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Abstract

Vehicles’ trajectory prediction is a topic with growing interest in recent years, as there are

applications in several domains ranging from autonomous driving to traffic congestion pre-

diction and urban planning. Predicting trajectories starting from Floating Car Data (FCD) is a

complex task that comes with different challenges, namely Vehicle to Infrastructure (V2I)

interaction, Vehicle to Vehicle (V2V) interaction, multimodality, and generalizability. These

challenges, especially, have not been completely explored by state-of-the-art works. In

particular, multimodality and generalizability have been neglected the most, and this work

attempts to fill this gap by proposing and defining new datasets, metrics, and methods to

help understand and predict vehicle trajectories. We propose and compare Deep Learning

models based on Long Short-Term Memory and Generative Adversarial Network architec-

tures; in particular, our GAN-3 model can be used to generate multiple predictions in multi-

modal scenarios. These approaches are evaluated with our newly proposed error metrics

N-ADE and N-FDE, which normalize some biases in the standard Average Displacement

Error (ADE) and Final Displacement Error (FDE) metrics. Experiments have been con-

ducted using newly collected datasets in four large Italian cities (Rome, Milan, Naples, and

Turin), considering different trajectory lengths to analyze error growth over a larger number

of time-steps. The results prove that, although LSTM-based models are superior in unimo-

dal scenarios, generative models perform best in those where the effects of multimodality

are higher. Space-time and geographical analysis are performed, to prove the suitability of

the proposed methodology for real cases and management services.

1 Introduction

Sustainable transport is one of the explicitly mentioned good practices (https://sdgs.un.org/

taxonomy/term/1198) for the achievement of the Sustainable Development Goals (SDG),

mainstreamed across several goals and targets but with a specific link to SDG 11, “Make

cities and human settlements inclusive, safe, resilient and sustainable”. Sustainable transport

is considered capable to “achieve better integration of the economy while respecting the
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environment, improving social equity, health, the resilience of cities, urban-rural linkages, and

productivity of rural areas”. Furthermore, the transport sector plays a relevant role in achieving

the UNFCC Paris Agreements on climate change as close to a quarter of energy-related global

greenhouse gas emissions come from transport, and that these emissions are projected to grow

substantially.

Among the different initiatives towards a more sustainable transport system, the systematic

update and innovation of Urban Traffic Control (UTC) systems is a common action [1, 2].

Techniques based on Connected and Automated Vehicles (CAVs) are believed to have great

promises in the evolution of UTC: CAVs can communicate with other vehicles (V2V), with

the traffic infrastructure (V2I), or with other entities (e.g. pedestrian, cyclist, V2X).

Communications between single vehicles and the UTC is the basis to develop and imple-

ment better signal timing plans, leading not only to increase road network efficiency but also

its safety, energy economics, and pollution reduction. Real-time data collection is crucial for

better traffic corridor control and management [3] and can be exploited to dynamically adjust

signal timing parameters resulting in more efficient utilization of intersection capacity.

CAVs capable to acquire and transmit live single-vehicle data are more and more frequent.

Acquired data includes the position, normally by means of Global Navigation Satellite Systems

(GNSS) instruments and techniques, and other relevant data such as speed, heading, and

engine status. Furthermore, investments in smart road initiatives, optimizing among other

functionalities V2I connectivity, are significantly growing. As an example, in 2018 Italy has

launched a one billion euros investment plan to develop a new smart road infrastructure to

be used on 2,500 km of its 26,000 km network http://www.dreamex.it/news/16/24/Italy-is-

investing-one-billion-euros-on-smart-roads). And ANAS, the Italian government-owned

company deputed to the construction and maintenance of Italian motorways, in the

occasion of the 2021 FIS Alpine Ski World Championships, has invested 27 million euros

to install a smart road infrastructure on 80 km of the existing road network (http://www.

anaspercortina2021.it/smart-road-cortina-2021). In line with this, the European Commission

set out the Green Deal, highlighting the importance of developing smart and digitized systems

for traffic management [4].

The availability of urban and traffic data, in particular Floating Car Data (FCD), has been

increasing in recent years, as vehicles can be easily equipped with tracking devices. This data

can be exploited for different applications, mainly autonomous driving, and traffic congestion.

Furthermore, there is an increasing need for intelligent systems able to predict short-term

and long-term trajectories of vehicles in a smart road context. Trajectory prediction can be

exploited to minimize vehicle travel time and meanwhile avoid generating congestion, devel-

oping methods for depicting the future utilization of the road network (e.g., vehicle density,

driving time, and probability of accident) based not on the single vehicle’s perspective but on

all projected trajectories [5]. The long-term trajectory prediction of surrounding vehicles is

essential for autonomous vehicles: for example, a vehicle equipped with trajectory prediction

can not only avoid an accident but also generate evenly distributed control input sequences,

such as a jerk-minimizing acceleration by reacting in advance [6]. Moreover, such models can

be exploited for anomaly detection in connected automated vehicles.

With the advancement of deep learning techniques and computing power, combined with

the development of new models, namely Long Short-Term Memory (LSTM) [7] for prediction

and the more recent Generative Adversarial Network (GAN) [8] for generation, systems are

capable of processing large amounts of data and different fields of research, including trajec-

tory prediction, are witnessing unprecedented growth [9]. Being able to make real-time short-

term predictions of vehicle trajectories, as well as long-term ones, is essential for these applica-

tions, but it comes with some challenges due to the multimodal nature of the problem: several
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predictions can be equally plausible in a given scenario, there is no single correct solution for

the deep model to find [10].

The focus of this paper is to address the problem of multimodality in FCD trajectory predic-

tion. The main motivation behind this research is the lack of existing methods for approaching

trajectory prediction in a multimodal fashion, which limits the scope of practical applications.

To address this problem we propose a generative method that can produce multiple plausible

predictions. The evaluation of unimodal methods is also distorted by the biases in the standard

metrics, so we introduce new ones that normalized those biases.

We train and evaluate predictive and generative models on 4 different datasets, pointing

out the advantages and disadvantages of each method. FCD used for these analyses were

acquired and pre-processed by the company VEM Solutions S.p.A. during an entire week

(from 2018–10-05T22:00:00 to 2018–10-11T21:59:59 CET) in the four most populous Italian

cities (Milan, Naples, Rome, and Turin). VEM on-board units (OBU) are mounted on fleets

and private cars with a varying penetration rate, estimated between 2 and 8%.

While predictive methods aim to minimize error with respect to ground truth, generative

ones aim to produce samples that are as realistic as possible. There are two important conse-

quences. The first is that while predictive models have only one solution, generative ones can

have several. The second is that predictive models tend to predict an “average behavior”, while

generative ones can reproduce real ones. This distinction is fundamental because of themulti-
modal nature of the problem. While it may be impossible to predict a trajectory in highly

uncertain scenarios (i.e., the correct solution cannot be found), it is still possible to generate

(i.e., enumerate) many plausible solutions that do not necessarily minimize prediction error.

We associate the prediction problem with unimodal scenarios and the generation problem

with multimodal scenarios.

In the evaluation of our experiments, we use standard metrics for trajectory prediction, i.e.

the Average Displacement Error (ADE) and the Final Displacement Error (FDE), as well as

new normalized metrics that reduce the bias is unaccounted for by the standard ones. Those

new metrics, i.e. the Normalized Average Displacement Error (N-ADE) and the Normalized

Final Displacement Error (N-FDE), are one of the main contributions of this work, alongside

the datasets and models. When evaluating our multimodal GAN-3 model, we take into

account its ability to correctly reproduce a behavior rather than identify the exact one among

many alternatives, which is not possible in truly multimodal scenarios.

