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Summary

The Boundary Element Method (BEM) is widely used as a key computational
technique to infer knowledge about the human cerebral activity, and in particu-
lar, to solve the forward problem of electroencephalography. Despite the many
advantages that explain the popularity of the BEM, several challenges impede its
application. Notably, the composite head medium has an electrically inhomoge-
neous and anisotropic conductivity profile, which, in the absence of specific treat-
ment, can only be coarsely approximated by the standard BEM. Furthermore, the
time and memory costs for a standard, non-accelerated numerical method become
prohibitively large for dense meshes, which hamper the use of the BEM in high-
resolution imaging applications.

This thesis presents a new inhomogeneity and anisotropy-handling formulation
which addresses the modeling deficiencies of the BEM in bioelectromagnetic brain
modeling. This is achieved by complementing the classical surface integral equa-
tions of the BEM with volume and wire integral equations that leverage the specific
structure of the different head tissues. Then, a new algebraic fast solver method
based on the adaptive cross approximation algorithm is developed to improve the
computational complexity of the formulation. This acceleration method introduces
and leverages a spanning tree of the set of quadrature points, allowing the single
compression of several block matrices together and improving the overall compu-
tational cost of the proposed formulation. Finally, we investigate the application
of the proposed techniques to an inverse problem of conductivity estimation in the
context of electrical impedance tomography. We show in particular that they en-
able a higher flexibility in the modeling of the problem unknowns while retaining
the advantages of BEM formulations.
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Chapter 1

Introduction and Outline

The Boundary Element Method (BEM) is a powerful and popular computa-
tional technique used to solve a wide range of electromagnetic problems, including
the modeling of the electric neural activity in the brain. Unfortunately, the im-
perfectly conducting and multi-layered head volume poses several challenges for
classical BEM formulations, which curb their practical applicability. The work
presented in this thesis aims at addressing these issues and proposes advances in
the computational techniques that solve the biophysical head modeling problem to
improve the BEM accuracy and computational complexity. The thesis is divided
into several chapters, as follows.

Chapter 2 introduces the necessary background and notations used in the rest of
the document. A brief overview of brain imaging is presented, followed by the role
of the Maxwell’s equations of electromagnetism in the biophysical modeling of brain
functions. This leads to the forward problem of electroencephalography (EEG) for
which standard analytical, semi-analytical and numerical electromagnetic solvers
are described.

Chapter 3 presents an integral formulation to solve the inhomogeneous and
anisotropic EEG forward problem. The general anisotropic Poisson’s equation is
described in the context of the multi-compartment head modeling. We then derive
new coupling volume and wire integral equations adapted to the anisotropic skull
and white matter conductivities, respectively. This is followed by the discretization
of the hybrid integral equations to solve the system numerically. Finally, the wire
conductivity model is validated with a homogenization procedure.

We develop in Chapter 4 a new fast solver to accelerate the computation and
reduce the memory storage of integral equation methods. We first describe the
concept of matrix compression via low-rank approximation. Then, we explain how
the compression of the discrete system of equations can be achieved with a hier-
archical octree decomposition and a block cluster tree partitioning of the matrix
element interactions. Next, we derive a compression technique obtained by ap-
plying the adaptive cross approximation algorithm to the sampled kernel function

1



Introduction and Outline

and factoring quadrature integrals into sparse matrices. Furthermore, we intro-
duce a spanning tree decomposition of the quadrature points, which allows the
factorization of several operators matrices with different kernels but evaluated on
the same points into a unique compression scheme. This results in a convenient
material-independent representation which is particularly suitable for hybrid inte-
gral equation formulations.

Chapter 5 presents an inverse solver for the problem of inhomogeneous tissue
conductivity imaging. The forward and associated inverse problems of electrical
impedance tomography are described. Then, we present an iterative solution to es-
timate the inhomogeneous head conductivity. We further explain how to accelerate
the inverse procedure with the compression technique to obtain fast conductivity
updates.

Finally, Chapter 6 concludes the manuscript and presents some avenues for
future research.
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Chapter 2

Background Theory

This chapter introduces some background on the research axes investigated in
this thesis. We briefly outline the main technologies used for brain imaging, as
well as the biophysical framework under which the brain activity is modeled and
studied. In particular, we describe electroencephalography (EEG) and, starting
from Maxwell’s equations of electromagnetism, we derive the associated forward
problem of EEG, which is used in a wide range of applications. We then recount
several state-of-the-art methods employed to solve this forward problem, with a
focus on the Boundary Element Method (BEM), a classical numerical technique
that solves electromagnetic problems with integral equation formulations.

2.1 Introduction

2.1.1 Brain Imaging
The brain is one of the most fascinating biophysical structure studied in natu-

ral science. Responsible for the processing of the senses, emotions, and cognitive
functions including memory, thinking and commands to the rest of the body, it is
the central piece of the human organism. While the importance of the brain was
recognized quite early in human history, neuroscience, the study of nervous sys-
tems, was mostly inferred from dissection experiments and remained quantitatively
limited until the 20th century. Then, technological and scientific progress in biology,
electrophysiology [56] and computational science considerably expanded knowledge
about the complex anatomy and physiology of the brain. The past half century has
seen the development and maturation of new invasive and non-invasive technologies
for the quantitative mapping of recorded brain-induced signals, further deepening
our modern understanding of the still elusive brain structure and functions.

X-ray based Computed Tomography (CT) [25] and the advent of Magnetic Res-
onance Imaging (MRI) [71] have enabled high resolution imaging of the different
head tissues (brain layers, skull, skin, fluids, etc.), so that the precise geometry
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of individual (healthy or pathological) subjects can be recovered non-invasively at
the millimeter scale. On the other hand, other technologies such as functional
Magnetic Resonance Imaging (fMRI) [61], Positron Emission Tomography (PET)
[6], Single Photon Emission Computed Tomography (SPECT) [126], Near-Infrared
Spectroscopy (NIRS) [110], Electroencephalography (EEG) [86] and Magnetoen-
cephalography (MEG) [55] have formed functional neuroimaging, a field that fo-
cuses on understanding the brain physiology via the recording of its activity [45].
While the techniques mentioned first are based on the detection of changes in
blood flow (hemodynamics), and as such, are an indirect recording of the brain
dynamics, EEG and MEG are directly sensitive to neuronal activity. In practice,
hemodynamics-based methods have a high spatial resolution (a few millimeters)
but low temporal resolution due to the fact that they are secondary measures of
the brain metabolism [65]. This makes them limited for tracing brain dynamics
that occur rapidly. These include both spontaneous oscillatory activity and evoked
neural responses such as epileptic seizure or external stimuli [68, 23, 109]. In con-
trast, MEG and (especially non-invasive) EEG have lower spatial resolution than
indirect methods but achieve a much higher temporal resolution (around the mil-
lisecond) which allows them to pick up even short transient signals [11, 8, 105] and
enables low-latency, and possibly real-time brain reading, as seen notably in Brain
Computer Interface (BCI) paradigms [129, 3].

2.1.2 EEG Brain Signals
At the microscopic level, the brain is principally composed of billions of glial

cells and neurons (nerve cells). Neurons have a cell body called the soma, and
fibrous extensions: the axon, through which electric signals are transmitted toward
other neurons, and the dendrites, which pick up signals from the axons of other
neurons at an interface called synapse [88]. The dynamics involved in this intricate
assembly form a complex network in which electro-chemical signals are processed
and transmitted. An active nerve cell synthesizes neurotransmitters, a chemical
compound that locally perturbs the intracellular ionic concentration [24]. This
creates an Excitatory Postsynaptic Potential (EPSP) or Inhibitory Postsynaptic
Potential (IPSP) that depolarizes the membrane of the cell from its resting state
and generates transmembrane currents between the intracellular and extracellular
environments [86, 39]. In general, a postsynaptic potential on a single neuron will
be drowned (averaged or canceled out) among the other signals from neighbor cells,
and will not create a field strong enough to be picked up by EEG [24]. However,
the spatial organization of pyramidal neurons in the grey matter is such that they
are aligned parallel to each other and orthogonal to the brain surface, as illustrated
in Figure 2.1. Therefore, on top of being relatively close to the scalp, synchronous
signals in these neuron populations stack up additively instead of destructively,
giving rise to a measurable electric field [96, 24].
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2.1 – Introduction

⇔

soma
axon

sulcus

dendrite

gyruscortical 

surface

current dipoleneuron

Figure 2.1: Cortical fold on the brain surface. The electric field generated by aligned
neuron populations is similar to that from a dipole with a normal orientation to
the cortex.

This electric field can be directly measured with electrodes that are either placed
invasively inside the skull and close to the brain surface (Electrocorticography
(ECoG) or intracranial Electroencephalography (iEEG)) or non-invasively on the
scalp surface [63, 94]. While the former pick up high quality information of the
nearby neuronal activity in the cortex (the surface of the brain, where the concen-
tration of neurons is highest), they require a delicate surgical operation and cannot
monitor the overall brain activity. In comparison, non-invasive EEG is much eas-
ier to set up, portable and affordable, which explains its wide adoption over the
past few decades. However, due to the fact that the highly resistive skull produces
a bio-shielding effect that blurs local field potentials together, scalp EEG suffers
from a relatively low spatial resolution and requires considerable processing effort
to detangle the recorded voltages into interpretable signals [88, 9].

The attempt at determining the underlying brain current origin from the obser-
vation of their trace as electric potential recordings constitutes the inverse source
imaging problem of EEG [95, 7, 77]. This problem is fundamentally ill-posed since
boundary voltage readings are far from sufficient information to uniquely constrain
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its solution: there are infinitely many current source configurations in the brain
volume that give rise to the same potential on the sampled scalp surface. Inverse
source imaging is highly sensible to modeling errors and noise in the data, in the
sense that small variations in the noisy measurements may lead to uncontrolled
changes in the solution [51]. A plethora of regularization techniques has emerged
in the past twenty years to stabilize this effect, but the validity of the prior con-
straints they enforce remains a challenge [88, 51]. A key component of most inverse
algorithms is the solution of the associated EEG forward problem, in which the
primary source is known and the electric potential is to be determined [53]. The
EEG forward problem depends on the geometry of the head volume and on the
conductivity of each tissue making up the overall inhomogeneous head medium.
Since the solution of the inverse problem often requires multiple solutions of the
forward problem, the assumptions made in forward modeling have a strong impact
on the accuracy of brain source imaging [83, 52, 34].

Summarizing, the solution of the forward problem is an essential factor in our
ability to get insight of the brain activity from EEG. On the main contributions
of this thesis is dedicated to the improvement of forward solver methods. In the
following, starting from Maxwell’s equations, we describe standard analytical and
numerical formulations used to solve the EEG forward problem.

