table 3. As illustrated, the
optimizer sorts the chunks so that the cumulative variance assigned to each PE during the
whole inference cycle is uniformly distributed. Better solutions are not consistent with the
integer constraints, which are crucial to comply with (7) and (9). Hence, the kernel of the
PULP-NN library was changed to match the optimal scheduling order provided by the ILP
solver. As discussed before, the chunks assignments to different PEs do not affect at all the
final classification results.

Table 3. Figures of variance when the chunks of neurons are assigned following the proposed ILP
and variance-based optimal scheduling.

Chunks Variance-Proposed Optimal Scheduling

Layer Neurons PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

L0 32,768 8 6 6 4 5 5 12 10
L1 8192 21 5 10 31 18 12 11 11
L2 4096 9 9 15 8 13 17 11 18
L3 1024 3 19 7 2 5 6 3 2
L4 2048 4 4 3 1 3 4 4 4
L5 512 1 2 1 1 1 2 2 2
L6 10 1 1 1 1 1 1 1 1

Total 48,650 47 46 43 48 46 47 44 48

The same set of permanent faults was injected in two scenarios: first, when the
LeNet CNN application was compiled by following a static scheduling; then, when it was
compiled with the proposed optimal scheduling.

A total of 164,000 RTL injections were performed. The same set of 2050 stuck-at-faults
were injected in the cluster domain of the GAP-8 RTL design (as shown in Figure 9). Specif-
ically, the injection targeted the register file of the cluster’s PEs. The injection procedure
was the following. A set of 40 images was randomly selected from the MNIST test set.

Appl. Sci. 2021, 11, 6455 23 of 27

Then, a stuck-at-fault was injected into one of the PEs and the inference of the selected 40
images was performed by compiling the kernel functions of the CNN application with a
static scheduling (a total of 82,000 inferences). Then, by keeping the same stuck-at-fault,
the inferences of the same set of images was executed by compiling the kernel functions of
the CNN application with the proposed scheduling (a total of 82,000 inferences).

As mentioned before, the pipelined framework was used for running the injections.
By running 10 parallel processes, the 164,000 injections took about 41 days. The reader
should note that for faults producing a simulation hang (i.e., 71,840 and 65,040 images in
Table 4), the pipelined FI framework used a timer for avoiding the inferences of the full set
of images.

Table 4. RTL fault injection results: Evaluation of the effects of the same permanent faults on a CNN
compiled with two different scheduling methods.

Fault Injection
Results

Static Scheduling Proposed Scheduling [%] Variation
Images [%] Images [%]

SDC-1 1338 1.63 1007 1.23 −24.74
Hang 71,840 87.61 65,040 79.32 −9.47
Masked,
MSE >0 4910 5.99 9712 11.84 +97.80

Masked,
MSE = 0 3912 4.77 6241 7.61 +59.53

Total 82,000 100 82,000 100

The data illustrated in Table 4 show the capability of the proposed ILP and variance-
based scheduling in improving the reliability of the NCS. For each row, the number of
images that produce the corresponding effect in the static or proposed scheduling is
reported along with the related percentage. It is necessary to underline that the new ILP
scheduling leads to a 0.6% increase in memory occupation and an increase in simulation
times of 3.2% at run-time for a single inference cycle. Nevertheless, the proposed ILP-based
scheduling is able to reduce by 24.74% the neural network wrong predictions (SDC-1%).
Moreover, as expected, the amount of correct predictions with MSE greater than zero
(Masked, MSE > 0) increased by 97.80%. In other words, the new scheduling is able to
reduce the risk of wrong predictions, producing, again, evidence of faults in the output
vector (MSE > 0) but keeping the prediction correct. A third good point concerns the
last row of the table (Masked, MSE = 0): the proposed scheduling is able to improve the
masking ability of the neural network by 59.53%.