The advantage of the proposed GAN-3 model over those used by other works is its ability

to represent multiple distinct behaviors instead of producing a single average prediction, this

makes the predictions more realistic and unaffected by the problem of multimodality. Simi-

larly, the advantage of the proposed metrics is that they are unaffected by biases in the standard

ones that depend on properties on the trajectories and not on the predictions.

1.1 Challenges

Predicting vehicle trajectories is an arduous problem that requires addressing several chal-

lenges. The most relevant ones can be grouped into the following categories:

• Vehicle to Infrastructure (V2I) interaction. Vehicle trajectories depend on the environ-

ment, which can be the physical space (i.e. the infrastructure, or road network) or the tempo-

ral window in which they are collected.

• Vehicle to Vehicle (V2V) interaction. Vehicle trajectories mutually influence each other.

There are two ways in which trajectories influence each other: by physically restricting the
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possible trajectories of other vehicles, or by influencing their behavior as they must follow

traffic rules.

• Multimodality. Trajectory prediction is highly uncertain because there are multiple possible

behaviors and multiple correct solutions. Uncertainty has an aleatoric component, which

cannot be reduced because it depends on the randomness of the system, and an epistemic

part, which can be reduced by adding new information.

• Generalizability. A method should be evaluated on its ability to predict the entire distribu-

tion of possible vehicle trajectories, collected in a realistic environment and not in a con-

trolled one.

Exploring all these challenges would require a lot of additional research. This paper focuses

on the multimodality aspect, as we will show how predictions are influenced by high uncer-

tainty. We will also partially tackle the problem of generalizability by proposing new realistic

FCD datasets collected in four different cities, and showing how different datasets yield differ-

ent results.

1.2 Contributions

The main contributions of this paper are the following:

• New datasets. We propose four new FCD datasets with a large number of vehicle trajecto-

ries. Those datasets contain a lot of information about vehicles and road networks, but

for our purposes, we create a preprocessed version that only takes into account vehicle

coordinates, where we split long trajectories into short ones, more practical for real-time

predictions.

• New metrics. We propose a normalized version of the standard ADE/FDE metrics to take

into account different biases in the evaluation of the models in different scenarios.

• A generative model for multimodal scenarios. We propose a GAN model able to generate

multiple predictions and overcome some of the challenges of purely predictive models (e.g.

LSTM).

• The application of innovative data analysis and visualization techniques. We tested

space-time pattern mining tools as support methods to better understand spatiotemporal

trends and to generate analysis outputs suitable to support UTC actions.

The paper is organized as follows. Section 2 provides a description of the approaches

adopted when facing vehicle trajectories. Section 3 thoroughly describes our contributions, i.e.

datasets, metrics, and the GAN-3 model. In Section 4, we evaluate and compare predictive and

generative models on our proposed datasets with the standard metrics and our newly proposed

ones. Finally, in Section 5, conclusions and discussion about future directions for this field of

research are provided.

2 Related works

The use of FCD for traffic management and control, along with its benefits and limitations,

has been widely discussed, generally mentioning the insufficient penetration rate as the main

limiting factor [11]. Houbraken et al. [12] make a review of different studies related to the nec-

essary FCD penetration rates and find that this value is dependent on the intended application

and data sample frequency. Altintasi et al. in [3] find that penetration rates around 3% are suf-

ficient to identify some critical urban traffic states.
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Ajmar et al. in [13] compare floating car data (FCD) with low penetration rates with data

acquired by fixed sensors. Currently, most models used by UTC are based on traffic waves and

on data acquired by fixed sensors that have several issues: they record data at a specific location

and, due to their installation and maintenance costs, they are not sufficiently distributed, with

a reduced or nonexistent coverage especially on minor roads. This leads to the necessity of

building dedicated models to estimate the traffic states at other locations and therefore of deal-

ing with related uncertainties.

Guo et al. in [1] provide a systematic review of CAV-based UTC studies. They state that the

availability of high-resolution trajectory data of individual vehicles could increase the under-

standing of traffic flow states, which are critical to traffic control, allowing to estimate values

not only related to flow volumes but also travel time, queue length, and shockwave boundary

that cannot be calculated based on fixed sensors data only.

Many works use FCD with the aim to detect and analyze traffic in an urban environment.

Chen et al. in their recent work [14] use the speed performance index (SPI) to evaluate the traf-

fic congestion based on the speed of the traffic flow and the speed limits of the road. They pro-

pose a categorization criterion to make consistent the classification results of SPI with the five

levels standard of traffic congestion classification. The investigation has the aim to detect the

paths of traffic congestion, finding both spatial and temporal correlations.

Similarly, Altintasi et al. in [3] use the FCD with the information on speed to detect the traf-

fic status. They process the raw FCD to obtain 4 Levels of Service (LOS) that identify the traffic

state. Each LOS corresponds to a different range of speed and traffic situation. With the experi-

mental phase in a real urban environment, by observing the pattern variations, they are able to

detect how traffic changes through time in a given location.

Sunderrajan et al. in [15] also evaluate the traffic flow departing from FCD. The authors do

not only consider traffic speed, but also other aggregate macroscopic quantities such as density

and flow. This was the first attempt to estimate both traffic flow and density from FCD. More-

over, an interesting novelty is the introduction of a method to determine the minimum rate of

probe vehicles needed to reconstruct the traffic state in different conditions.

However, the papers presented in this section so far do not make traffic predictions on

FCD but detect and recognize the situation of traffic congestion. A pioneering work in this

direction is the one proposed by De Fabritiis et al. in [16]. This work exploits the real-time

FCD based on GPS positions to create a system for traffic estimation and prediction. They pro-

pose a system that extracts the speed information, making an estimation of traffic conditions.

Moreover, using two different approaches based on pattern matching and artificial neural net-

works, they are able to predict the short-term speed traffic conditions, with a maximum pre-

diction time of 30 minutes.

More recent is the work of Kong et al. [17], which exploits the trajectories data to make pre-

dictions of traffic congestion, indicating in real-time an alternative path. The parameters used

to represent the traffic flow are the traffic volume and traffic speed. The idea is to use a fuzzy

comprehensive evaluation method to determine the traffic flow and predict the traffic conges-

tion, where the weights of the indexes are assigned according to the traffic flow. These weights

are determined by the Particle Swarm Optimization (PSO) algorithm, and then a congestion

state fuzzy division module is applied to convert the predicted flow parameters to citizens’

cognitive congestion state. The metrics used to evaluate the performance of the proposed

approach are accuracy, instantaneity, and stability.

A method based on PSO is also proposed by Luo et al. in [18]. The authors present a hybrid

architecture for short-term traffic flow prediction by combining PSO and a genetic algorithm.

This hybrid approach is applied to the Least Square Support Vector Machine (LSSVM) to

select the appropriate parameters to predict short-term traffic flow.
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More recently, the most used approaches for traffic flow prediction are based on deep learn-

ing algorithms [19]. The most used deep learning method for traffic prediction is the Long

Short-Time Memory (LSTM), as in [20, 21]. Vazques et al. in [22] compared four deep learn-

ing models (LSTM, GRU, SRCN, HGC-LSTM) for urban traffic prediction. The dataset they

used consists contains the average speeds in different periods of the tracked vehicles. Given the

state of the network in a time period, the models have to predict the state of the network in the

following one. The metrics used for the comparison are the Mean Average Error (MAE) and

the Root Mean Square Error (RMSE). Other works in vehicle trajectory prediction, like the

DESIRE framework proposed by Lee et al. in [23], experiment on public datasets like KITTI

[24] and Stanford Drone Dataset [25], that provide visual information instead of FCD.