2.2 Biophysical Model of Brain Signals

2.2.1 From Maxwell’s equations to Poisson’s equation
The EEG forward problem consists in the computation of the unknown electric

potential from a known primary current source. These physical quantities obey the
Maxwell’s equations of electromagnetism [64]

∇ ·D = ρ , (2.1)
∇ ·B = 0 , (2.2)

∇×E = −∂B

∂t
, (2.3)

∇×H = J + ∂D

∂t
, (2.4)

where D is the electric flux density, B is the magnetic flux density, E is the electric
field, H is the magnetic field, ρ is the electric charge density and J is the electric
current density. For linear and non-dispersive media, the constitutive relations read

D = ϵE , (2.5)
B = µH , (2.6)

6



2.2 – Biophysical Model of Brain Signals

where ϵ and µ are the permittivity and permeability of the medium, respectively.
The head tissues have approximately the same permeability µ0 as the vacuum, so
that µ can be considered constant and scalar. On the contrary, the permittivity
ϵ varies significantly between the different head compartments, and is therefore a
function of the position r.

Charge and current densities are related by the continuity equation as

∇ · J = −∂ρ
∂t
. (2.7)

From the neurophysiological considerations discussed in Section 2.1.2, the measured
EEG signals mainly stem from space and time coherent active neuron populations,
whose aggregation can be represented macroscopically as a current dipole oriented
perpendicular to the cortex surface. This leads to a primary current density Jp,
expressed as

Jp(r) = δ(r − r0) q , (2.8)
where r0 and q are the dipole position and moment, respectively. Then, the total
current density J satisfies Ohm’s law

J = σE + ∂P

∂t
+ Jp , (2.9)

where σ is the conductivity of the medium and P = (ϵ − ϵ0)E is the polarization
density. Since measurable brain signals are low-frequency (the frequency spectrum
decreases sharply in frequency according to a 1/f or 1/f 2 power law [99]), for
all practical purposes we can apply the quasi-static approximation of Maxwell’s
equations in which inductive and capacitive effects are considered negligible [106].
It then follows from (2.3) and (2.4) that

∇×E = 0 , (2.10)
∇×H = J . (2.11)

Since the curl of the gradient is null, we can define the scalar potential ϕ from the
electric field as

E = −∇ϕ . (2.12)
Replacing this expression in (2.9) then yields

J = −σ∇ϕ+ Jp . (2.13)

Finally, using the fact that the divergence of the curl is also null, inserting (2.13)
in (2.11) and applying the divergence operator gives Poisson’s equation

∇ · (σ∇ϕ) = ∇ · Jp . (2.14)

The above equation relates the electric potential ϕ which can be measured on EEG
electrodes and the primary brain source activity Jp.
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Figure 2.2: Standard three-layer nested head topology. The potential on surface
electrodes (blue) results from the electric field generated by the impressed dipolar
current source (red) in the brain compartment.

2.2.2 Boundary Conditions
In the following, the head domain is denoted Ω and is surrounded by the fully

insulating air. To simplify the notation, it is assumed that there are N nested
compartments Ωi with conductivities σi such that

Ω =
N⋃︂

i=1
Ωi . (2.15)

Such domains typically represent the brain, skull and scalp and the geometry is
illustrated in Figure 2.2. The more general case with non-nested compartments
is treated in Chapter 3. In this setting, (2.14) becomes a piecewise-homogeneous
Poisson’s equation

σi∆ϕ(r) = ∇ · Jp(r) , r ∈ Ωi . (2.16)
This equation admits a unique solution when Neumann and/or Dirichlet boundary
conditions are specified. Across any interface Γi = Ωi

⋂︁Ωi+1 between tissues of
different conductivities, the potential and the current density must be continuous,

8



2.2 – Biophysical Model of Brain Signals

i.e.

[ϕ]Γi
= 0 , (2.17a)

[n̂ · σ∇ϕ]Γi
= 0 , (2.17b)

where n̂ is the unit normal vector on Γi (oriented outward from Ωi to Ωi+1),
[f ]Γ = f |−Γ − f |+Γ denotes the jump of f across the surface, and f |+Γ and f |−Γ denote
respectively the exterior and interior limits of a function f on surface Γ,

f(r)|±Γ = lim
ε→0

f(r ± εn̂) , r ∈ Γ . (2.18)

In particular, since the air is insulating, no current flows outside of the head, so
that on the head surface ∂Ω (in contact with the air), we have

n̂ · σ∇ϕ|−ΓN
= 0 . (2.19)

Additionally, we also require that the potential satisfies the Sommerfeld radiation
conditions

lim
∥r∥→∞

∥r∥ |ϕ(r)| <∞ , (2.20a)

lim
∥r∥→∞

∥r∥ ∂ϕ(r)
∂∥r∥

= 0 , (2.20b)

where | · | denotes the absolute value and ∥ ·∥ the Euclidian norm. These conditions
are necessary to enforce the fact that only sources inside the head domain are
considered.

2.2.3 Analytical Formulation
The first formulations used to solve the EEG forward problem were derived

analytically and semi-analytically for spherical geometries. In the very coarse as-
sumption that the shape of the head can be modeled with a single homogeneous
sphere of radius a, a closed-form solution reads [133]

ϕ(r) = 2
σ1
vdip(r) + q

4πσ1a2∥r − r0∥
·
(︄

r + r0 cos γ r − ar0

a+ ∥r − r0∥ − r0 cos γ

)︄
, (2.21)

where vdip is the potential of the dipole located at r0 with moment q in an infinite
domain of unitary conductivity (and will be explicitly defined later), r0 is the norm
of r0, and γ is the angle between r and r0.

While this formula is relatively simple, it does not take into account the high
conductivity contrast between the different head tissues. An improvement then
consists in modeling the head as a nested geometry ofN concentric spheres, each one

9
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Figure 2.3: An approximation of the head with concentric spheres. The volume
inside each sphere has a different homogeneous conductivity.

delimiting two head tissues with different conductivities, as illustrated in Figure 2.3.
In this case, the potential can be expressed as the infinite series [16, 135]

ϕ(r) = q

4πσNr2

∞∑︂
n=1

2n+ 1
n

(︃
r0

r

)︃n−1
fn

(︂
n cosαPn(cos γ) + cos β sinαP 1

n(cos γ)
)︂
,

(2.22)
where Pn and P 1

n are the Legendre and associated Legendre polynomials, respec-
tively, α is the angle between q and r0, and β is the angle between two planes: one
that contains r and r0 and the other defined by q and r0. Finally, fn is given by

fn = n

nm22 + (1 + n)m21
, (2.23)

and the coefficients mij are given by the recursive formula
[︄
m11 m12
m21 m22

]︄
= 1

(2N + 1)N−1

×
N−1∏︂
k=1

⎡⎢⎢⎢⎢⎣
n+ (n+ 1) σk

σk+1
(n+ 1)

(︄
σk

σk+1
− 1

)︄(︃
r

ak

)︃2n+1

n

(︄
σk

σk+1
− 1

)︄(︃
ak

r

)︃2n+1
n+ 1 + n

σk

σk+1

⎤⎥⎥⎥⎥⎦ (2.24)

Note that the above product of matrices is non-commuting and must be applied
from highest to lowest indices (left to right). By truncating the series, the error in
the solution ϕ is controlled and depends on the eccentricity of the dipole source.

10
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Extensions of these formulas also provide a semi-analytical solution for spherical
anisotropy, i.e. each layer k is described by a constant radial conductivity σr

k and a
tangential conductivity σt

k [135].
Although these formulations provide a relatively fast way to compute the elec-

trode potential, their geometrical restrictions lead to unavoidable modeling errors
since in real-case scenarios, no head compartment has a smooth spherical shape.
Nonetheless, they provide a robust reference for validating the accuracy of numer-
ical formulations in canonical test cases.

2.2.4 Integral Equation Formulations
A more flexible framework to solve the EEG forward problem in the case of

non-canonical geometries is provided by numerical methods [18, 64]. In short,
a numerical method divides the geometry under consideration into small mesh
elements and allows one to approximate the physical solution of the continuous
world by solving a discrete system built from integral or differential equations and
applied to the small elements. To handle physical problems with an arbitrary
geometry, for which no closed-form solution is available, one can solve a discrete
system of equations in matrix form

Ax = b , (2.25)

where A is an invertible matrix and the size of the unknown vector x grows as
the mesh element size decreases. There are several families of numerical techniques
employed in literature, the main ones being the Finite Difference Method (FDM),
the Finite Element Method (FEM) and the Boundary Element Method (BEM) [53].
The FDM discretizes a cartesian grid of the head volume and approximates the
partial derivatives of the quantities involved in the Maxwell’s differential equations
with their finite differences between neighbor nodes. The FEM is also based on a full
volume discretization of the head, but with arbitrary volume elements (hexahedral
or tetrahedral) which makes it more suitable than the FDM for respecting the
geometry and curvature of the domain boundaries. Conceptually, the FEM is also
based on differential equations, but represents the unknown potential with a set
of sufficiently smooth basis functions (the finite elements), each defined on a few
volume elements.

By contrast, the BEM [18] is based on an integral equation reformulation of
the Maxwell’s equations, and importantly, by leveraging the Green’s identities,
requires the discretization of only the surface boundaries between the different head
tissues. Examples of surface and volume discretizations are illustrated in Figure 2.4.
Asymptotically, the number of unknowns in a BEM system increases quadratically
when the mesh is refined while it grows cubically for volumetric methods. Therefore,
at a given mesh size, the BEM systems to solve are typically much smaller than the
FEM and FDM systems. Additionally, depending on the formulation, increasing
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Figure 2.4: Surface (left) and volume (right) discretizations of the head geometry.

the mesh refinement may deteriorate the condition number of the system matrix
that is to be inverted, which is defined as the ratio between its largest and smallest
singular values. A high condition number is undesirable as it is linked to a lower
convergence rate for iterative solvers [28]. Furthermore, the BEM does not suffer
from singularity issues related to having the dipolar source excitation lie within a
mesh element as in the case of volume methods. The main drawback of the BEM is
that standard formulations cannot handle anisotropic and inhomogeneous tissues
like the skull bones and the brain white matter [131]. These modeling deficiencies
of the BEM can lead to important errors. Additionally, in the absence of fast
solver acceleration techniques [29], the computational advantage of the BEM is
somewhat offset by the non-local nature of the operators involved, which results
in dense matrix systems compared to the large but sparse FEM or FDM matrices.
Proposing a cure for such drawbacks is the focus of the research presented in this
thesis.

Boundary Integral Operators

The fundamental solution of Poisson’s equation which satisfies the radiation
conditions (2.20a) and (2.20b) is the static Green’s function

G(r, r′) = 1
4π∥r − r′∥

, (2.26)

which verifies
∆G(r, r′) = −δ(r − r′) . (2.27)

We can then define the single-layer and double-layer potentials on any smooth
surface Γ, which map a scalar function f defined on Γ to a scalar function defined

12
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on R3 \ Γ [84, 31],

(Sf)(r) =
∫︂

Γ
G(r, r′)f(r′) dS ′ , (2.28)

(Df)(r) =
∫︂

Γ
∂n′G(r, r′)f(r′) dS ′ , (2.29)

where ∂n′ = n̂′ · ∇′. The single and double-layer potentials can be extended to Γ
although they have different continuity properties [31]:

• The single-layer potential S is only weakly singular when r → r′ and is
continuous across Γ, that is

Sf |+Γ = Sf |−Γ . (2.30)

• The double-layer potential D is discontinuous across Γ and reads

Df |±Γ = ±1
2f(r) +

∫︂
Γ
∂n′G(r, r′)f(r′) dS ′ , (2.31)

where the last term is the Cauchy principal value of the improper integral.