6. Conclusions

This paper provides a methodology to improve the reliability of a neural computing
system running in a multi-core device. Through the paper, it was shown that it is possible
to identify the most critical neurons of a neural network and, based upon this, determine
an optimal scheduling for an AI-oriented MPSoC. Following the proposed methodology,
it was experimentally demonstrated that not all ANN neurons play the same role in the
final task. It is fair to say that neural networks are equipped with more neurons than
needed, but which neurons to remove is the focus of the class-oriented analysis. On the
heels of this study, we presented a technique to identify the ANN’s most critical neurons
and sorted them according to their criticality. The experimental results show that our final
sorting is more effective than those based only on a network-oriented analysis since we
also consider the criticality of neurons with respect to the output classes. Relying on this
analysis, the paper introduced an integer linear programming based mechanism, which
takes into account the variance metric of portions of neurons. The aim was to uniformly
distribute critical neurons to the available processing elements. The results of a further
injection campaign at RTL provide evidence that the proposed scheduling can mask the

Appl. Sci. 2021, 11, 6455 24 of 27

effects of more faults and predict fewer wrong predictions. A reduction of 24.74% of wrong
predictions and an improvement of 97.80% and 59.53% of masked faults was obtained. It is
worth saying that, without resorting to any redundancy-based technique (either software
or hardware), the reliability of a NCS and its tolerance to faults can be improved.

Future work will extend this analysis to deeper ANNs and different data sets. The
reader should note that the adoption of the MNIST, SVHN, and CIFAR-10 data sets was
consistent with the considered low-power and resource-constrained ASIC world. In the
future, we will exploit deeper ANNs and more complex data sets, moving the target
to GPUs and high-performance architectures or ad hoc hardware neural network chips.
Clearly, with more complex neural networks, we need to study the feasibility of the uniform
distribution and, if this cannot be satisfied, we will evaluate and propose different strategies
that are well suited to deal with the complexity of the application. To conclude, in the
future, we will address also other fault models, such as transient errors.

Author Contributions: Conceptualization, A.R. and E.S.; methodology, A.R. and E.S.; software, A.R.;
validation, A.R. and E.S.; formal analysis, A.R.; investigation, A.R.; resources, E.S.; data curation, A.R.;
writing—original draft preparation, A.R.; writing—review and editing, A.R. and E.S.; visualization,
A.R. and E.S.; supervision, E.S.; project administration, A.R. and E.S.; funding acquisition, E.S. Both
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial Neural Network
DNN Deep Neural Network
CNN Convolutional Neural Network
ILP Integer Linear Programming
SoC System-on-a-chip
MPSoC Multiprocessor System-on-a-chip
ASIC Application Specific Integrated Circuit
SIMD Single Instruction Multiple Data
MDPI Multidisciplinary Digital Publishing Institute

References
1. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133,

doi:10.1007/BF02478259.
2. Sejnowski, T.; Delbruck, T. The Language of the Brain; Scientific American Volume 307; Howard Hughes Medical Institute United

States: Stevenson Ranch, CA, USA, 2012; pp. 54–59, doi:10.1038 scientificamerican1012-54.
3. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

arXiv 2015, arXiv:1502.01852.
4. Lawrence, S.; Giles, C.; Tsoi, A. What Size Neural Network Gives Optimal Generalization? Convergence Properties of

Backpropagation. 2001. Available online: https://drum.lib.umd.edu/handle/1903/809 (accessed on 12 July 2021).
5. El Mhamdi, E.M.; Guerraoui, R. When Neurons Fail. In Proceedings of the 2017 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), Orlando, FL, USA, 29 May–2 June 2017; pp. 1028–1037.
6. Kung, H.T.; Leiserson, C.E. Systolic Arrays for (VLSI); Technical Report; Carnegie-Mellon University Pittsburgh Pa Department of

Computer Science: Pittsburgh, PA, USA, 1978.
7. Misra, J.; Saha, I. Artificial neural networks in hardware: A survey of two decades of progress. Neurocomputing 2010, 74, 239–255.

https://doi.org/10.1007/BF02478259
https://doi.org/10.1038 scientificamerican1012-54
https://drum.lib.umd.edu/handle/1903/809

Appl. Sci. 2021, 11, 6455 25 of 27

8. Palossi, D.; Conti, F.; Benini, L. An Open Source and Open Hardware Deep Learning-Powered Visual Navigation Engine for
Autonomous Nano-UAVs. In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems
(DCOSS), Santorini Island, Greece, 29–31 May 2019; pp. 604–611, doi:10.1109/DCOSS.2019.00111.