In [26], the authors introduce and compare two different machine learning methods that

use floating car trajectory data to predict the occurrences of crashes on urban expressways: a

binary logistic regression model and a Support Vector Machine (SVM) model. According to

the authors, the latter performs greatly for predicting crashes on urban expressways. Imple-

mentations of such models for monitoring real-time conditions seem promising in helping to

detect and prevent potential crashes from happening.

Finally, some works from the domain of human trajectory prediction propose interesting

methods that could be extended to the domain of vehicle trajectory prediction. For example,

Alahi et al. in [27] propose the Social LSTM, a network that predicts human trajectories taking

into account interactions with other human trajectories. This is the equivalent of V2V interac-

tion for vehicles. Gupta et al. in [28] extend this work and propose the Social GAN, that gener-

ates multiple predictions in a multimodal context, similarly to our work.

3 Methodology

Among the four challenges outlined in the introduction, we focus onmultimodality and par-

tially on generalizability. In this Section, we provide a formal definition of the trajectory pre-

diction problem (Section 3.1), an analysis of the proposed datasets (Section 3.2), a description

of the proposed normalized metrics (Section 3.3), and the implementation details of our

GAN-3 model (Section 3.4).

3.1 Problem definition

A trajectory is the route taken by a vehicle over a set period of time. Unless otherwise stated,

we define it as a vector of numerical values that alternatingly correspond to the Xi and Yi coor-

dinates at increasing timestamps i separated by a fixed time-step. A trajectory of n points is a

sequence of 2n values X1, Y1, X2, Y2,. . ., Xn, Yn, or an element of the set T as defined in (1).

T ¼ fXi;Yi : i 2 ½1 . . . n�g ð1Þ

The trajectory point index is mapped to a timestamp by the function time(x), which

respects the condition in Eq (2), with K being a fixed time-step.

timeðiÞ � timeðjÞ ¼ K � ði � jÞ ð2Þ

The trajectory prediction problem is defined as the task of estimating values of future time-

steps according to the observed values of past time-steps by minimizing a loss function based

on the distance from the ground truth. We define the trajectory prediction problem as the fol-

lowing sequence generation task: given an observed trajectory ofm< n points as a sequence

Xi, Yi for each i 2 [1. . .m], predict the values of Xi, Yi for each i 2 [m + 1. . .n] by minimizing

some error metrics with the actual trajectory t 2 T.
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The generation problem is defined as the task of synthesizing samples that can realistically

fit into the original data distribution. The trajectory generation problem is similar to the pre-

diction one, but instead of minimizing some error metrics, the goal is to find some ti 2 T that

realistically describe a vehicle trajectory.

It is important to clarify that the problem of trajectory prediction is different whether we

consider short trajectories (a few seconds long) or long ones (minutes or hours long). These

are two different problems with different challenges and applications.

Since we address the problem of multimodality, the trajectories we analyze are a few min-

utes long: long enough so there are different possible routes in order to make a multimodal

analysis, short enough so that this analysis can be applied to contexts such as self-driving cars

and traffic congestion prediction. The longer a trajectory is, the more difficult it is to predict,

and it requires a different kind of analysis.

In the rest of this paper, the terms “short trajectory” and “long trajectory” will have a differ-

ent meaning and refer to the precise length of the trajectories we analyze: 12 minutes for short

trajectories, 20 minutes for long ones. In both cases, the observed part of the trajectory has a

fixed length of 8 minutes. We expect the prediction error to be larger for long trajectories.

3.2 Data processing

For our analysis, we introduce new datasets obtained by preprocessing the GNSS data of vehi-

cle trajectories from 4 different cities, already described in [13]: Rome, Turin, Milan, and

Naples.

These datasets contain a vast amount of data, both in form of data points and features. They

provide useful information about the type of vehicle and the road graph, but for our purposes

we discard most of it and only keep coordinates and timestamps. We apply some preprocess-

ing steps to split macro-trajectories into shorter ones with a fixed number of data points and

reduce noise.

Table 1 reports the number of data points for each dataset, before and after preprocessing,

as well as the number of resulting trajectories. There are four preprocessing steps:

1. Resampling: trajectories (lists of coordinates associated with the same vehicle) are resam-

pled with a 60000 ms period, as the original sampling is irregular (with a mean of 60000

ms). This makes all the trajectories uniform time-wise and partially reduces noise.

2. Splitting: long trajectories are split into shorter ones with fixed length.

3. Normalization: coordinate values are normalized within the range [0, 1]. Predicted values

are later denormalized to calculate the error metrics.

4. Filtering: idle and noisy trajectories, that don’t provide useful information, are removed.

In the filtering step, idle and noisy trajectories are removed. We consider a trajectory noisy
if it contains at least two consecutive coordinates with a difference greater than 0.1 on values

normalized in the range [0, 1]. We consider a trajectory idle if its variance is lower than

Table 1. Datasets and number of data points.

Dataset Original data points Preprocessed data points Trajectories

Rome 12,979,442 5,159,880 257,994

Turin 4,000,656 1,156,920 57,846

Milan 3,361,692 977,740 48,887

Naples 8,150,826 2,679,400 133,970

https://doi.org/10.1371/journal.pone.0253868.t001
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ε = 0.00001 on coordinates normalized in the range [0, 1]. An idle trajectory must be

completely idle. For example, trajectories of vehicles that start moving after having been

idle for just a few time-steps are not considered idle. Removing idle trajectories is necessary

because they decrease the value of error metrics without reflecting the ability of a model to pre-

dict real, non-idle trajectories.

Following these steps, we obtain two different preprocessed datasets: one with short trajec-

tories and another with long ones. The former has 12-point trajectories (8 observed points and

4 predicted points) while the latter has 20-point trajectories (8 observed points and 12 pre-

dicted points).

3.3 Evaluation metrics

The standard metrics used in the field of trajectory prediction are the Average Displacement

Error (ADE) and the Final Displacement Error (FDE) proposed by Pellegrini et al. [29]. ADE

measures the RMSE between each pair of predicted and true trajectory points, while FDE only

considers the difference between the predicted and true final points.

Although these metrics are straightforward to implement and interpret, they have some

limitations when evaluating methods used in real-world scenarios. In controlled scenarios, tra-

jectories tend to have similar properties (e.g., same length), but in real-world scenarios, these

properties can greatly affect the evaluation. For example, the value of ADE tends to be higher

for longer trajectories (with many data points) because farther time-steps are more unpredict-

able and thus the average error tends to be larger. This problem can’t be solved by normalizing

only once (i.e., dividing the total error by the number of time-steps), as the error doesn’t grow

linearly.

For example, if trajectory T1 is longer than trajectory T2, the average error of T1 will be

higher than the average error of T2 because the higher uncertainty of the farthest time-steps

increases the average error.

The use of ADE/FDE would generate a bias against longer trajectories and favor models

that learn short trajectories well. These limitations justify the use of the new metrics defined in

this work; however, ADE/FDE are still valuable and intuitive, so we use them jointly with our

proposed normalized metrics N-ADE/N-FDE. In fact, N-ADE/N-FDE are not a replacement

for ADE/FDE. The advantage of the normalized metrics is that they are mostly independent of

trajectory properties, the disadvantage is that they can only be used in an aggregate manner

since they don’t provide useful information if evaluated on a single trajectory.

Many alternative ways to measure the similarity between two trajectories have been pro-

posed over the years, and several interesting approaches, like those based on Edit Distance or

Dynamic Time Warping, have been reviewed by Magdy et al. [30]. While most of these

approaches address the limitations of ADE/FDE, they are more computationally expensive

and lose physical meaning (i.e., they don’t have a physical unit of measurement unit, such as

meters). A good alternative to ADE/FDE should not only take into account the biases previ-

ously mentioned, but it should also be computationally efficient while maintaining physical

meaning.