Given an arbitrary smooth vector field n̂(r) in R3 that matches the normal on
the surface when r ∈ Γ, we now consider the normal derivatives of the previous
potentials, giving rise to the adjoint double-layer potentialD∗ and the hypersingular
potential N , respectively:

(D∗f)(r) =
∫︂

Γ
∂nG(r, r′)f(r′) dS ′ , (2.32)

(N f)(r) =
∫︂

Γ
∂n(∂n′G(r, r′))f(r′) dS ′ . (2.33)

Both potentials also have different continuity properties when crossing the surface
[84]:

• The normal derivative of S is discontinuous across Γ and reads

D∗f |±Γ = ∓1
2f(r) +

∫︂
Γ
∂nG(r, r′)f(r′) dS ′ , (2.34)

where the last term is the Cauchy principal value of the improper integral.

• The normal derivative of D exists as an improper integral and remains con-
tinuous across Γ so that

N f |+Γ = N f |−Γ . (2.35)
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In the following developments regarding boundary element formulations, we
consider the single-layer, double-layer, adjoint double-layer and hypersingular op-
erators, which also act on a scalar function f defined on Γ but map to another
function defined on Γ. With a slight abuse of notation, they are also denoted S,
D, D∗ and N , respectively, and are well-defined as improper integrals [84].

The derivatives of G read

∇′G(r, r′) = −∇G(r, r′) = r − r′

4π∥r − r′∥3 , (2.36)

and

n̂ · ∇(n̂′ · ∇′G(r, r′)) = n̂ · n̂′

4π∥r − r′∥5 − 3 n̂ · (r − r′) n̂′ · (r − r′)
4π∥r − r′∥3 . (2.37)

We note in particular that the solution of Poisson’s equation in an infinite
medium with normalized conductivity (σ = 1) is obtained by convolving G and the
divergence of Jp (or more generally, the right-hand side of Poisson’s equation) as

vdip(r) = −G ∗ (∇ · Jp)

= −
∫︂
G(r, r′)∇′ · Jp(r′) dS ′

= q · (r − r0)
4π∥r − r0∥3 . (2.38)

The previously defined potentials appear in specific applications of the Green’s
identities. From the divergence theorem,∫︂

V
∇ · f(r) dV =

∫︂
∂V

f(r) · n̂ dS , (2.39)

where V is a compact volume bounded by the closed surface ∂V . For two smooth
scalar functions u and v, applying (2.39) to u∇v and v∇u and subtracting the two
equations, we obtain the Green’s identity∫︂

V
u∆v − v∆u dV =

∫︂
∂V
u∂nv − v∂nu dS . (2.40)

Setting v = G and u = ϕ, we obtain in each compartment, for r ∈ Ωi\∂Ωi,∫︂
Ωi

ϕ∆G−G∆ϕ dV =
∫︂

∂Ωi

ϕ∂nG−G∂nϕ dS

⇔ − ϕ− 1
σi

∫︂
Ωi

Gσi∆ϕ dV = Dϕ|∂Ωi
− S∂nϕ|−∂Ωi

⇔ ϕ = 1
σi

S∇ · Jp|Ωi
−Dϕ|∂Ωi

+ S∂nϕ|−∂Ωi
. (2.41)
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Finally, making r tend toward ∂Ωi and given the continuity properties of the D
and S operators, we obtain the integral equation

1
2ϕ = 1

σi

vΩi
−Dϕ|∂Ωi

+ S∂nϕ|−∂Ωi
, r ∈ ∂Ωi , (2.42)

where vΩi
is defined as

vΩi
(r) =

⎧⎨⎩vdip(r) if r0 ∈ Ωi

0 otherwise .
(2.43)

The inner limit superscript − has been removed from Dϕ|∂Ωi
in (2.42) since ϕ is

continuous according to (2.17a) and the discontinuity of the double-layer potential is
included in the left-hand side term. The last equations (2.41) and (2.42) are quite
meaningful. Indeed, they show how the unknown potential ϕ can be expressed
in terms of a homogeneous domain solution vΩi

which has a simple closed-form
expression, and two auxiliary surface contributions: the potential and its normal
derivative on the conductivity discontinuity interfaces. Thus, the determination of
the surface quantities is sufficient to obtain the solution of the forward problem
anywhere in the head volume Ω. Therefore, when solving the problem numerically
with the BEM, only the 2D boundaries of the geometry need to be discretized,
thereby reducing the dimensionality of the unknown domain by one compared to
3D volume methods.

Double-Layer Formulation

The first standard BEM formulation is obtained by removing one of the two sur-
face unknowns (∂nϕ) and deriving a surface integral equation which involves only ϕ.
This is done by leveraging the current continuity boundary condition (2.17b). Con-
sider the interface Γi separating the volumes Ωi and Ωi+1, i.e. Γi = ∂Ω−

i = ∂Ω+
i+1.

Applying (2.42) to each compartment and multiplying by the local conductivity
yields for r ∈ Γi,

σi

2 ϕ = vΩi
− σiDϕ|Γi

+ σiS∂nϕ|−Γi

− σiDϕ|∂Ωi\Γi
+ σiS∂nϕ|−∂Ωi\Γi

, (2.44)
σi+1

2 ϕ = vΩi+1 + σi+1Dϕ|Γi
− σi+1S∂nϕ|+Γi

− σi+1Dϕ|∂Ωi+1\Γi
+ σi+1S∂nϕ|−∂Ωi+1\Γi

, (2.45)

and for the other domains, when j /∈ {i, i+ 1},

0 = vΩj
− σjDϕ|∂Ωj

+ σjS∂nϕ|−∂Ωj
. (2.46)
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Summing all equations, the S∂nϕ contributions all disappear according to (2.17b)
since

σiS∂nϕ|−Γi
− σi+1S∂nϕ|+Γi

= S[σ∂nϕ]Γi
= 0 , (2.47)

and we finally obtain the double-layer surface integral equation

σi + σi+1

2 ϕ(r)−
N∑︂

j=1
(σj+1 − σj)Dϕ|Γj

(r) = vdip(r) , r ∈ Γi . (2.48)

Adjoint Double-Layer Formulation

Another BEM formulation can be obtained by retaining the other surface con-
tribution in (2.42). For this purpose, going back to (2.41) and differentiating it
with respect to r along n̂, we get an equation involving the other two operators

∂nϕ = 1
σi

∂nvΩi
−Nϕ|∂Ωi

+D∗∂nϕ|∂Ωi
, r ∈ Ωi . (2.49)

Taking the limit r → ∂Ωi then reads

1
2∂nϕ|−∂Ωi

= 1
σi

∂nvΩi
−Nϕ|∂Ωi

+D∗∂nϕ|−∂Ωi
, r ∈ ∂Ωi . (2.50)

Applying (2.50) to the neighbor compartments on either side of Γi, we get

1
2∂nϕ|−Γi

= 1
σi

∂nvΩi
−Nϕ|Γi

+D∗∂nϕ|−Γi

−Nϕ|∂Ωi\Γi
+D∗∂nϕ|−∂Ωi\Γi

, (2.51)
1
2∂nϕ|+Γi

= 1
σi+1

∂nvΩi+1 +Nϕ|Γi
−D∗∂nϕ|+Γi

−Nϕ|∂Ωi+1\Γi
+D∗∂nϕ|−∂Ωi+1\Γi

, (2.52)

and on the remaining compartments, for j /∈ {i, i+ 1},

0 = 1
σj

∂nvΩj
−Nϕ|∂Ωj

+D∗∂nϕ|−∂Ωj
. (2.53)

This time, summing over all compartments, the continuousNϕ contributions cancel
by approaching from each side and we obtain

1
2(∂nϕ|−Γi

+ ∂nϕ|+Γi
)−

N∑︂
j=1
D∗(∂nϕ|−Γj

− ∂nϕ|+Γj
) =

N∑︂
j=1

1
σj

∂nvΩj
. (2.54)

Introducing the auxiliary surface unknown

ξi = [∂nϕ]Γi
= ∂nϕ|−Γi

− ∂nϕ|+Γi
, (2.55)
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we can express the left side of (2.54) in terms of ξi by enforcing the boundary
condition (2.17b),

σi∂nϕ|−Γi
= σi+1∂nϕ|+Γi

⇔ ∂nϕ|−Γi
+ ∂nϕ|+Γi

= σi+1 + σi

σi+1 − σi

ξi . (2.56)

Inserting (2.56) into (2.54) leads to the adjoint double layer surface integral equation

σi+1 + σi

2 ξi − (σi+1 − σi)
N∑︂

j=1
D∗ξi =

N∑︂
j=1

1
σj

∂nvΩj
. (2.57)

Compared to the double-layer formulation, one more step is needed to get the
potential. We use (2.42) in each compartment and sum over all of them to get ϕ
from ξi as

ϕ =
N∑︂

i=1

1
σi

vΩi
+

N∑︂
i=1
Sξi . (2.58)

Symmetric Formulation

In contrast to the two previous formulations, the symmetric formulation [66]
includes two types of surface contributions. Dividing (2.44) and (2.45) by the local
conductivity and subtracting one from the other, we get

2Dϕ|Γi
− S(∂nϕ|−Γi

+ ∂nϕ|+Γi
)−Dϕ|Γi+1 −Dϕ|Γi−1 + S∂nϕ|−Γi+1

+ S∂nϕ|+Γi−1

= 1
σi

vΩi
− 1
σi+1

vΩi+1 . (2.59)

In the above equation, we used the fact that in the present nested geometry,
∂Ωi = Γi−1

⋃︁Γi (assuming that Γ0 = ΓN+1 = ∅). Importantly, we did not add
contributions from other domains. We can now introduce yet another auxiliary
surface unknown

pi = σi∂nϕ|−Γi
. (2.60)

From (2.17b), pi also satisfies

pi = σi+1∂nϕ|+Γi
, (2.61)

so that (2.59) can be rewritten

2Dϕ|Γi
−
(︄

1
σi+1

+ 1
σi

)︄
Spi −Dϕ|Γi+1 −Dϕ|Γi−1 + 1

σi+1
Spi+1 + 1

σi

Spi−1

= 1
σi

vΩi
− 1
σi+1

vΩi+1 . (2.62)
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Since we have two surface unknowns ϕ|Γi
and pi, a second equation is needed to

make the system solvable. In a dual fashion to the previous derivation, we multiply
(2.51) and (2.52) by the local conductivity and subtract one from the other to get

(σi + σi+1)Nϕ|Γi
− σiD∗∂nϕ|−Γi

− σi+1D∗∂nϕ|+Γi
− σi+1Nϕ|Γi+1 − σiNϕ|Γi−1

+ σi+1D∗∂nϕ|−Γi+1
+ σi−1D∗∂nϕ|−Γi−1

= ∂nvΩi
− ∂nvΩi+1 , (2.63)

or, equivalently in terms of pi,

(σi + σi+1)Nϕ|Γi
− 2D∗pi − σi+1Nϕ|Γi+1 − σiNϕ|Γi−1 +D∗pi+1 +D∗pi−1

= ∂nvΩi
− ∂nvΩi+1 . (2.64)

The combination of (2.62) and (2.64) provides a symmetric system of equations
for the unknowns ϕ|Γi

and pi. While there are more unknowns than the other two
formulations, it must be noted that in the symmetric formulation, they interact
only when they share a common compartment, so that the resulting system is
block diagonal.