9. Barkallah, E.; Freulard, J.; Otis, M.J.D.; Ngomo, S.; Ayena, J.C.; Desrosiers, C. Wearable Devices for Classification of Inadequate
Posture at Work Using Neural Networks. Sensors 2017, 17, 2003, doi:10.3390/s17092003.

10. Peluso, V.; Cipolletta, A.; Calimera, A.; Poggi, M.; Tosi, F.; Aleotti, F.; Mattoccia, S. Monocular Depth Perception on Microcon-
trollers for Edge Applications. IEEE Trans. Circuits Syst. Video Technol. 2021, doi:10.1109/TCSVT.2021.3077395.

11. Ottavi, G.; Garofalo, A.; Tagliavini, G.; Conti, F.; Benini, L.; Rossi, D. A Mixed-Precision RISC-V Processor for Extreme-Edge
DNN Inference. In Proceedings of the 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Limassol, Cyprus, 6–8
July 2020; pp. 512–517. doi:10.1109/ISVLSI49217.2020.000-5.

12. Wolf, W.; Jerraya, A.A.; Martin, G. Multiprocessor System-on-Chip (MPSoC) Technology. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 2008, 27, 1701–1713, doi:10.1109/TCAD.2008.923415.

13. Ma, Y.; Zhou, J.; Chantem, T.; Dick, R.P.; Wang, S.; Hu, X.S. Online Resource Management for Improving Reliability of
Real-Time Systems on “Big–Little” Type MPSoCs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2020, 39, 88–100,
doi:10.1109/TCAD.2018.2883990.

14. Desoli, G.; Chawla, N.; Boesch, T.; Singh, S.P.; Guidetti, E.; De Ambroggi, F.; Majo, T.; Zambotti, P.; Ayodhyawasi, M.; Singh,
H.; et al. 14.1 A 2.9TOPS/W deep convolutional neural network SoC in FD-SOI 28nm for intelligent embedded systems. In
Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017;
pp. 238–239. doi:10.1109/ISSCC.2017.7870349.

15. Sim, J.; Park, J.; Kim, M.; Bae, D.; Choi, Y.; Kim, L. 14.6 A 1.42TOPS/W deep convolutional neural network recognition processor
for intelligent IoE systems. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco,
CA, USA, 31 January–4 February 2016; pp. 264–265. doi:10.1109/ISSCC.2016.7418008.

16. Flamand, E.; Rossi, D.; Conti, F.; Loi, I.; Pullini, A.; Rotenberg, F.; Benini, L. GAP-8: A RISC-V SoC for AI at the Edge of the IoT.
In Proceedings of the 2018 IEEE 29th International Conference on Application-Specific Systems, Architectures and Processors
(ASAP), Milan, Italy, 10–12 July 2018; pp. 1–4. doi:10.1109/ASAP.2018.8445101.

17. Venkataramani, S.; Ranjan, A.; Roy, K.; Raghunathan, A. AxNN: Energy-efficient neuromorphic systems using approximate
computing. In Proceedings of the 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), La
Jolla, CA, USA, 11–13 August 2014; pp. 27–32, doi:10.1145/2627369.2627613.

18. Zhang, J.J.; Gu, T.; Basu, K.; Garg, S. Analyzing and mitigating the impact of permanent faults on a systolic array based neural
network accelerator. In Proceedings of the 2018 IEEE 36th VLSI Test Symposium (VTS), San Francisco, CA, USA, 22–25 April
2018; pp. 1–6, doi:10.1109/VTS.2018.8368656.