N-ADE/N-FDE are defined by normalizing ADE/FDE, to the square root of these proper-

ties multiplied by constants. The square root attenuates the effect of this normalization; it

should not be completely independent of the trajectories, and the constants are only used to

maintain an intuitive physical meaning.

We define the aggregates Normalized Average Displacement Error (N-ADE) and Normal-

ized Final Displacement Error (N-FDE) as in Formulae (3) and (4).

NADEP ¼ Mt½ADEðtÞ � NFPðtÞ� ð3Þ
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NFDEP ¼ Mt½FDEðtÞ � NFPðtÞ� ð4Þ

NFPðtÞ ¼
Y

p2P

ffiffiffiffiffiffiffiffi
Kp
pðtÞ

s

ð5Þ

The normalized metrics are calculated using the parameter P, which is the set of chosen

properties to normalize. ADE/FDE are multiplied by the Normalization Factor (NF) defined

in Formula (5). ADE(t), FDE(t), and NF(t) are functions of the trajectory t. The NF is calcu-

lated as the inverse of the product of the chosen properties p(t), multiplied by the constants Kp.
For our purposes, we choose the length (in meters) and the variance of the trajectory as

properties to normalize, but future works could use different properties. This choice comes

from the assumption that long trajectories are more difficult to predict and they lead to higher

errors, as well as high-variance (noisy) ones. We redefine our NF as in Formula (6).

NFfl;vgðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kl
lðtÞ
�
Kv
vðtÞ

r

ð6Þ

As for the constants, we chose the median values of the datasets, truncating the length to

the integer and the non-linearity to the first decimal, as in Formulae (7) and (8) (it’s worth

remembering that these constants aren’t necessary and are arbitrarily chosen, we only use

them to make the metrics more intuitive).

Kl ¼ 0:04 ð7Þ

Kv ¼ 0:003 ð8Þ

The aggregate N-ADE and N-FDE of an entire dataset are calculated as the median value,

which is a better choice than the mean. This is because it is more robust to very low and very

high values, which are common with N-ADE/N-FDE defined using the chosen properties. The

error can approach infinity if these values are too low, and the average error of a whole dataset

can be huge even if there is only one faulty trajectory. This is not an issue when using the

median aggregatorMt.

3.4 Implementation details

We approach the problem of vehicle trajectory prediction with two different methods that we

describe here and compare in Section 4.

The first method is purely predictive and is based on an LSTM architecture. This method

tries to predict the future positions of the vehicles by minimizing the Mean Squared Error loss

function.

The second method has a generative nature and is based on a GAN architecture. This

method tries to generate realistic trajectories that can be used to make multiple predictions.

This is necessary for multimodal scenarios, where multiple correct solutions are possible. With

the GAN-3 model, we generate 3 different trajectories, each representing a different behavior,

then pick the correct behavior and measure the error w.r.t. that behavior.

Each of the two methods is more suitable for particular scenarios (namely, LSTM for unim-

odal scenarios and GAN-3 for multimodal ones). We then compare the two approaches in

Section 4, where we also compare GAN-3 with its unimodal counterpart, GAN-1, which is

expected to perform worse than the purely predictive LSTM.
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3.4.1 Predictive model architecture. The chosen predictive architecture is based on the

Long Short-Term Memory (LSTM) network. This model is a Recurrent Neural Network

(RNN) and is best suited for problems that require learning patterns in a time series (a

sequence of values corresponding to increasing timestamps with a fixed period or time-step);

for this reason, it is also the standard choice in other works in this field. An LSTM network

contains one or more LSTM layers that take as input a time series that describes the past and

produce as output another time series that describes its future prediction. The input of those

layers needs to be reshaped in such a way that one dimension represents the timesteps and

another dimension represents the value of the data at each timestep. Our LSTM is stateless,

which means that no memory is retained when training on different trajectories, as they

do not belong to the same time series. Optimal results are achieved quickly with minimal

tuning considering that the training data has a very simple representation (a sequence of 16

numbers).

The architecture of the LSTM model is very simple: it consists of two stateless LSTM layers

with 32 and 16 neurons respectively, followed by a Dense layer with 16 neurons and a final

Dense layer with a number of neurons corresponding to the number of timesteps to predict

(that can be 4 or 12) multiplied by the number of coordinates (2). The first layer receives an

input of 16 values as the 8 (x, y) ordered coordinates in the observed sequence. A simple visual

representation is shown in Fig 1: the observed trajectory is given as input to the Input layer,

then it’s passed to the Reshape layer that organizes the input in a way that groups and separates

the timesteps by the x and y coordinates. The resulting data is fed to two consecutive LSTM

layers. Finally, we have a fully connected Dense layer followed by the output, i.e. the predicted

trajectory as another Dense layer.

We train our model with a batch size of 256. We use the Rectified Linear Units (ReLU) acti-

vation function. The loss function to minimize is the Mean Squared Error.

We use the Adam optimizer with an initial learning rate of 0.001. Regularization is achieved

with Batch Normalization and Dropout layers set with a probability of 0.2. We do not limit

the number of epochs since the models converge fast, instead, we set a patience of 200, which

means that the training stops if no improvements have been made over the last 200 epochs.

Each of the 4 datasets (Rome, Turin, Milan, and Naples) is shuffled and split into a training

set (56%), a validation set (14%), and a test set (30%). Partial experiments with cross-validation

did not result in significant improvements, so we decided to use a fixed validation set to maxi-

mize training speed.

3.4.2 Generative model architecture. We use a Generative Adversarial Network (GAN)

to generate plausible trajectories and thus produce multiple predictions in a multimodal envi-

ronment. The GAN model, introduced by Goodfellow et al. in [8], consists of two networks, a

Generator and a Discriminator. The Discriminator learns to distinguish between real (i.e., fit-

ting into the original data distribution) and fake data, while the Generator aims to fool the Dis-

criminator by producing realistic data. If the model is trained well, the Generator will be able

to produce new data samples that fit into the training data distribution; in our case, the pre-

dicted trajectories.

We distinguish among two generative methods, GAN-1 and GAN-3. For simplicity, we will

refer to GAN-1 and GAN-3 as two different models, while they are actually the same model

and are trained in the same way. The only difference is in the testing phase.

Both the Generator and the Discriminator receive the observed trajectory as input. The

Generator also takes a latent vector as input and produces the output trajectory. The Discrimi-

nator also receives the generated trajectory as input and decides whether the entire trajectory

is real or fake. A simple visual representation of the GAN model is shown in Fig 2: two Input

layers take the latent vector and the observed trajectory that are concatenated and fed to the
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Generator layer. The Generator layer produces an output that is concatenated with the

observed trajectory input to produce the input for the Discriminator layer. The Generator and

Discriminator layers are exploded respectively in Fig 3a and 3b.

We use LeakyReLU instead of ReLU as the activation function of both Generator and Dis-

criminator layers. LeakyReLU allows a small positive gradient when the neuron is not active, it

helps to mitigate the vanishing gradient problem, which is particularly common in GAN mod-

els. In general, high regularization is needed when designing a GAN Discriminator to avoid

Fig 1. Visual representation of the LSTM model graph.

https://doi.org/10.1371/journal.pone.0253868.g001
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mode collapse. Both the Generator and the Discriminator are heavily regularized with Batch

Normalization and Dropout layers set with a probability of 0.5.