2.2.5 Discretization
Discretization is the process through which the BEM (or any other numerical

method) moves from the continuous world to an approximate discrete one, mak-
ing the physical problem solvable with matrix equations of finite dimensions [64,
115]. In the BEM, the boundary surfaces separating the piecewise-homogeneous
domains are tessellated into a set of vertices and triangles. This process is illus-
trated in Figure 2.5 for a spherical geometry at different mesh sizes. For realistic,
patient-specific geometries, this is typically obtained from anatomical images (e.g.
structural MRI) of the subject. Grayscale volumetric data delineate different tissue
compartments, whose boundaries can then be extracted and used in BEM modeling
[40].

A set of mesh-specific basis functions is then defined. For scalar-valued un-
knowns, the classical basis functions are the piecewise constant functions, defined
on the ith triangle ti of the mesh as

ψi(r) =
⎧⎨⎩1 if r ∈ ti

0 otherwise,
(2.65)

and the piecewise linear functions, which are indexed by the vertices of the mesh
instead of the cells, and are equal to 1 on their defining vertex vi and decrease
linearly to 0 on the other vertices of the triangles that contain vi. After choosing a
suitable set of basis functions fi, the unknowns of each formulation, i.e.

• ϕ|Γi
in the double-layer formulation,
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(a) (b)

(c) (d)

Figure 2.5: A sphere of unit radius and its discretization into triangle meshes with
different edge lengths. With increasing mesh refinement, the mesh elements are
more regular and the geometry is more faithfully approximated.

• ξi in the adjoint double-layer formulation, or

• ϕ|Γi
and pi in the symmetric formulation,

are approximated by a linear combination of the basis functions, e.g.

ϕ|Γ(r) ≈
Nf∑︂
k=1

xkfk(r) , (2.66)

where xk ∈ R are the basis function coefficients. By doing this, the unknown is
no longer the continuous function ϕ but a vector x ∈ RNf of finite size, Nf being
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equal to the number of triangles for a piecewise constant expansion or the number
of vertices for a piecewise linear expansion.

A set of as many (Nf ) independent equations is then needed to make the system
square and solvable, i.e. in the form (2.25). The dependency in the variable r is
removed by testing the integral equations with a set of Nf weighting or testing
functions, i.e. by performing a second integration on the support of each testing
function. These functions must be carefully chosen according to the mapping prop-
erties of the discretized operators [115, 101]. Although not necessarily conforming,
a commonly adopted strategy is to choose them to be the same as the source basis
function, which, in the double-layer formulation, leads to the discrete system

⎡⎢⎢⎢⎢⎢⎢⎣
(G−D)11 (G−D)12 . . . (G−D)1Nf

(G−D)21 (G−D)22 . . . (G−D)2Nf

... ... . . . ...
(G−D)Nf 1 (G−D)Nf 2 . . . (G−D)Nf Nf

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
x1

x2
...

xNf

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
b1

b2
...
bNf

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.67)

where, for the ith basis function belonging to the interface that separates the outer
volume denoted i+ and the inner volume i−, the matrices and vectors are defined
as

(G)ij = σi+ + σi−

2 ⟨fi, fj⟩Γ = σi+ + σi−

2

∫︂
Γ
fi(r)fj(r) dS , (2.68)

(D)ij = (σj+ − σj−)⟨fi,Dfj⟩Γ = (σj+ − σj−)
∫︂

Γ
fi(r)

∫︂
Γ
∂n′G(r, r′)fj(r′) dS ′ dS ,

(2.69)

(b)i = ⟨fi, vdip⟩Γ =
∫︂

Γ
fi(r)vdip(r) dS . (2.70)

We note in particular that the Gram operator matrix G is sparse: for each testing
function fi there are only a few source basis functions fj (those in the neighborhood
of fi) which share a non-empty intersecting support. Therefore, while it is of
size Nf × Nf , G contains only O(Nf ) non-zero entries. This is to be contrasted
with the operator matrix D, whose entries are in general not null because of the
non-local kernel G (or rather its normal derivative in this case). One may note
in particular the singularity of the entries for self terms, i.e. when the testing
and source integral supports intersect. Weak or strong singularities are typically
handled with singularity extraction [49, 62] or singularity cancellation [38, 122]
methods, which make the kernel integrable via analytical reformulations and/or
coordinate transforms. After filling the operator matrices, the system can be solved
for example by direct inversion as

x = A−1b . (2.71)
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The solution of the EEG forward problem is then given either directly from the
coefficients of x if ϕ is a discretized unknown or in one additional step by (2.58)
for the adjoint double-layer formulation.

The procedure described in this section highlights the trade-off between accu-
racy and computational/memory cost. Refining the mesh leads to a more faithful
geometry, and variations of the solution are better represented with an increased
resolution, but this comes at the cost of having to build, store and solve a bigger
matrix system. Furthermore, conductivity variations are only allowed between dif-
ferent compartments. This condition poses severe limitations in the ability of the
BEM to model inhomogeneous compartments with local conductivity variations
and/or anisotropy. In the next chapter, we present a new formulation that extends
the applicability of the BEM to such scenarios.
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Chapter 3

A Hybrid Solution to the EEG
Forward Problem

Solving the electroencephalography (EEG) forward problem is a fundamental
step in a wide range of applications including biomedical imaging techniques based
on inverse source localization. State-of-the-art electromagnetic solvers resort to
a computationally expensive volumetric discretization of the full head to account
for its complex and heterogeneous electric profile. The more efficient, popular in
biomedical imaging circles, but unfortunately oversimplifying Boundary Element
Method (BEM) relies instead on a piecewise-uniform approximation that severely
curbs its application in high resolution EEG. This contribution lifts the standard
BEM constraints by treating the local anisotropies with adequate fiber and thin
volume integral equations that are tailored to the specific structures of the fi-
brous white matter and the inhomogeneous skull. The proposed hybrid integral
equation formulation thereby avoids the full volumetric discretization of the head
medium and allows for a realistic and efficient BEM-like solution of the anisotropic
EEG forward problem. The accuracy and flexibility of the proposed formulation is
demonstrated through numerical experiments involving both canonical and realistic
Magnetic Resonance Imaging (MRI)-based head models.

3.1 Introduction
EEG is one of the most popular technique for recording human brain signals. Its

high temporal resolution means that the intricate brain activity can be observed on
scalp electrodes at the millisecond scale. Such traces are of high scientific interest
since they offer the unparalleled possibility to infer brain functions in real time.
A central challenge for EEG brain imaging is then to characterize the relationship
between brain sources and the electric potential measured by the surface electrodes
[83]. Such mapping constitutes the forward problem of EEG and it has been an
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important field of research for the past few decades.
The EEG forward problem poses several challenges which complicate the practi-

cal implementation of a solution that is both accurate and computationally efficient.
Indeed, the human head has a complex morphology. It is composed of several bio-
logical tissues through which electric currents propagate non-uniformly due to their
different conductivities. In particular, the high conductivity contrast between the
skull and the surrounding cerebrospinal fluid on one side, and skin on the other
side creates a shielding effect which ultimately degrades the quality of non-invasive
EEG since the strong spatial mixing of brain signals blurs the electrode readings
[88]. Another challenge is that the conductivity values of the different tissues are
not well-defined in literature, and instead vary depending on the subjects and ex-
perimental conditions (temperature, recording frequency, methodology, pathology,
in vivo compared to ex vivo, etc.) [76].

Furthermore, each tissue is not completely homogeneous and their microscopic
structure can result in macroscopic inhomogeneity and/or anisotropy. This means
that the conductivity of a single tissue may not be well approximated by a con-
stant scalar value. This is notably the case for the skull: it is made of several
hard (highly resistive) and soft (less resistive) bone layers which result in different
effective radial and tangential conductivities [130]. Another strongly inhomoge-
neous and anisotropic head tissue is the brain white matter. The brain volume
is principally made of axon bundles with a fiber-like structure, along which the
conductivity is higher than in transversal directions [36]. Overall, the inter- and
intra-tissue conductivity variations make the EEG forward problem inhomogeneous
and anisotropic at its millimeter resolution scale.

In realistic applications, the forward problem is solved using numerical tech-
niques [53] derived from differential or integral formulations of Maxwell’s equations
[21, 82, 70, 54, 66]. State-of-the-art differential methods such as the Finite Element
Method (FEM) can easily incorporate the local variations of tissue conductivity, but
rely on a computationally expensive volumetric discretization of the entire head.
The BEM [86, 20] is a popular alternative which reformulates the forward problem
with surface integrals on the boundaries of the head compartments, meaning that
the linear systems to solve are considerably smaller. The BEM is numerically sta-
ble and can be further augmented using acceleration techniques such as the Fast
Multipole Method (FMM) to reach great computational efficiency [72, 59]. Unfor-
tunately, the standard BEM requires the head medium to be piecewise-uniform, and
is consequently unable to model the anisotropies and inhomogeneities of the skull
and of the white matter. Therefore, this intrinsic assumption drastically reduces
its applicability.

A BEM formulation that accounts for the skull anisotropy was recently pro-
posed in [100] but relies on a volumetric discretization of the whole head. On
the other hand, the white matter fibers can be quantitatively reconstructed from
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tractography algorithms applied on diffusion MRI (dMRI) data [132, 125]. This rep-
resentation is promising in that it describes white matter in a much more effective
and precise way than via a complete volume discretization, which is independent
of the fiber structure. The thin fiber geometry is a common structure in high fre-
quency electromagnetic problems [127] and has been studied in a few contributions
for bioelectromagnetic problems [89, 98, 75, 102]. Tractography has also been used
in transcranial brain stimulation studies [87, 92], although the fiber structure was
neglected in the forward model construction.