19. Bosio, A. Emerging Computing Devices: Challenges and Opportunities for Test and Reliability. In Proceedings of the 26th IEEE
European Test Symposium (ETS), Bruges, Belgium, 24–28 May 2021; pp. 1–10, doi:10.1109/ETS50041.2021.9465409.

20. Ramacher, U.; Beichter, J.; Bruls, N.; Sicheneder, E. Architecture and VLSI design of a VLSI neural signal processor. In Proceedings
of the 1993 IEEE International Symposium on Circuits and Systems, Chicago, IL, USA, 3–6 May 1993; Volume 3, pp. 1975–1978.
doi:10.1109/ISCAS.1993.394139.

21. Cappellone, D.; Di Mascio, S.; Furano, G.; Menicucci, A.; Ottavi, M. On-Board Satellite Telemetry Forecasting with RNN on
RISC-V Based Multicore Processor. In Proceedings of the 2020 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), Frascati, Italy, 19–21 October 2020; pp. 1–6. doi:10.1109/DFT50435.2020.9250796.

22. Cerutti, G.; Andri, R.; Cavigelli, L.; Farella, E.; Magno, M.; Benini, L. Sound Event Detection with Binary Neural Networks on
Tightly Power-Constrained IoT Devices. In Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and
Design; Association for Computing Machinery: New York, NY, USA, 2020; pp. 19–24, doi:10.1145/3370748.3406588.

23. Means, R.W.; Lisenbee, L. Extensible linear floating point SIMD neurocomputer array processor. In Proceedings of the
IJCNN-91-Seattle International Joint Conference on Neural Networks, Seattle, WA, USA, 8–12 July 1991; Volume 1, pp. 587–592.
doi:10.1109/IJCNN.1991.155243

24. Dai, X.; Yin, H.; Jha, N.K. NeST: A Neural Network Synthesis Tool Based on a Grow-and-Prune Paradigm. IEEE Trans. Comput.
2019, 68, 1487–1497, doi:10.1109/TC.2019.2914438.

25. Sung, W.; Shin, S.; Hwang, K. Resiliency of Deep Neural Networks under Quantization. arXiv 2015, arXiv:1511.06488.
26. Reagen, B.; Gupta, U.; Pentecost, L.; Whatmough, P.; Lee, S.K.; Mulholland, N.; Brooks, D.; Wei, G.Y. Ares: A Framework

for Quantifying the Resilience of Deep Neural Networks. In Proceedings of the 55th Annual Design Automation Conference,
San Francisco, CA, USA, 24–29 June 2018; Association for Computing Machinery: San Francisco, CA, USA, 2018; pp. 1–6,
doi:10.1145/3195970.3195997.

27. Ruospo, A.; Bosio, A.; Ianne, A.; Sanchez, E. Evaluating Convolutional Neural Networks Reliability depending on their Data
Representation. In Proceedings of the 2020 23rd Euromicro Conference on Digital System Design (DSD), Kranj, Slovenia, 26–28
August 2020; pp. 672–679, doi:10.1109/DSD51259.2020.00109.

28. Bushnell, M.; Agrawal, V. Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits; Springer Publishing
Company, Incorporated: Berlin/Heidelberg, Germany, 2013.

29. Torres-Huitzil, C.; Girau, B. Fault and Error Tolerance in Neural Networks: A Review. IEEE Access 2017, 5, 17322–17341.

https://doi.org/10.1109/DCOSS.2019.00111
https://doi.org/10.3390/s17092003
https://doi.org/10.1109/TCSVT.2021.3077395
https://doi.org/10.1109/ISVLSI49217.2020.000-5
https://doi.org/10.1109/TCAD.2008.923415
https://doi.org/10.1109/TCAD.2018.2883990
https://doi.org/10.1109/ISSCC.2017.7870349
https://doi.org/10.1109/ISSCC.2016.7418008
https://doi.org/10.1109/ASAP.2018.8445101
https://doi.org/10.1145/2627369.2627613
https://doi.org/10.1109/VTS.2018.8368656
https://doi.org/10.1109/ETS50041.2021.9465409
https://doi.org/10.1109/ISCAS.1993.394139
https://doi.org/10.1109/DFT50435.2020.9250796
https://doi.org/10.1145/3370748.3406588
https://doi.org/10.1109/IJCNN.1991.155243
https://doi.org/10.1109/TC.2019.2914438
https://doi.org/10.1145/3195970.3195997
https://doi.org/10.1109/DSD51259.2020.00109