The Discriminator has to learn to distinguish real trajectories from fake ones. By contrast,

the Generator has to learn to produce plausible trajectories. A simple visual representation of

both models is shown in Fig 3.

To understand the architecture of the Discriminator, we can divide it into three sub-net-

works. The first sub-network takes as input only the trajectory produced by the Generator,

and it learns some features without taking the observed trajectory into account. This sub-

network learns if the Generator can produce meaningful trajectories, regardless of whether

they are meaningful predictions for the observed ones. It contains an LSTM layer with 64 neu-

rons (32 for 4-point predictions) followed by a Dense layer with 32 neurons (16 for 4-point

predictions).

The second sub-network learns to model the entire trajectory. It learns if the trajectory pro-

duced by the Generator is a good prediction for the input trajectory. Its input is the concatena-

tion between the observed trajectory and the trajectory produced by the Generator. It contains

an LSTM layer with 64 neurons followed by a Dense layer with 32 neurons.

The third sub-network takes as input the concatenated outputs of the two other sub-net-

works and produces the final output (real or fake). It contains 3 Dense layers with 32, 16, and 1

neuron each. The activation function of the final Dense layer is the sigmoid.

Similarly, to understand the architecture of the Generator, we can divide it into two sub-

networks. The first sub-network takes as input the observed trajectory and learns some basic

features. This sub-network doesn’t consider the latent input used for generating new samples,

meaning that the output of this sub-network will always be the same for a given observed tra-

jectory. It contains an LSTM layer with 32 neurons, followed by another LSTM layer with 16

neurons, followed by a Dense layer with 16 neurons.

The second sub-network takes as input the output of the previous one, concatenated with

the latent input. The latent input allows for a mapping between the latent space and the output

Fig 2. Visual representation of the GAN model graph for prediction.

https://doi.org/10.1371/journal.pone.0253868.g002

PLOS ONE Vehicle trajectory prediction and generation

PLOS ONE | https://doi.org/10.1371/journal.pone.0253868 July 1, 2021 12 / 28

https://doi.org/10.1371/journal.pone.0253868.g002
https://doi.org/10.1371/journal.pone.0253868


space, meaning that multiple predictions can be made. The latent input is a vector with 2 val-

ues, as the low dimensionality helps to avoid that the latent input overshadows the output of

the first sub-network, and mitigates the risk of mode collapse. The sub-network contains a

Dense layer with 16 neurons, followed by a final Dense layer with as many neurons as the

number of timesteps to predict (4 or 12) multiplied by the number of coordinates (2). The acti-

vation function of the final Dense layer is the hyperbolic tangent.

The Generator produces the non-observed part of the trajectory, which is concatenated to

the observed part and passed as input to the Discriminator.

When training the GAN, each epoch consists of a Generator step and a Discriminator step.

When training the Generator, we feed the input to the entire GAN model while setting the Dis-

criminator weights as not trainable. Both training steps produce the same type of output, i.e.

the predicted “real” or “fake” class, but the loss function is the opposite, as the Generator aims

to fool the Discriminator into classifying all its samples as “real”.

The difference between using an LSTM and a GAN for prediction lies in the objective func-

tion. The LSTM learns an average behavior because it minimizes the average error between

all the predictions. The GAN learns to produce realistic samples corresponding to specific

Fig 3. Visual representation of the Generator and Discriminator models of the GAN. Regularization (Dropout and Batch Normalization) and

activation (LeakyReLU) layers are not shown for simplicity.

https://doi.org/10.1371/journal.pone.0253868.g003
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behaviors. This is why using the GAN-1 model (that only makes one prediction) in a multi-

modal scenario is counterproductive; even if the model is good at generating plausible trajecto-

ries, it can produce a different behavior from the real one, resulting in high errors.

3.4.3 Multimodal generation. One example of multimodal generation in trajectory

prediction is the SGAN-20 model by Gupta et al. in [28] in the domain of human trajectory

prediction. They propose the SGAN-20 model, which uses the Social GAN to produce 20 dif-

ferent samples and selects the best one by comparing the errors with the ground truth. One

major problem with this approach is that it can’t be compared with unimodal predictions,

because part of the reason why SGAN-20 outperforms the unimodal SGAN is that it simply

makes more attempts.

This problem can’t be completely avoided since a better approach to address multimodality

does not exist yet, but our proposed GAN-3 partially decreases the impact of chance on error

decreases.

The problem with methods like SGAN-20 is that we cannot be sure that the 20 samples

describe 20 different behaviors. SGAN-20 assumes that the behaviors are all different and

exactly one of them is correct. This is seldom true and the results are unreliable.

GAN-3 is similar to SGAN-20 and it too picks the best result w.r.t. the ground truth, but we

implement two major differences. First, we reduce the number of samples. Assuming that each

sample should represent a different behavior, a number of 20 possible behaviors is excessive

for trajectory prediction. Furthermore, it depends on what is considered to be a different

behavior. For example, potential behaviors could include turning left, turning right, turning

left and stopping, or turning left and accelerating.

The second difference is that we compare the generated samples to determine whether they

represent different behaviors. The problem is that there are different levels of abstraction when

considering different behaviors, so we set a heuristic to quantify the level of abstraction we

want to use in our evaluation.

We approximate the distance between two behaviors and use it to define a threshold T 2 (0,1)

and choose the level of abstraction that differentiates two behaviors. With a high T there are just

a few possible behaviors (perhaps with a simpler semantic representation), while with a low T
there are many possible ones (with a more complex semantic representation). If T is too high,

the problem becomes unimodal, so using an LSTM would be more convenient. If T is too low,

every generated trajectory would be a different behavior, and it would be the same as SGAN-20.

In general, we define our GAN-K model as a model with the architecture previously

defined, that when evaluated produces K samples. Samples are produced sequentially. When

the sample i is generated, it is compared with the previous i − 1 samples by checking the dis-
tance from those behaviors. If the distance is too low for at least one behavior, the sample is

discarded and generated again. After a given number of attempts, that we set to 100, we stop

the generation and only keep the first i − 1 samples.

The distance between two behaviors is calculated as the ratio between the lowest of the two

errors and the highest. If this value is higher than 1 − T, the new sample is discarded. The

errors we compare are the values of the N-ADE metric. In mathematical terms, the multimodal

GAN generates K samples that satisfy the condition in Formula (9) given a threshold T and the

N-ADE error Ei for the sample i. Our heuristic to distinguish between different behavior is to

check if the ratio between the two errors is high. Intuitively, samples corresponding to the

same behavior should have similar errors, although the opposite is not necessarily true. In our

case, with K = 3, we choose threshold T = 50%.

Ei
Ej
<¼ 1 � T 8i; j 2 f1; :::;Kg; i 6¼ j ð9Þ
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To clarify, GAN-3 cannot be used for unimodal prediction, as in real-world scenarios we

don’t have access to the ground truth. We use this method to analyze multimodality in a given

environment. Moreover, GAN-3 is a stochastic method that can potentially generate different

sets of samples that satisfy the condition in Formula (9). Formula (9) uses the ground truth to

calculate error (similarly to SGAN-20 [28]), which is not available for unimodal prediction

purposes.

4 Results and discussion

In this Section, we evaluate our predictive and generative models on the four datasets we pro-

posed. We expect GAN-1 to be outperformed by both LSTM and GAN-3. In fact, the former

should predict an average behavior that is more accurate than a random behavior, while the

latter should find the correct behavior. The evaluation of GAN-1 is made for the only purpose

of having baseline results for generative models.

The models are evaluated using both the ADE/FDE and N-ADE/N-FDE metrics on both

4-point and 12-point predictions.