In summary, no contribution has been proposed to solve the anisotropic forward
problem without resorting to a full volumetric discretization of the head. In this
chapter, we address this issue by modifying and complementing the standard BEM
2D equations with adequate anisotropy-handling fiber 1D equations for the white
matter and volume 3D equations for the skull. The resulting new hybrid integral
formulation is effectively tailored to the EEG forward problem as every head tissue
is suitably discretized according to its electrical properties. The integration of
tractography algorithms for white matter conductivity profiling is obtained with an
electrically coherent derivation of the fiber parameters, enabling the computation of
a multimodal and MRI consistent solution of the anisotropic EEG forward problem.
The validity of the proposed scheme is confirmed by numerical experiments which
demonstrate its practical relevance. Preliminary results described in this chapter
were presented in [79], [80] and the main work was published in [81].

3.2 Anisotropic EEG Forward Problem

3.2.1 Problem Statement
The multi-layered head medium Ω is the aggregation of several compact and

bounded domains,

Ω =
N⋃︂

i=1
Ωi , (3.1)

which are not necessarily nested. Each one represents a different tissue type with
an approximately homogeneous conductivity σi ∈ R such that

σ(r ∈ Ωi) = σiI , (3.2)

where I is the identity matrix, and · denotes a tensorial quantity. Each compartment
Ωi has a closed surface boundary ∂Ωi which is the union of the (not necessarily
continuous) interfaces between Ωi and the neighbor domains

∂Ωi =
(︄

i−1⋃︂
k=1

Γki

)︄
∪

⎛⎝ N+1⋃︂
k=i+1

Γik

⎞⎠ , (3.3)
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Figure 3.1: Non-nested head topology. Note that compartments Ω2 and Ω3 have
inhomogeneous and anisotropic conductivities, highlighted in green.

where the interfaces Γkl (1 ≤ k < l ≤ N + 1) are arbitrarily oriented from the
smaller to the higher indexed region. The local normal n̂ on Γkl points from Ωk to
Ωl. In particular, if Ωk and Ωl are not neighbors, then Γkl = ∅. The head volume
is surrounded by the non-conducting air domain ΩN+1 such that σN+1 = 0.

Although neglected in standard BEM, we allow inhomogeneity and anisotropy
within any head region. This is explicitly modeled using the conductivity contrast

χi(r) = (σiI− σ(r))σ−1(r) , r ∈ Ωi . (3.4)

With this piecewise definition, we see that the contrast measures how much the
actual local conductivity differs from the background (i.e. the homogeneous domain
it belongs to), and in particular, it is null in uniform regions such as ΩN+1. It is
often assumed in literature that the head has a nested geometry: for instance,
in a typical 3-layer setting, the brain region is inside the skull region which itself
is inside the scalp region. This is not actually true, e.g. the skull contains holes
which connects the inner and outer compartments. However, this simplification
makes the notation easier, but is technically not required for the validity of BEM
formulations, as demonstrated in the following. Such a non-nested geometry is
illustrated in Figure 3.1.

The observable brain activity is very low-frequency (typically below 100 Hz
with EEG), which justifies the use of the quasi-static approximation of Maxwell’s
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equations. In this regime, the electric field is the gradient of an electric potential,

E(r) = −∇ϕ(r) , (3.5)

which obeys the Poisson’s equation

∇ · (σ(r)∇ϕ(r)) = ∇ · Jp(r) , r ∈ Ω , (3.6)

where Jp is a primary current originating from the brain. This equation is comple-
mented by the Neumann and Dirichlet boundary conditions

ϕ(r)|−Γij
= ϕ(r)|+Γij

, (3.7a)
n̂(r) · σ(r)∇ϕ(r)|−Γij

= n̂(r) · σ(r)∇ϕ(r)|+Γij
, (3.7b)

as well as the radiation conditions (2.20a) and (2.20b) introduced in the previous
chapter. The physical interpretation of the boundary conditions is that they enforce
the continuity of the electric potential and its normal derivative in the medium
across the interfaces of conductivity discontinuity.

3.2.2 Anisotropy Characterization of the Head Tissues
The forward problem can be solved with surface integral equations only, but on

the condition that the conductivity tensor σ is well-approximated with a constant
(homogeneity) scalar (isotropy) value for each domain, which was introduced earlier
as the background conductivity σi. In all generality, the conductivity is expressed
as a symmetric positive semi-definite spatial tensor

σ(r) = U(r)

⎡⎢⎣σv1(r) 0 0
0 σv2(r) 0
0 0 σv3(r)

⎤⎥⎦UT (r) , (3.8)

where the unitary matrix U contains the eigenvectors along which the conductiv-
ity corresponds to the associated eigenvalues σvk

. In the isotropic case, all three
eigenvalues are equal and the tensor reduces to a scalar value. Instead, the skull
anisotropy appears as a series (resp. parallel) combination of resistances in the ra-
dial (resp. tangential) direction due to its layered structure. We define in the skull
compartment the thickness fraction of soft bone ts, and given the hard and soft
bone conductivities σhard and σsoft [2], the skull conductivity is modeled as [130,
34]

σv1(r) = 1
ts(r)
σsoft

+ 1− ts(r)
σhard

, (3.9)

σv2(r) = σv3(r) = ts(r)σsoft + (1− ts(r))σhard , (3.10)
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Figure 3.2: Inhomogeneous and anisotropic conductivity in the skull. The presence
of soft bone perturbs the effective conductivity in radial and tangential directions.

which is illustrated in Figure 3.2.
The other main anisotropic tissue is the white matter in the brain volume. Let

us denote iw ∈ [1, N ] the index of the domain that contains the white matter.
The inner brain is principally composed of axon bundles [134, 125]. Their prolate
ellipsoidal geometry results in a dense macroscopic network structure of coherently
oriented fibers that transmit information between different brain regions. This
implies that in the white matter, the displacement of water molecules (measurable
with dMRI [69]) and ions is much stronger along the fibers than across them, as
illustrated in Figure 3.3. As a consequence, and similar to [131], the conductivity
at position r ∈ Ωiw within a fiber with orientation l̂ is described by the rotational
symmetric tensor

σ(r) = σiwI + (σl − σiw) l̂l̂
T
, (3.11)

where the longitudinal conductivity σl is approximately ten times higher than the
background conductivity σiw [85, 73].

3.3 General Anisotropy-Handling Formulation
The standard BEM formulations presented in Section 2.2.4 cannot be applied

directly unless the presence of anisotropy is neglected. Instead, we rewrite (3.6) in

28



3.3 – General Anisotropy-Handling Formulation

Figure 3.3: Inhomogeneous and anisotropic white matter conductivity model. The
conductivity is higher along the axonal direction.

any region Ωi as

∇ · (σ∇ϕ) = ∇ · Jp

⇔ ∇ · ((σ + σiI− σiI)∇ϕ) = ∇ · Jp

⇔ ∇ · (σi∇ϕ) = ∇ · (Jp + (σiI− σ)∇ϕ)
⇔ σi∆ϕ = ∇ · (Jp + χiσ∇ϕ)
⇔ σi∆ϕ = ∇ · (Jp + Jeqi

) , (3.12)

where Jeqi
= χiσ∇ϕ denotes an equivalent return current in the inhomogeneous

domain. This last expression explicitly shows that the general anisotropic Poisson’s
equation can be recast as a piecewise-homogeneous problem, i.e. a problem in which
every region has a constant scalar conductivity σi, with an additional equivalent
current on the source term (right side), as illustrated in Figure 3.4. Therefore, we
can now apply a BEM approach to solve the Poisson problem.

3.3.1 Surface Integral Equation
To reformulate the Poisson problem with integral equations, we recall the static

Green’s function
G(r, r′) = 1

4π∥r − r′∥
. (3.13)

This particular function satisfies

∆G(r, r′) = −δ(r, r′) , (3.14)

and is the fundamental solution to the Poisson problem that vanishes at infinity
(when R = ∥r − r′∥ → ∞). For any r ∈ Ωk, the second Green’s identity applied
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Figure 3.4: Equivalent piecewise homogeneous and isotropic head model with
anisotropy-handling equivalent currents.

to G and ϕ in any closed domain Ωj gives∫︂
Ωj

G∆ϕ− ϕ∆G dV ′ =
∫︂

∂Ωj

G∂n′ϕ− ϕ∂n′G dS ′

⇔ 1
σj

∫︂
Ωj

G∇′ · (Jp + Jeqj
) dV ′ + δj,kϕ =

∫︂
∂Ωj

G∂n′
o
ϕ dS ′ −

∫︂
∂Ωj

∂n′
o
Gϕ dS ′

⇔ δj,kϕ+ 1
σj

Sv(Jp|Ωj
+ Jeqj

) = S∂n′
o
ϕ|−∂Ωj

−Dϕ|∂Ωj
. (3.15)

where the single-layer and double-layer operators S and D have been defined in
(2.28) and (2.29), the normal n̂′

o on r′ ∈ ∂Ωj points outward (out of Ωj) and δj,k

denotes the Kronecker delta, defined as

δj,k =
⎧⎨⎩1 if j = k

0 otherwise .
(3.16)

Given (3.3), the right side can be written more explicitly with n̂′ = n̂(r′) as

S∂n′
o
ϕ|−∂Ωj

= −
j−1∑︂
i=1
S∂n′ϕ|+Γij

+
N+1∑︂

i=j+1
S∂n′ϕ|−Γji

, (3.17)

Dϕ|∂Ωj
= −

j−1∑︂
i=1
Dϕ|Γij

+
N+1∑︂

i=j+1
Dϕ|Γji

. (3.18)
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Furthermore, (3.15) can also be applied in the case j = N + 1 by considering a
dummy spherical surface enclosing ΩN+1 with a radius that tends to infinity. As-
suming that ϕ vanishes at infinity, which is a necessary condition for the uniqueness
of the solution, all terms are equal to zero on this virtual surface and the right side
of the resulting equation involves only the external boundary (i.e. the head surface⋃︁N

k=1 ΓkN+1). When making the inner limit r → Γkl on the boundary ∂Ωk, with
Ωl being a neighbor of Ωk such that k < l, the discontinuity of the double-layer
operator D gives rise to the expression

lim
r→Γkl

Dϕ|Γ±
kl

= ±1
2ϕ(r) +

∫︂
Γkl

∂n′G(r, r′)ϕ(r′) dS ′ . (3.19)

Applying the inner limit to (3.15), we thus obtain

δj,k
ϕ

2 + δj,l
ϕ

2 +Dϕ|∂Ωj
− S∂n′

o
ϕ|−∂Ωj

+ 1
σj

SvJeqj
= − 1

σj

SvJp|Ωj
, (3.20)

where the operator Sv is the analogue of S that maps a vectorial function f in the
volume to a scalar surface function as

(Svf)(r) =
∫︂

Ω
G(r, r′)∇′ · f(r′) dV ′ . (3.21)

The next step is to differentiate (3.20) with respect to r along n̂. We thus get the
operator D∗, which is defined for surface functions as

(D∗f)(r) =
∫︂

Γ
∂nG(r, r′)f(r′) dS ′ . (3.22)

Analogously, we also introduce the volume double-layer operator D∗
v which is the

equivalent of D∗ that maps vectorial functions in the volume to a surface function