Appl. Sci. 2021, 11, 6455 26 of 27

30. Temam, O. A defect-tolerant accelerator for emerging high-performance applications. In Proceedings of the 2012 39th
Annual International Symposium on Computer Architecture (ISCA), Portland, OR, USA, 9–13 June 2012; pp. 356–367,
doi:10.1109/ISCA.2012.6237031.

31. Lotfi, A.; Hukerikar, S.; Balasubramanian, K.; Racunas, P.; Saxena, N.; Bramley, R.; Huang, Y. Resiliency of automotive object
detection networks on GPU architectures. In Proceedings of the 2019 IEEE International Test Conference (ITC), Washington, DC,
USA, 9–15 November 2019; pp. 1–9, doi:10.1109/ITC44170.2019.9000150.

32. Zhao, B.; Aydin, H.; Zhu, D. Generalized reliability-oriented energy management for real-time embedded applications. In Pro-
ceedings of the 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), San Diego, CA, USA, 5–10 June 2011;
pp. 381–386,

33. Du, B.; Condia, J.E.R.; Reorda, M.S. An extended model to support detailed GPGPU reliability analysis. In Proceedings of the
2019 14th International Conference on Design Technology of Integrated Systems in Nanoscale Era (DTIS), Mykonos, Greece,
16–18 April 2019; pp. 1–6, doi:10.1109/DTIS.2019.8735047.

34. Li, G.; Hari, S.K.S.; Sullivan, M.; Tsai, T.; Pattabiraman, K.; Emer, J.; Keckler, S.W. Understanding Error Propagation in
Deep Learning Neural Network (DNN) Accelerators and Applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis; Association for Computing Machinery: New York, NY, USA, 2017;
doi:10.1145/3126908.3126964.

35. Allen, C.; Stevens, C.F. An evaluation of causes for unreliability of synaptic transmission. Proc. Natl. Acad. Sci. USA
1994, 91, 10380–10383, doi:10.1073/pnas.91.22.10380. Available online: https://www.pnas.org/content/91/22/10380.full.pdf
(accessed on 12 July 2021).

36. He, Y.; Balaprakash, P.; Li, Y. FIdelity: Efficient Resilience Analysis Framework for Deep Learning Accelerators. In Proceedings of
the 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Athens, Greece, 17–21 October 2020;
pp. 270–281, doi:10.1109/MICRO50266.2020.00033.

37. dos Santos, F.; Draghetti, L.; Weigel, L.; Carro, L.; Navaux, P.; Rech, P. Evaluation and Mitigation of Soft-Errors in Neural
Network-Based Object Detection in Three GPU Architectures. In Proceedings of the 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W), Denver, CO, USA, 26–29 June 2017; pp. 169–176.

38. Luza, L.M.; Söderström, D.; Tsiligiannis, G.; Puchner, H.; Cazzaniga, C.; Sanchez, E.; Bosio, A.; Dilillo, L. Investigating the
Impact of Radiation-Induced Soft Errors on the Reliability of Approximate Computing Systems. In Proceedings of the 2020
IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Frascati, Italy, 19–21
October 2020; pp. 1–6, doi:10.1109/DFT50435.2020.9250865.

39. Bosio, A.; Bernardi, P.; Ruospo, A.; Sanchez, E. A Reliability Analysis of a Deep Neural Network. In Proceedings of the 2019 IEEE
Latin American Test Symposium (LATS), Santiago, Chile, 11–13 March 2019; pp. 1–6, doi:10.1109/LATW.2019.8704548.