Related works do not take multimodality into account (i.e. they do not produce multiple

predictions) and use biased metrics; for this reason, a direct quantitative comparison between

those approaches and ours does not provide a meaningful interpretation. In fact, in [31], the

authors introduced a path inference method for low-frequency FCD. They have implemented

and compared three methods: WSPA [32], ST-matching [33], and EMM [34]. However, the

proposed method is specifically designed for cases with minimum information (i.e. latitude,

longitude, and timestamp).

Altinasi et al. [3] have also studied FCD, but their paper aimed at detecting critical patterns

in urban roads. Traffic patterns were defined by considering the Level of Service, which is

based on segment speed on urban arterial roads. Attempts on predicting trajectories data

for estimating traffic conditions from a large historical FCD are performed in [35]. The goal

was twofold: on one hand the estimation of congestion zones on a large road network, on the

other the estimation of travel times within congestion zones by the time-varying Travel Time

Indexes (TTIs). Recently, in [36], the authors proposed a trajectory restoration algorithm,

based on geometry map matching algorithms. Nevertheless, even in this case these approaches

doesn not consider the multimodality.

For the aforementioned reason, we compare our GAN-3 model with an LSTM model, since

the latter is the type generally used by related works. The advantage of using our GAN-3

model over those works can be assessed by comparing it with our LSTM model, using both

standard metrics and normalized ones.

In Section 4.1, we show the results of these experiments, while in Section 4.2, we provide an

analysis of the traffic flow, with the purpose of mapping those results into the physical world.

4.1 Experiments with LSTM and GAN

In the following tables, each column refers to a dataset, so that in a given column (e.g. the data-

set Rome), we have the values of the error metrics for the models trained and evaluated on that

given dataset.

In Tables 2 and 3 we show the values of ADE/FDE and N-ADE/N-FDE, respectively. We

repeated the experiments for the three models (LSTM, GAN-1, GAN-3) and for both short

predictions (4 points) and long predictions (12 points).

As expected, GAN-1 always performs the worst, because neither it minimizes the error by

picking an “average behavior” like LSTM does, nor it picks the correct behavior as GAN-3 usu-

ally does.
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In most cases, LSTM outperforms GAN-3, meaning that the latter is not a replacement for

the former; in fact, both methods have advantages and disadvantages in different contexts.

In the 4-point predictions, LSTM outperforms GAN-3 in all cases but one: N-FDE on the

Naples dataset. The reason why LSTM is better for short predictions is that uncertainty grows

over time, and multimodality is just aleatoric uncertainty. As the model tries to predict more

time-steps, the number of possible behaviors grows, so the “average behavior” predicted by the

LSTM becomes less accurate than the correct behavior identified by GAN-3. On the other

hand, when the number of time-steps is low, the LSTM prediction is more accurate, since it

minimizes the square error instead of just generating plausible trajectories as the GAN does.

In the 12-point predictions, LSTM still outperforms GAN-3 on the average errors (ADE

and N-ADE). GAN-3 outperforms LSTM on the Rome dataset (FDE, N-FDE) and the Turin

dataset (N-FDE). Again, the reason why is GAN-3 performs better on final errors while LSTM

performs better on average errors is that the cumulative uncertainty of the entire trajectory

adds up to the final point. Since this only happens on the Rome and Turin datasets, we can

deduce that these cities have a road graph with a highly multimodal configuration, allowing

for more possible routes.

In Table 4, we show the improvement of the GAN-3 error over the GAN-1 error. The

higher the ratio, the higher is the improvement. A high ratio means that GAN-3 generates

better solutions than GAN-1 and it indicates multimodality, as different trajectories are

generated.

We can make three main observations on this table. First, the improvement is better on

long trajectories than on short ones, as expected. In fact, long trajectories have more uncer-

tainty and there is more room for improvement with a multimodal generative approach.

Second, normalized metrics show a better improvement than standard ones. This follows

directly from how we defined the GAN-3 model, which measures the distance between two

trajectories using the N-ADE and not the ADE. In this way, it optimizes improvements over

more high-uncertainty trajectories, as uncertainty is correlated with length and variance.

Table 2. Results summary (ADE/FDE). The values in bold are the lowest on each column.

Method Milan Rome Naples Turin

LSTM (4 points) 0.0046 / 0.0071 0.0071 / 0.0112 0.0056 / 0.0087 0.0050 / 0.0076

GAN-1 (4 points) 0.0152 / 0.0219 0.0509 / 0.0570 0.0110 / 0.0144 0.0202 / 0.0314

GAN-3 (4 points) 0.0112 / 0.0164 0.0203 / 0.0263 0.0075 / 0.0090 0.0154 / 0.0231

LSTM (12 points) 0.0107 / 0.0191 0.0191 / 0.0336 0.0126 / 0.0221 0.0105 / 0.0183

GAN-1 (12 points) 0.0327 / 0.0588 0.0630 / 0.1023 0.0420 / 0.0734 0.0351 / 0.0570

GAN-3 (12 points) 0.0163 / 0.0244 0.0244 / 0.0261 0.0237 / 0.0531 0.0170 / 0.0273

https://doi.org/10.1371/journal.pone.0253868.t002

Table 3. Results summary (N-ADE/N-FDE). The values in bold are the lowest on each column.

Method Milan Rome Naples Turin

LSTM (4 points) 0.0032 / 0.0051 0.0048 / 0.0076 0.0043 / 0.0069 0.0034 / 0.0054

GAN-1 (4 points) 0.0126 / 0.0189 0.0398 / 0.0406 0.0084 / 0.0123 0.0164 / 0.0276

GAN-3 (4 points) 0.0086 / 0.0123 0.0158 / 0.0230 0.0063 / 0.0066 0.0147 / 0.0232

LSTM (12 points) 0.0123 / 0.0220 0.0208 / 0.0359 0.0144 / 0.0255 0.0125 / 0.0218

GAN-1 (12 points) 0.0424 / 0.0759 0.0710 / 0.1314 0.0530 / 0.1030 0.0424 / 0.0814

GAN-3 (12 points) 0.0174 / 0.0294 0.0277 / 0.0329 0.0175 / 0.0321 0.0167 / 0.0202

https://doi.org/10.1371/journal.pone.0253868.t003
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Third, the best improvements are achieved in the Rome and Turin datasets. Those are the

same datasets where GAN-3 outperforms LSTM, as we saw in Tables 2 and 3.

Multimodality can also be analyzed from the error growth. In Table 5, we show the N-FDE

/ N-ADE ratio of these experiments. A higher ratio means that the error grows faster, so the

cumulative uncertainty over several time-steps is higher.

In most cases, as expected, this ratio is lower for GAN-3 experiments. It means that,

although the LSTM error is generally lower than the GAN error, it tends to grow faster. One

possible interpretation of this phenomenon is that LSTM and GAN-3 having different types of

error: while the GAN-3 error can be associated with a less accurate model (in general, GANs

are harder to train than LSTM networks), the LSTM error is due to a divergence from the

actual behavior as the uncertainty increases with the number of time-steps.

As we saw in Section 2, recent works on FCD trajectory prediction are based on LSTM

models that minimize the Root Mean Square Error (RMSE). From our results, we can con-

clude that the LSTM model is better suited for unimodal scenarios (where choices are heavily

constrained) and short-term predictions, while GAN-3 works best in scenarios with high

uncertainty, especially when the number of time-steps grows larger.

In these cases, finding an “average behavior”, as the LSTM does, is not a satisfying solution.

In fact, the more accurate the model tries to be, the worse it performs, because the average

behavior diverges from any actual behavior. Our work is the first that proposes a generative

approach for FCD trajectory prediction, and we have shown that we can address the problem

of multimodality by generating a set of multiple realistic predictions.