(D∗
vf)(r) =

∫︂
Ω
∂nG(r, r′)∇′ · f(r′) dV ′ . (3.23)

Both D∗ and D∗
v have the following discontinuities

lim
r→Γ±

kl

D∗∂n′ϕ|−Γkl
= ±1

2∂nϕ|−Γkl
(r) +

∫︂
Γkl

∂nG(r, r′)∂′
nϕ|−Γkl

(r′) dS ′ , (3.24)

lim
r→Γ±

kl

D∗∂n′ϕ|+Γkl
= ∓1

2∂nϕ|+Γkl
(r) +

∫︂
Γkl

∂nG(r, r′)∂′
nϕ|+Γkl

(r′) dS ′ , (3.25)

and

lim
r→Γ±

kl

D∗
vJeqk

= ±1
2 n̂ · Jeqk

(r) +
∫︂

Ωk

∂nG(r, r′)∇′ · Jeqk
(r′) dV ′ , (3.26)

lim
r→Γ±

kl

D∗
vJeql

= ∓1
2 n̂ · Jeql

(r) +
∫︂

Ωl

∂nG(r, r′)∇′ · Jeql
(r′) dV ′ . (3.27)
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We therefore get for r ∈ Γkl,

δj,k

∂nϕ|−Γkl

2 + δj,l

∂nϕ|−Γkl

2 +Nϕ|∂Ωj
− δj,k

∂nϕ|−Γkl

2 + δj,l

∂nϕ|+Γkl

2 −D∗∂n′ϕ|−∂Ωj

− δj,k
n̂ · Jeqk

2σk

+ δj,l
n̂ · Jeql

2σl

+ 1
σj

D∗
vJeqj

= − 1
σj

D∗
vJp|Ωj

. (3.28)

For clarity, the terms are ordered such that the D∗ and D∗
v operators are preceded

by the two singular terms stemming from their discontinuity when j = k and j = l.
Let us now introduce the normal jump of the electric field on each interface,

defined for r ∈ Γkl as
ξ(r) = ∇nϕ|−Γ (r)−∇nϕ|+Γ (r) . (3.29)

Summing (3.28) over all regions Ωj, the term Nϕ disappears by continuity of ϕ (c.f.
(3.7a)) and we get a surface integral equation for each interface Γkl (1 ≤ k < l ≤ N)
separating the domains Ωk and Ωl,

∂nϕ|−Γkl
− ξkl

2 + n̂ ·
(︄

Jeql

2σl

− Jeqk

2σk

)︄
−

N+1∑︂
m,n=1

D∗ξmn +
N∑︂

j=1

1
σj

D∗
vJeqj

= −
N∑︂

j=1

1
σj

D∗
vJp|Ωj

. (3.30)

Approaching Γkl from the other side, i.e. for r ∈ Ωl, we derive from (3.15),

δj,lϕ+ 1
σj

Sv(Jp|Ωj
+ Jeqj

) = S∂n′
o
ϕ|−∂Ωj

−Dϕ|∂Ωj
. (3.31)

Using (3.19), (3.24) and (3.26), the outer limit r → Γkl followed by a normal
derivative reads

δj,k

∂nϕ|+Γkl

2 + δj,l

∂nϕ|+Γkl

2 +Nϕ|∂Ωj
+ δj,k

∂nϕ|−Γkl

2 − δj,l

∂nϕ|+Γkl

2 −D∗∂n′ϕ|−∂Ωj

+ δj,k
n̂ · Jeqk

2σk

− δj,l
n̂ · Jeql

2σl

+ 1
σj

D∗
vJeqj

= − 1
σj

D∗
vJp|Ωj

. (3.32)

Finally, summing (3.32) over all regions Ωj gives us another equation on Γkl,

∂nϕ|+Γkl
+ ξkl

2 − n̂ ·
(︄

Jeql

2σl

− Jeqk

2σk

)︄
−

N+1∑︂
m,n=1

D∗ξmn +
N∑︂

j=1

1
σj

D∗
vJeqj

= −
N∑︂

j=1

1
σj

D∗
vJp|Ωj

. (3.33)
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The boundary conditions (3.7b) enforce

n̂ · σ∇ϕ|−Γkl
= n̂ · σ∇ϕ|+Γkl

⇔ n̂ · (σ + σkI− σkI)∇ϕ|−Γkl
= n̂ · (σ + σlI− σlI)∇ϕ|+Γkl

⇔ σk∂nϕ|−Γkl
− n̂ · Jeqk

= σl∂nϕ|+Γkl
− n̂ · Jeql

⇔ σl∂nϕ|+Γkl
− σk∂nϕ|−Γkl

= n̂ · (Jeql
− Jeqk

) . (3.34)

We then multiply (3.33) by σl and (3.30) by σk and subtract the two equations to
obtain

σl∂nϕ|+Γkl
− σk∂nϕ|−Γkl

+ σl + σk

2 ξkl − (σl + σk) n̂ ·
(︄

Jeql

2σl

− Jeqk

2σk

)︄

− (σl − σk)
N+1∑︂

m,n=1
D∗ξmn + (σl − σk)

N∑︂
j=1

1
σj

D∗
vJeqj

= −(σl − σk)
N∑︂

j=1

1
σj

D∗
vJp|Ωj

.

(3.35)

Finally, inserting (3.34) into (3.35) and dividing by (σl − σk) reads

σl + σk

2 (σl − σk) ξkl + n̂ ·
(︄

Jeql

2σl

+ Jeqk

2σk

)︄
−

N+1∑︂
m,n=1

D∗ξmn +
N∑︂

j=1

1
σj

D∗
vJeqj

= −
N∑︂

j=1

1
σj

D∗
vJp|Ωj

. (3.36)

Note that no assumption about the nesting of the different regions was made to
derive this equation. It is easily verified that in the piecewise homogeneous and
isotropic case, the contrast χ, and therefore Jeq vanish, so that (3.36) reduces to
the standard adjoint double-layer BEM formulation presented in Section 2.2.4.

3.3.2 Volume Integral Equation
In the more general inhomogeneous and anisotropic case, the presence of an

additional unknown Jeq on top of the standard surface unknown ξ means that we
need another equation to make the system square and solvable. To this end, we
start from equation (3.15) in any volume with anisotropy and inhomogeneity. For
r ∈ Ωi, χi /= 0, summing over all regions Ωj, we obtain

ϕ+
N∑︂

j=1

1
σj

Sv(Jp|Ωj
+ Jeqj

) =
N∑︂

j=1

(︂
S∂n′ϕ|−∂Ωj

−Dϕ|∂Ωj

)︂

⇔ ϕ−
∑︂
k,l

Sξkl +
N∑︂

j=1

1
σj

SvJeqj
= −

N∑︂
j=1

1
σj

SvJp|Ωj
. (3.37)
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Indeed, the Dϕ|∂Ωj
contributions (c.f. (3.17)) cancel by continuity of ϕ, according

to (3.7a). Taking the gradient of this last equation results in the volume integral
equation

(σiI− σ)−1Jeqi
−
∑︂
k,l

∇Sξkl +
N∑︂

j=1

1
σj

∇SvJeqj
= −

N∑︂
j=1

1
σj

∇SvJp|Ωj
. (3.38)

Note the slight abuse of notation in the special case when σiI− σ is not full rank,
and thus not invertible. Equation (3.38) is an n-dimensional equation, where n ∈
{1,2,3} is the number of orthogonal directions along which the contrast is not null.
If there is no contrast in a given direction, then there is no equivalent current in
that direction and therefore no need for a volume equation.

3.3.3 Wire Integral Equation
With the two previously derived equations (3.36) and (3.38), we already have

an integral equation formulation that can solve the anisotropic forward problem
with non-uniform conductivity in any part of the head. If we consider the two
dominant anisotropic regions mentioned before, this means that we would get a
volume integral equation in both brain and skull compartments. The skull is quite
thin, so that a volume discretization would not significantly increase the number of
unknowns with respect to a pure surface discretization of its boundary. However,
the same cannot be said of the white matter, which takes up the majority of the total
head volume. This appears quite burdensome because the formulation becomes
dominantly volumetric and we would therefore lose the main advantage of the
BEM.

Another disadvantage of a volume representation of the white matter anisotropy
is the derivation of the conductivity tensor itself. Since the direct, in vivo measure
of human white matter conductivity is unfeasible, the most common practice in
literature consists in measuring instead the anisotropic diffusion of water particles
from dMRI data [12, 131, 103]. The data is then locally fit for each white matter
voxel (also called Diffusion Tensor Imaging (DTI) fitting) and further interpolated
for each volume element of the mesh. Finally, the electrical conductivity is related
to the water diffusivity via a linear relationship [118], i.e. for any r in a volume
element with the water diffusivity tensor

d(r) = U(r)

⎡⎢⎣d1(r) 0 0
0 d2(r) 0
0 0 d3(r)

⎤⎥⎦UT (r) , (3.39)
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3.3 – General Anisotropy-Handling Formulation

the conductivity tensor shares the same eigenvectors (because the anisotropy orig-
inates from the same fiber structure) and there is a constant k ∈ R+ such that

σ(r) = U(r)

⎡⎢⎣kd1(r) 0 0
0 kd2(r) 0
0 0 kd3(r)

⎤⎥⎦UT (r) . (3.40)

The DTI model approximation has a relatively coarse resolution and is chal-
lenged when resolving crossing fiber regions [91, 41]. Indeed, a tensor fit is inher-
ently only able to model a single principal axon direction (the eigenvector associated
to the highest eigenvalue). Therefore several fibers of different and not necessarily
orthogonal orientations crossing through a millimeter-scale voxel cannot be ac-
curately represented with DTI. Secondly, the conversion from water diffusion to
electrical conductivity is a further model approximation which requires other pri-
ors and remains challenging to validate in the absence of ground truth. For these
reasons, a consensus on this conversion has yet to be established [108, 60].

We circumvent all these problems with a completely different approach, based
on a wire representation of the white matter anisotropy. Recent advances in trac-
tography have led to the quantitative streamline reconstruction of the human con-
nectome, in other words, they provide a mapping of the white matter fibers [125].
This alternative and arguably more direct representation is leveraged in the follow-
ing to build a tailored model of the brain anisotropy. The anisotropic white matter
domain is the wire bundle obtained by tractography and denoted as

Λ =
Nw⋃︂
n=1

Λn , (3.41)

where Λn is an individual wire. The white matter anisotropy described in (3.11)
shows that by choosing a background white matter conductivity σiw equal to the
transversal conductivity of the white matter fibers, the conductivity contrast exists
only along the fiber direction, i.e.