40. Neggaz, M.A.; Alouani, I.; Lorenzo, P.R.; Niar, S. A Reliability Study on CNNs for Critical Embedded Systems. In Proceedings of
the 2018 IEEE 36th International Conference on Computer Design (ICCD), Orlando, FL, USA, 7–10 October 2018; pp. 476–479,
doi:10.1109/ICCD.2018.00077.

41. Mahmoud, A.; Aggarwal, N.; Nobbe, A.; Vicarte, J.R.S.; Adve, S.V.; Fletcher, C.W.; Frosio, I.; Hari, S.K.S. PyTorchFI: A Runtime
Perturbation Tool for DNNs. In Proceedings of the 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W), Valencia, Spain, 29 June–2 July 2020; pp. 25–31, doi:10.1109/DSN-W50199.2020.00014.

42. Ruospo, A.; Balaara, A.; Bosio, A.; Sanchez, E. A Pipelined Multi-Level Fault Injector for Deep Neural Networks. In Proceedings
of the 2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Frascati,
Italy, 19–21 October 2020; pp. 1–6, doi:10.1109/DFT50435.2020.9250866.

43. Cun, Y.L.; Denker, J.S.; Solla, S.A., Optimal Brain Damage. In Advances in Neural Information Processing Systems 2; Morgan
Kaufmann Publishers Inc.: San Francisco, CA, USA, 1990; pp. 598–605.

44. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning Both Weights and Connections for Efficient Neural Networks. In Proceedings
of the 28th International Conference on Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015; Volume 1,
pp. 1135–1143.

45. Wang, J.; Liu, L.; Pan, X. Pruning Algorithm of Convolutional Neural Network Based on Optimal Threshold. In Proceedings of
the 2020 5th International Conference on Mathematics and Artificial Intelligence, Chengdu, China, 10–13 April 2020; pp. 50–54,
doi:10.1145/3395260.3395300.

46. Lee, K.; Kim, H.; Lee, H.; Shin, D. Flexible Group-Level Pruning of Deep Neural Networks for On-Device Machine Learning. In
Proceedings of the 2020 Design, Automation Test in Europe Conference Exhibition (DATE), Grenoble, France, 9–13 March 2020;
pp. 79–84, doi:10.23919/DATE48585.2020.9116287.

47. Liu, S.; Wang, X.; Wang, J.; Fu, X.; Zhang, X.; Gao, L.; Zhang, W.; Li, T. Enabling Energy-Efficient and Reliable Neural Network
via Neuron-Level Voltage Scaling. In Proceedings of the 2019 IEEE 25th International Conference on Parallel and Distributed
Systems (ICPADS), Tianjin, China, 4–6 December 2019; pp. 410–413, doi:10.1109/ICPADS47876.2019.00065.

48. Schorn, C.; Guntoro, A.; Ascheid, G. Accurate neuron resilience prediction for a flexible reliability management in neural network
accelerators. In Proceedings of the 2018 Design, Automation Test in Europe Conference Exhibition (DATE), Dresden, Germany,
19–23 March 2018; pp. 979–984, doi:10.23919/DATE.2018.8342151.

49. Montavon, G.; Lapuschkin, S.; Binder, A.; Samek, W.; Müller, K.R. Explaining nonlinear classification decisions with deep Taylor
decomposition. Pattern Recognit. 2017, 65, 211–222, doi:10.1016/j.patcog.2016.11.008.

https://doi.org/10.1109/ISCA.2012.6237031
https://doi.org/10.1109/ITC44170.2019.9000150
https://doi.org/10.1109/DTIS.2019.8735047
https://doi.org/10.1145/3126908.3126964
https://www.pnas.org/content/91/22/10380.full.pdf
https://doi.org/10.1109/MICRO50266.2020.00033
https://doi.org/10.1109/DFT50435.2020.9250865
https://doi.org/10.1109/LATW.2019.8704548
https://doi.org/10.1109/ICCD.2018.00077
https://doi.org/10.1109/DSN-W50199.2020.00014
https://doi.org/10.1109/DFT50435.2020.9250866
https://doi.org/10.1145/3395260.3395300
https://doi.org/10.23919/DATE48585.2020.9116287
https://doi.org/10.1109/ICPADS47876.2019.00065
https://doi.org/10.23919/DATE.2018.8342151

Appl. Sci. 2021, 11, 6455 27 of 27

50. Hanif, M.; Shafique, M. SalvageDNN: Salvaging deep neural network accelerators with permanent faults through saliency-driven
fault-aware mapping. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2020, 378, 20190164, doi:10.1098/rsta.2019.0164.