4.2 Traffic flow state analysis

As mentioned in the introduction, traffic flow states calculated from high-resolution trajecto-

ries are an important and critical information for traffic control. Predicted trajectories

Table 4. GAN-1 / GAN-3 ratio: The higher the ratio, the higher is the improvement of GAN-3 over GAN-1, mean-

ing that better solutions are found by the former (a sign of multimodality).

Method Milan Rome Naples Turin

ADE (4 points) 1.3571 2.5074 1.4667 1.3117

FDE (4 points) 1.3354 2.1673 1.6000 1.3593

N-ADE (4 points) 2.0061 2.5820 1.7722 2.0647

N-FDE (4 points) 2.4098 3.9195 1.3823 2.0879

ADE (12 points) 1.4651 2.5190 1.3333 1.1156

FDE (12 points) 1.5366 1.7652 1.8636 1.1897

N-ADE (12 points) 2.4368 2.5632 3.0286 2.5389

N-FDE (12 points) 2.5816 3.9939 3.2087 4.0297

https://doi.org/10.1371/journal.pone.0253868.t004

Table 5. N-FDE / N-ADE ratio: The higher the ratio, the faster the error grows (a sign of multimodality). The val-

ues in bold are the lowest on each column, the ones where the error is the least affected by multimodality.

Method Milan Rome Naples Turin

LSTM (4 points) 1.5719 1.5708 1.5792 1.5852

GAN-1 (4 points) 1.4987 1.0205 1.4668 1.6831

GAN-3 (4 points) 1.4420 1.4539 1.0538 1.5823

LSTM (12 points) 1.7918 1.7269 1.7661 1.7440

GAN-1 (12 points) 1.7909 1.8492 1.9424 1.9191

GAN-3 (12 points) 1.6864 1.1870 1.8380 1.2078

https://doi.org/10.1371/journal.pone.0253868.t005
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generated with the methodology described in section 3 have been analyzed through the crea-

tion and analysis of space-time data cubes, exploiting the ESRI ArcGIS Pro Space Time Pattern

Mining toolbox: trajectory points have been therefore inserted into a netCDF data structure,

by aggregating positions into space-time bins. For all bin locations, the trend has been evalu-

ated by counting those positions.

Two-dimensional representations of the space-time data cube attributes are a powerful tool

to detect trends in space and time: in this particular framework, space-time data cube trends

visualization has been exploited to compare trends in cell occupancy, based on both real data

and simulated trajectories. An additional hot spot analysis, finalized to the identification of sta-

tistically significant spatial clusters of high values (hot spots) and low values (cold spots), has

been performed using the Hot Spot Analysis (Getis-Ord Gi�) ESRI ArcGIS Pro tool. Fig 4 dis-

plays the legends used for displaying, while in the subsequent figures, we show the results of

both the trend and hot spot analysis.

The space-time analysis has been performed on the 12-point predictions: the longer predic-

tion is considered better fitting the needs of a traffic control center in managing traffic flows in

urban contexts. The analyzed trajectories are those predicted using the LSTM network because

this model produces good results on all datasets, while GAN-3 outperforms LSTM only under

particular conditions, so they can be better analyzed in this context. Fig 5 displays the real posi-

tions plotted on top of the predicted ones, while Table 6 displays the distribution of planimet-

ric distance values between real positions and the nearest predicted ones. This is a different

Fig 4. Legends for trend on number of positions (a) and for hot spot analysis (b).

https://doi.org/10.1371/journal.pone.0253868.g004
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Fig 5. Visual comparison between real and predicted (LSTM) positions in Milan (top left), Naples (top right), Rome (bottom left) and Turin

(bottom right). Republished from ESRI and HERE under a CC BY license, with permission from ESRI, original copyright 2021.

https://doi.org/10.1371/journal.pone.0253868.g005

Table 6. Position distance statistics (m) measured in the 4 cities.

Statistic Milan Rome Naples Turin

Mean 60.3 154.4 84.6 55.5

Median 39.7 89.1 60.7 32.0

Std. Dev. 80.2 314.8 80.1 122.4

Max 1,623.8 7,338.2 856.1 1,958.9

https://doi.org/10.1371/journal.pone.0253868.t006
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kind of distance from the ones used to validate the predictions in Section 4.1, because this is a

spatial analysis while the previous one was temporal. Unlike the previously proposed metrics,

we don’t use this type of distance to evaluate the models because there is no direct correspon-

dence between real and predicted values. Nevertheless, those value distributions allow us to

perform some considerations:

• There is a clear correlation between distance values and the dimension of the considered

city: the size of the Rome municipality is 1,287 km2, compared to 182 km2 of the Milan

municipality, 130 km2 of the Turin municipality, and 119 km2 of the Naples municipality.

On a wider area, predicted positions are potentially more dispersed and this pattern is

detectable in the statistics of the four cities.

• Despite being only the third in terms of geographical extension, Turin has a standard devia-

tion value much higher than Milan (almost 30% more extended) and Naples (only 10% less

extended). This higher dispersion of the values can be correlated to the particular morphol-

ogy of the municipality area: the E-SE part of the municipality lies in a hilly area, with a lim-

ited number of roads, very sparse patterns, and a low number of trajectories.

Figs 6 to 9 display the results of the trend (top) and hot spot (bottom) analysis on the four

cities: Milan, Naples, Rome, and Turin. Point aggregation has been made on hexagons with an

height of 500 m. In all figures, the left map is obtained from the real values, while the right one

is generated from the 12-point LSTM predictions.

As far as the trend analysis is concerned (top of Figs 6 to 9), overall patterns show a low

degree of similarity, meaning that V2I analysis is needed in future works. Furthermore, our

predictions didn’t take into account information from the road graph. We can observe that

predicted trajectories are not confined to existing infrastructure elements (i.e. road edges) and,

therefore, are subject to be placed on areas not dedicated to vehicles, consequently creating

more disperse point clouds.

This aspect is highlighted both in Fig 5 and in Table 7: in three out of the four considered

cities (Milan, Naples, and Rome), the total number of non-empty cells is lower for the analysis

based on real values rather than predicted ones. In the case of Rome, the difference is signifi-

cant and this can be explained by the size of the city (and, consequently, of the dataset), almost

one order of magnitude larger than the other three. Turin is the only city with a significant

decrease in the total number of non-empty cells in the predicted scenario and this again is par-

tially due to its morphology.

The hot spot analysis (bottom of Figs 6 to 9) shows the highest levels of correlation between

real and predicted positions, even if this one too is affected by the non-confinement of the lat-

ter, leading generally to larger proportions of areas with some detected patterns.

This type of analysis is clearly conditioned by the size of the space-time cube cells: e.g.,

increasing hexagons resolution (i.e. decreasing the hexagon height) to 100 m, the trend com-

parison shows narrower differences between real and predicted values in almost all trend

classes (Table 8). This is mainly explained by the fact that, reducing the size of the cells, the

probability of having a relevant number of positions in each cell is lower, as well as the possibil-

ity of detecting trends: comparing Tables 7 and 8, the percentage of cells with no significant

trend is in the range of 52.26–83.92% for the 500 m aggregation and 89.31–98.00% for the 100

m aggregation. Consequently, percentages of cells with some trend detected are extremely

marginal when using 100 m aggregation and differences are narrower. Table 9 compares the

overall accuracy over the 4 cities for both the 500 m and 100 m aggregation levels. This con-

firms that the smaller aggregation size provides significantly higher correspondences in the

trend analysis.