χ(r ∈ Ωiw) =
(︃
σiw

σl

− 1
)︃

l̂l̂
T
. (3.42)

Therefore, in the fiber region, the volume unknown

Jeqiw
=
(︃
σiw

σl

− 1
)︃
∂ϕ

∂l
l̂ = Jeqiw

(l) l̂ (3.43)

is a scalar function along the fiber direction. Hence, by taking the derivative of
(3.37) along l̂, we obtain the 1-dimensional wire integral equation

1
σiw − σl

Jeqiw
−
∑︂
k,l

∇lSξkl +
N+1∑︂
j=0

1
σj

∇lSvJeqj
= −

N+1∑︂
j=0

1
σj

∇lSvJp|Ωj
. (3.44)
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Note that each wire is approximated as the concatenation of several thin cylin-
ders. Denoting as Nc the total number of cylinders, the Sv operator in the white
matter can be written as

(SvJeqiw
)(r) =

∫︂
Λ
G(r, r′)∇′ · Jeqiw

(r′) dV ′

=
Nc∑︂
c=1

∫︂ Lc

l′=0

∫︂ 2π

θ′=0

∫︂ ac

ρ′=0
G(r, r′)∇′ · Jeqiw

(r′)ρ′dρ′dθ′dl′

=
Nc∑︂
c=1

∫︂ Lc

l′=0
Gw(r, r′)Jeqiw

(l′) dl′ , (3.45)

where Lc and ac are respectively the length and radius of the cth cylinder and

Gw(r, r′) =
∫︂ 2π

θ′=0

∫︂ a

ρ′=0
G(r, r′)ρ′dρ′dθ′ (3.46)

is the resulting wire kernel. It is also assumed that the wires are not intersecting
with volumes or surfaces, i.e. they all lie inside the closed brain domain Ωiw which
contains only wire anisotropy. This assumption appears reasonable considering the
head geometry, and implies in particular that there is no singularity or junction
between the wires and the other types of unknowns (surface or volume).

3.4 Discretization of the Integral Equations

3.4.1 Choice of Basis Functions
Given the wire (3.44), surface (3.36) and volume (3.38) integral equations, each

type of unknown is expanded with a set of basis functions that approximate their
value on small mesh elements and the integral equations are tested with the same
set of functions to obtain a square system of discrete equations. The geometry is
discretized as follows: surfaces are tesselated into triangular elements, volumes into
tetrahedra and wires into segments.

2D Surface Basis Functions

The 2D surface unknowns ξ are discretized with pyramid basis functions follow-
ing

ξ(r) =
Ns∑︂
i=1

αisi(r) , (3.47)

where Ns is the number of vertices in the surface mesh and the functions are defined
as

si(r) =

⎧⎪⎪⎨⎪⎪⎩
∥(r − rk)× (rj − rk)∥
∥(ri − rk)× (rj − rk)∥ r ∈ tijk

0 otherwise .
(3.48)
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Figure 3.5: Pyramid basis function.

The support of the ith pyramid function consists of each triangle tijk that includes
the ith vertex. The shape of a pyramid function is illustrated in Figure 3.5.

3D Volume Basis Functions

The volume current unknowns are expanded with Schaubert-Wilton-Glisson
(SWG) basis functions [107]. The volume equivalent currents become

Jeq(r) = χσ∇ϕ(r) =
Nv∑︂
i=1

χβivi(r) , (3.49)

where Nv is the number of faces in the volume mesh. An SWG function vi is
indexed by the ith face separating any pair of tetrahedra denoted T+

i and T−
i , and

is defined as

vi(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ai

3V +
i

(r − r+
i ) r ∈ T+

i

− ai

3V −
i

(r − r−
i ) r ∈ T−

i

0 otherwise ,

(3.50)

where ai is the face area, and V ±
i and r±

i are the volume and free vertex of T±
i . An

example of SWG function is illustrated in Figure 3.6.
The SWG basis functions have two desirable properties: they are divergence

conforming, i.e. they are smooth enough to apply the Sv and D∗
v operators, and

they automatically enforce the continuity of the current σ∇ϕ across any pair of
tetrahedra. They are therefore perfectly suitable for modeling local inhomogeneities
within small volume elements (the tetrahedra). One may notice that half SWG
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Figure 3.6: Schaubert-Wilton-Glisson basis function.

functions on the boundary of the tetrahedral mesh are an exception to this because
they are defined on only one tetrahedron. However, the boundary triangles actually
make up boundary surfaces Γkl on which the boundary conditions are explicitly
handled by the surface equations (3.36).

1D Wire Basis Functions

Finally, equivalent currents along the wires are discretized with piecewise linear
hat basis functions

Jeqiw
(r) =

Nw∑︂
i=1

χγiwi(l)l̂(r) , (3.51)

where Nw is the number of wire vertices. A hat function wi oriented along the
wire direction l̂ is indexed by the ith wire vertex and defined over segment pairs
s−

i = [ri−1; ri] and s+
i = [ri; ri+1], as

wi(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r − ri−1

∥ri − ri−1∥
r ∈ s−

i

ri+1 − r

∥ri+1 − ri∥
r ∈ s+

i

0 otherwise .

(3.52)

A hat function is illustrated in Figure 3.7. Similarly to the SWG functions, the
hat functions are divergence conforming and enforce the continuity of the current
across pairs of fiber segments. After discretization, the unknowns of the EEG
forward problem are now the coefficients αi, βi and γi.

3.4.2 Solution of the Forward Problem
Given the discretization of the solution, we define the following discrete opera-

tor matrices, obtained by applying the continuous operators in the hybrid integral
equations to the source basis functions and testing each equation with the corre-
sponding testing basis functions. Denoting as si a pyramid function belonging to
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Figure 3.7: Hat basis function.

the interface Γkl separating the compartments Ωk and Ωl, ui an SWG or hat basis
function in the domain Ωi, and

⟨a, b⟩κ =
∫︂

κ
a(r)b(r) dκ , (3.53)

⟨a, b⟩κ =
∫︂

κ
a(r) · b(r) dκ , (3.54)

we have the block operator matrices

(Gss)ij = σk + σl

2 ⟨si, sj⟩Γkl
, (3.55)

(D∗
ss)ij = (σl − σk)⟨si,D∗sj⟩Γkl

, (3.56)

(D∗
su)ij = σl − σk

σj

⟨si,D∗
vχuj⟩Γkl

, (3.57)

(Gsu)ij = σk + σl

2σj

⟨si, n̂ · χuj⟩Γkl
, (3.58)

(Sus)ij = ⟨ui,∇Ssj⟩Ωi
, (3.59)

(Guu)ij = σ
−1⟨ui,uj⟩Ωi

, (3.60)

(Suu)ij = 1
σj

⟨ui,∇Svχuj⟩Ωi
, (3.61)

and the right-hand side vectors

(bs)i = −(σk − σl)⟨si,
∑︂

j

1
σj

D∗
vJp|Ωj

⟩Γkl
, (3.62)

(bu)i = −⟨ui,
∑︂

j

1
σj

∇SvJp|Ωj
⟩Ωi

. (3.63)

Combining all discrete equations together, we finally obtain the hybrid system of
the form Ax = b as⎡⎢⎢⎣

Gss −D∗
ss Gsv −D∗

sv −D∗
sw

−Svs Gvv + Svv Svw

−Sws Swv Gww + Sww

⎤⎥⎥⎦
⎡⎢⎢⎣
α

β

γ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
bs

bv

bw

⎤⎥⎥⎦ . (3.64)
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This system is ill-conditioned in the top left block Ass = Gss −D∗
ss, corresponding

to the surface-surface operator matrix. Indeed, it has a well-known singularity
stemming from the fact that the potential is defined up to a constant. It is removed
by deflation [26], i.e. replacing Ass by Ãss with

Ãss = Ass + λ1 , (3.65)

where λ is a small positive constant and 1 is the matrix containing only ones. After
solving the system matrix for the NDoF = Ns + Nv + Nw unknowns α, β and γ,
the solution of the EEG forward problem is obtained by inserting (3.47), (3.49) and
(3.51) in (3.37) as

ϕ(r) =
Ns∑︂

k=1
αkSsk(r)−

N∑︂
i=1

1
σi

(︄
Nv∑︂
k=1

βkS∗
vχivk(r) +

Nw∑︂
k=1

γkS∗
vχiwk(r) + S∗

v Jp|Ωi
(r)

)︄
.

(3.66)

3.4.3 Implementation Details
The hybrid system matrix A in (3.64) is made of a number of block operators.

Each entry in these blocks corresponds to the interaction between a testing and a
source basis function. When their respective supports are spatially far from each
other, the corresponding interaction (a far field interaction) is easily and accurately
computed via a numerical quadrature scheme. Instead, in the near field, the kernels
G(r, r′) and n̂ · ∇G(r, r′) of the single- and double-layer operators are not smooth
and even exhibit a singularity in the special case of self interactions (or more gen-
erally, when the testing and source domains intersect). In this case, it is necessary
to compute the source integral analytically. We detail here the computation of self
and near interactions of each block appearing in the system matrix.

Surface Source Integrals

The integral of a source pyramid basis function in the double-layer operator ma-
trix D∗

ss is the sum of the integrals of its restriction to each triangle t′ of its support.
On each such triangle, the pyramid is a linear function N that is equal to 1 on one
of the triangle vertices and decreases to zero on the other two vertices. Following
the singularity extraction technique described in [49], we compute analytically the
integral

I1|t′ =
∫︂

r′∈t′
N(r′)∇ 1

R
dS ′

=
∫︂

r′∈t′
N(r′) r′ − r

R3 dS ′ , (3.67)
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where R = ∥r−r′∥. The entries of D∗
ss are then obtained by taking the dot product

of I1|t′ with the triangle normal and applying a Gaussian quadrature for the testing
integral. For intersecting source and testing domains, the interaction is directly set
to zero since r and r′ both belong to t′ so that n̂ · (r − r′) = 0. As explained in
Section 3.3, the singularity of the adjoint double-layer operator gives rise to the
surface Gram operator Gss.

Next, we use the divergence theorem to transfer the source gradient in the
volume-surface operator Svs to the testing side as

(Svs)ij = ⟨vi,∇Ssj⟩Ωi

= ⟨n̂o · vi,Ssj⟩∂Ωi
− ⟨∇ · vi,Ssj⟩Ωi

, (3.68)

where n̂o is the outward normal on the boundary of the SWG support. Since
the SWG functions are tangential on the boundary of the pair of tetrahedra, we
have n̂o · vi = 0 and the first term of (3.68) disappears for full SWG functions.
Instead, for half SWG functions, i.e. SWG functions that are defined on only one
tetrahedron, the defining face ti is part of the boundary, so that n̂o · vi = ±1 for
r ∈ ti, where the sign depends on whether the unique tetrahedron of the half SWG
corresponds to T+

i or T−
i . For both terms of (3.68), we see that the source integral

corresponds to a single-layer operator on a triangle, which can be computed via the
singularity extraction of the integral (also presented in [49])

I2|t′ =
∫︂

r′∈t′
N(r′) 1

R
dS ′ . (3.69)

The same reasoning can be applied for the Sws operator matrix, in which half hat
basis functions appear on the wire extremities and give rise to an additional testing
integral on a disk.