51. Squire, L.R. Memory systems of the brain: A brief history and current perspective. Neurobiol. Learn. Mem. 2004, 82, 171–177,
doi:10.1016/j.nlm.2004.06.005.

52. Bosman, T.; Frascaria, D.; Olver, N.; Sitters, R.; Stougie, L. Fixed-Order Scheduling on Parallel Machines. In Integer Programming
and Combinatorial Optimization; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics); Nagarajan, V., Lodi, A., Eds.; Springer: Berlin, Germany, 2019; pp. 88–100. doi:10.1007/978-
3-030-17953-3_7.

53. Shmoys, D.B.; Wein, J.; Williamson, D.P. Scheduling parallel machines on-line. In Proceedings of the 1991 Proceed-
ings 32nd Annual Symposium of Foundations of Computer Science, San Juan, PR, USA, 1–4 October 1991; pp. 131–140,
doi:10.1109/SFCS.1991.185361.

54. Lee, J.H.; Jang, H. Uniform Parallel Machine Scheduling with Dedicated Machines, Job Splitting and Setup Resources.
Sustainability 2019, 11, 7137, doi:10.3390/su11247137.

55. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324.

56. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with Unsupervised Feature
Learning. In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning; Curran Associates: Red Hook,
NY, USA, 2011.

57. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. Technical Report. 2009. Available online: https:
//www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 12 July 2021).

58. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019;
pp. 8024–8035.

59. Sermanet, P.; Chintala, S.; LeCun, Y. Convolutional neural networks applied to house numbers digit classification. In Proceedings
of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 3288–3291.

60. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. arXiv 2015,
arXiv:1412.6806.

61. Garofalo, A.; Rusci, M.; Conti, F.; Rossi, D.; Benini, L. PULP-NN: A Computing Library for Quantized Neural Network inference
at the edge on RISC-V Based Parallel Ultra Low Power Clusters. In Proceedings of the 2019 26th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), Genoa, Italy, 27–29 November 2019; pp. 33–36, doi:10.1109/ICECS46596.2019.8965067.

62. Condia, J.E.R.; Reorda, M.S. Testing permanent faults in pipeline registers of GPGPUs: A multi-kernel approach. In Proceedings
of the 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS), Rhodes, Greece, 1–3 July
2019; pp. 97–102, doi:10.1109/IOLTS.2019.8854463.

63. Chandra, P.; Singh, Y. Fault tolerance of feedforward artificial neural networks- a framework of study. In Proceedings
of the International Joint Conference on Neural Networks, Portland, OR, USA, 20–24 July 2003; Volume 1, pp. 489–494,
doi:10.1109/IJCNN.2003.1223395.

64. Org, W.; Mason, A.; Dunning, I. OpenSolver: Open Source Optimisation for Excel. In Proceedings of the Annual Conference of
the Operations Research Society of New Zealand, Auckland, New Zealand, 29–30 November 2010.

https://doi.org/10.1098/rsta.2019.0164
https://doi.org/https://doi.org/10.1016/j.nlm.2004.06.005
https://doi.org/10.1007/978-3-030-17953-3_7
https://doi.org/10.1007/978-3-030-17953-3_7
https://doi.org/10.1109/SFCS.1991.185361
https://doi.org/10.3390/su11247137
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/ICECS46596.2019.8965067
https://doi.org/10.1109/IOLTS.2019.8854463
https://doi.org/10.1109/IJCNN.2003.1223395