PLOS ONE Vehicle trajectory prediction and generation

PLOS ONE | https://doi.org/10.1371/journal.pone.0253868 July 1, 2021 20 / 28

https://doi.org/10.1371/journal.pone.0253868


5 Conclusion and future works

In this work, we addressed challenges and aspects of the FCD trajectory prediction problem

that have been neglected by other works in this field. We proposed new datasets with a large

number of data points and multimodal scenarios, as well as new aggregate metrics that reduce

bias by normalizing ADE and FDE to critical properties of the trajectories.

We addressed the problem of multimodality in a way that is missing in the current state of

the art, proposing the generative model GAN-3. Although the standard LSTM model is

Fig 6. Visualization of space-time data cube with 500 m resolution using the 12 points prediction over Milan area. Republished from ESRI and

HERE under a CC BY license, with permission from ESRI, original copyright 2021.

https://doi.org/10.1371/journal.pone.0253868.g006
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superior in unimodal scenarios, most real-world ones are multimodal and require a different

approach. Our GAN-3 generates different plausible solutions instead of a single average one,

and it outperforms LSTM in those cases where uncertainty is high. GAN-3 doesn’t replace

LSTM, as the latter is still superior in unimodal scenarios, but each method is best suited for

different contexts.

Since this is the first work to use generative methods in FCD trajectory prediction, there are

many possible directions for future research in the field.

Fig 7. Visualization of space-time data cube with 500 m resolution using the 12 points prediction over Naples area. Republished from ESRI and

HERE under a CC BY license, with permission from ESRI, original copyright 2021.

https://doi.org/10.1371/journal.pone.0253868.g007

PLOS ONE Vehicle trajectory prediction and generation

PLOS ONE | https://doi.org/10.1371/journal.pone.0253868 July 1, 2021 22 / 28

https://doi.org/10.1371/journal.pone.0253868.g007
https://doi.org/10.1371/journal.pone.0253868


One possible improvement is the analysis of longer trajectories. This would be impossible

in multimodal scenarios with a standard LSTM, but generative models should be able to tackle

this challenge, enumerating different possible behaviors in a long time frame.

Another possible improvement is the study of V2V interaction that we mentioned among

the challenges of FCD trajectory prediction. Different vehicles influence each other’s trajecto-

ries in a major way, taking this aspect into account would largely reduce uncertainty (and the

problems that arise from multimodality) and improve accuracy.

Fig 8. Visualization of space-time data cube with 500 m resolution using the 12 points prediction over Rome area. Republished from ESRI and

HERE under a CC BY license, with permission from ESRI, original copyright 2021.

https://doi.org/10.1371/journal.pone.0253868.g008
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Another class of improvements would be the study of V2I interaction by making use of

additional information to improve accuracy, such as the road network and related traffic

restrictions, that heavily constrains the possible path a vehicle can follow. This type of informa-

tion has been ignored in this work, mainly for the purpose of comparing LSTM and GAN-3 in

a purely data-driven fashion. Nevertheless, a hybrid approach can bring several advantages in

practical scenarios.

Furthermore, we only evaluated the models on the datasets they have been trained on,

future works could include experiments that train and evaluate models on different datasets. If

Fig 9. Visualization of space-time data cube with 500 m resolution using the 12 points prediction over Turin area. Republished from ESRI and

HERE under a CC BY license, with permission from ESRI, original copyright 2021.

https://doi.org/10.1371/journal.pone.0253868.g009
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different datasets have very different results, it means that predictions depend more on the

environment than on general properties of vehicle trajectories, and that would require further

research in V2I interaction.

The penetration rate of CAVS should be adequately kept into consideration because it can

highly influence the performances of UTCs based on those data: Ajmar et al. in [13] provided

some insights comparing floating car data (FCD) with low penetration rates with data acquired

by fixed sensors, but more research studies on the impact of low penetration rates are still

required. Nevertheless, CAVs penetration rates and smart road development is expected to

grow systematically in the next years and the methodology proposed here can be easily scaled

and implicitly benefit in accuracy by the availability of more complete data.
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Table 7. Variation in % of the cells in each trend class in the 4 cities computed using the 500 m aggregation: Positive values are classes where real values have more

occurrences than predicted ones. In brackets the real and the predicted percentage values: for the total number of cells with at least one value, the real and the predicted

total numbers are reported in brackets.

Trend Milan Rome Naples Turin

Up Trend—99% Confidence -2.71 (2.94–5.65) -4.06 (3.90–7.96) -1.09 (1.61–2.70) -5.03 (2.95–7.98)

Up Trend—95% Confidence -3.01 (5.86–8.87) -0.60 (7.58–8.18) -1.62 (4.51–6.13) -0.77 (6.14–6.91)

Up Trend—90% Confidence -0.61 (3.58–4.19) 0.47 (5.63–5.16) -0.53 (2.39–2.92) 2.75 (5.68–2.93)

No significant trend 14.94 (76.72–61.76) 19.39 (71.65–52.26) 5.48 (83.92–78.44) 17.67 (74.32–56.65)

Down Trend–90% Confidence -0.45 (3.75–4.20) -0.19 (4.11–4–30) 0.14 (2.62–2.48) -0.93 (3.86–4.79)

Down Trend—95% Confidence -4.47 (4.72- 9.19) -10.94 (3.68–14.62) -1.64 (3.67–5.31) -9.78 (4.32–14.10)

Down Trend—99% Confidence -3.69 (2.44–6.13) -4.06 (3.46–7.52) -0.75 (1.28–2.03) -3.92 (2.73–6.65)

Total number of cells with at least one value -0.98 (614–620) -0.65 (462–465) -23.59 (1,797–2,221) 14.55 (440–376)

https://doi.org/10.1371/journal.pone.0253868.t007

Table 8. Variation in % of the cells in each trend class in the 4 cities computed using the 100 m aggregation: Positive values are classes where real values have more

occurrences than predicted ones. In brackets the real and the predicted percentage values: for the total number of cells with at least one value, the real and the predicted

total numbers are reported in brackets.

Trend Milan Rome Naples Turin

Up Trend—99% Confidence 0.22 (0.66–0.44) 0.31 (0.59–0.28) 0.30 (0.38–0.08) 0.69 (0.75–0.06)

Up Trend—95% Confidence 0.60 (2.46–1.86) -0.81 (3.36–2.55) 0.92 (1.74–0.82) 1.62 (3.14–1.52)

Up Trend—90% Confidence 0.31 (1.53–1.22) -0.29 (1.68–1.97) 0.38 (0.70–0.32) 0.15 (1.93–1.78)

No significant trend -2.79 (90.77–93.56) -1.17 (90.15–91.32) -3.74 (94.26–98.00) -4.55 (89.31–93.86)

Down Trend—90% Confidence 0.60 (1.75–1.15) -0.14 (1.59–1.73) 0.73 (1.06–0.33) 1.05 (2.25–1.20)

Down Trend—95% Confidence 0.86(2.39–1.53) 0.04 (2.09–2–05) 1.10 (1.53–0.43) 0.63 (2.13–1.50)

Down Trend—99% Confidence 0.20 (0.44–0.24) 0.44 (0.53–0.09) 0.31 (0.33–0.02) 0.40 (0.49–0.09)

Total number of cells with at least one value -51.63 (4,108–6,229) -58.33 (3,391–5,369) -49.20 (6,599–9,846) -53.89 (3,472–5,343)

https://doi.org/10.1371/journal.pone.0253868.t008

Table 9. Overall accuracy (%) measured on the count trends in the 4 cities.

Method Milan Rome Naples Turin

500 m 53.4 44.8 69.9 34.2

100 m 86.7 84.6 93.8 75.9

https://doi.org/10.1371/journal.pone.0253868.t009
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