Volume Source Integrals

We leverage again the fact that the divergence operator can be used on the
SWG functions to apply the divergence theorem for the Svv operator matrix

σj(Svv)ij = ⟨vi,∇Svχvj⟩Ωi

= ⟨n̂o · vi,Svχvj⟩∂Ωi
− ⟨∇ · vi,Svχvj⟩Ωi

, (3.70)
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where the first term disapppears for full SWG functions. The source integrals are
decomposed into

Svχvj(r) =
∫︂

r′∈Ωj

G(r, r′)∇′ · (χvj(r′)) dV ′

= aj

3

(︄∫︂
T +

j

G(r, r′)∇′ ·
(︄
χ

r′ − r+
j

V +
j

)︄
dV ′

−
∫︂

T −
j

G(r, r′)∇′ ·
(︄
χ

r′ − r−
j

V −
j

)︄
dV ′

)︄

= aj

12πV +
j

I3|T +
j
− aj

12πV −
j

I3|T −
j
. (3.71)

Therefore, the source integral boils down to the computation of

I3|T ′ =
∫︂

r′∈T ′

1
R
∇′ · (χ(r′ − rv)) dV ′

=
∫︂

r′∈T ′

tr(χ)
3R dV ′ −

∫︂
r′∈∂T ′

1
R

n̂o · χ(r′ − rv) dS ′

= tr(χ)
3 I4|T ′ −

4∑︂
k=1

(︂
χn̂k · I5|∂T ′

k
+ (n̂k · χrv)I6|∂T ′

k

)︂
, (3.72)

where tr(·) is the trace operator and we used the fact that χ is symmetric. Thus
we need to compute the three integrals:

• I4|T ′ , the single-layer operator for a constant (pulse) source function integrated
over a tetrahedron;

• I5|∂T ′
k
, the single-layer operator for a linear source function in r′ integrated

over a triangular face ∂T ′
k;

• I6|∂T ′
k
, the single-layer operator for a constant (pulse) source function inte-

grated over the same triangle.

All three integrals are derived analytically from e.g. [49] and [128], by transforming
tetrahedron integrals into triangle integrals, and triangle integrals into edge inte-
grals via successive applications of the Gauss divergence theorem. The operator
matrix Swv has the same source integrals as Svv and is therefore obtained in the
same manner.

Lastly, the operator matrix D∗
sv contains the most intricate source integral since

the normal derivative cannot be transferred to the testing side. For a full SWG
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function, this corresponds to

D∗
vχvj(r) =

∫︂
r′∈Ωj

n̂ · ∇G(r, r′)∇′ · (χvj(r′)) dV ′

= aj

3

(︄∫︂
T +

j

∂nG(r, r′)∇′ ·
(︄
χ

r′ − r+
j

V +
j

)︄
dV ′

−
∫︂

T −
j

∂nG(r, r′)∇′ ·
(︄
χ

r′ − r−
j

V −
j

)︄
dV ′

)︄

= aj

12πV +
j

I7|T +
j
− aj

12πV −
j

I7|T −
j
. (3.73)

We thus need to compute the integral

I7|T ′ =
∫︂

r′∈T ′
∂n

(︃ 1
R

)︃
∇′ · (χ(r′ − rv)) dV ′

=
∫︂

r′∈T ′
∂n

(︃ 1
R

)︃
tr(χ)

3 dV ′ −
∫︂

r′∈∂T ′
∂n

(︃ 1
R

)︃
n̂o · χ (r′ − rv) dS ′

= tr(χ)
12π I8|T ′ −

4∑︂
k=1

1
4π

(︂
χn̂k · I9|∂T ′

k
+ (n̂k · χrv) n̂ · I10|∂T ′

k

)︂
. (3.74)

Applying the divergence theorem for the first integral, we get

I8|T ′ = −n̂ ·
4∑︂

k=1
n̂k

∫︂
r′∈∂T ′

k

1
R

dS ′

= −
4∑︂

k=1
(n̂ · n̂k)I6|∂T ′

k
. (3.75)

By expressing r′ in the local coordinates of the integration triangle, the second
integral can be decomposed into

I9|∂T ′
k

=
∫︂

r′∈∂T ′
k

n̂ · ∇
(︃ 1
R

)︃
r′dS ′

=
∫︂

∂T ′
k

n̂ · ∇
(︃ 1
R

)︃
(p0 + uû + vv̂) dS ′

= (n̂ · I10|∂T ′
k
) p0 + (n̂ · I11|∂T ′

k
) û + (n̂ · I12|∂T ′

k
) v̂ , (3.76)

where the triangle notations are illustrated in Figure 3.8, and the integrals I10|t′ ,
I11|t′ and I12|t′ on triangle t′ can be computed analytically following [62].

Finally, in the special case where the observation point lies in the source triangle,
which happens for all half source SWG functions which are tested by a pyramid
function on the intersecting boundary, we have ∂nG = 0, so the corresponding
surface integral in I7|T ′ is set to zero and its singularity gives rise to the operator
matrix Gsv.
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Figure 3.8: Example source triangle. A local coordinate system (û, v̂, n̂) centered
on the first triangle vertex p0 is defined and ρ is the projection of the observation
point r in the triangle plane.

Wire Source Integrals

The strategy employed for wire source integrals in the near field is similar to
that adopted in [127], and consists in rewriting the 3D cylinder (volume) integral
into a 1D segment integral by deriving a semi-analytical expression of the wire
kernel (3.46) and leveraging the fact that the source basis function is constant over
the cross section.

A singularity arises for self terms in Sww. Again, transferring the gradient on the
kernel to the testing side via the Gauss divergence theorem, the basis function con-
tributions are constant on the integration domains (derivative of piecewise-linear
functions). The remaining weak singularity is removed by writing the source inte-
gral in polar coordinates. Thus, for an observation point r on the wire segment,
the source term (Svχwj)(r) requires the evaluation of the integral on the cylinder
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c′ with radius a and length l

I13|c′ =
∫︂

c′

1
R

dV ′

=
∫︂ l

z′=0

∫︂ 2π

θ′=0

∫︂ a

ρ′=0

ρ′

∥r − r′∥
dρ′dθ′dz′

= 2π
∫︂ l

z′=0

∫︂ a

ρ′=0

ρ′√︂
ρ′2 + (z − z′)2

dρ′dz′

= 2π
∫︂ l

z′=0

(︃√︂
a2 + (z − z′)2 − |z − z′|

)︃
dz′

= π
(︃

(l − z)
√︂
a2 + (l − z)2 + z

√
a2 + z2

+ a2 log

√︂
a2 + (l − z)2 + l − z
√
a2 + z2 − z

− l2 + 2zl − 2z2

⎞⎠ . (3.77)

Right-Hand Side

As defined previously, the right-hand side vector is obtained by testing the
dipole excitation with each basis function. As usual, for SWG and hat functions,
the gradient of the Sv operator in eq. (3.63) is transferred to the testing function.
For instance, assume that the source is a dipole located at r0 ∈ Ω1 with a moment
q. The primary current density is thus given by (2.8). Considering a testing SWG
function vi defined on two tetrahedra T+

i and T−
i , we have

(bv)i = −⟨vi,
∑︂

j

1
σj

∇SvJp|Ωj
⟩T +

i ∪T −
i

= 1
σ1
⟨∇ · vi,SvJp|Ω1⟩T +

i ∪T −
i

= 1
σ1

∫︂
T +

i ∪T −
i

∇ · (vi(r))
∫︂

Ω1
G(r, r′)∇′ · (q δ(r0 − r′)) dV ′dV

= 1
σ1

∫︂
T +

i ∪T −
i

∇ · (vi(r)) q · ∇G(r, r0) dV

= ai

σ1
q ·
(︄

1
V +

i

∫︂
T +

i

∇G(r, r0) dV + 1
V −

i

∫︂
T −

i

∇G(r, r0) dV
)︄
, (3.78)

which can be evaluated numerically or analytically from (3.74). In contrast, the
normal gradient cannot be applied to the surface basis functions. The right-hand
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side entry tested with a pyramid function si supported in Γkl has the expression

(bs)i = −(σk − σl)⟨si,
∑︂

j

1
σj

D∗
vJp|Ωj

⟩Γkl

= −(σk − σl)
σ1

∑︂
ti

∫︂
ti

si(r) n̂ · ∇
∫︂

Ω1
G(r, r′)∇′ · (q δ(r0 − r′)) dV ′dS

= −(σk − σl)
σ1

∑︂
ti

∫︂
ti

si(r) n̂ · ∇(q · ∇G(r, r0)) dS , (3.79)

which appears harder to evaluate than the previously derived integrals. Neverthe-
less, a closed-form analytical expression in terms of triangle edge integrals can still
be obtained with the strategy described in [5].

3.5 Leadfield Computation
One major application of the EEG forward problem is the construction of a gain

or leadfield matrix L, which relates a distribution ofNd primary dipolar sources with
unitary amplitude to a set of Ne measuring electrodes. Essentially, this corresponds
to discretizing or quantizing the source and measurement spaces. We assume that
the dipole distribution covers the whole brain with a fine enough resolution. Then,
any brain activity can be modeled as the activation of one or several sources and
is measured on the scalp electrodes as the linear combination of the columns of
L corresponding to the activated sources according to the superposition principle.
This leads to the equation⎡⎢⎢⎢⎢⎣

ϕ1
ϕ2
...
ϕNe

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
L11 L12 . . . L1Nd

L21 L22
...

... . . . ...
LNe1 . . . . . . LNeNd

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
j1
j2
...
jNd

⎤⎥⎥⎥⎥⎦ , (3.80)

where ϕi is the measured potential on the ith electrode and ji is the amplitude of
the ith current dipole. From the solution described in the previous section, one way
to obtain L would be to solve Nd forward problems, in which only one dipole per
forward problem is active. This dipole constitutes the only contribution to Jp and
the resulting potential is calculated by applying (3.66) for each electrode position.
This means that we need to solve eq. (3.64) for Nd different right-hand sides b,
which appears quite computationally expensive when the source space is finely
discretized (in typical applications, Nd ≈ 103 to 104). Comparatively, the number
of electrodes is quite small (Ne ≈ 101 to 102), which can be exploited with the
Helmholtz principle of reciprocity to drastically reduce the required computational
effort. In matrix form, we have

L = SA−1B , (3.81)
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where A is the hybrid system matrix, B = [b1 . . . bNd
] is the NDoF × Nd matrix of

right-hand sides (each column bi corresponds to the unitary activation of a single
dipole) and S = [Sms

T Smv
T Smw

T ]T is the Ne ×NDoF discrete single-layer operator
point-tested at each electrode position ri,

(Sms)ij =
∫︂

Γ
G(ri, r

′) sj(r′) dS ′ (3.82)

(Smv)ij = 1
σj

∫︂
Ω
G(ri, r

′)∇′ · (χvj(r′)) dV ′ (3.83)

(Smw)ij = 1
σj

∫︂
Λ
G(ri, r

′)∇′ · (χwj(r′)) dV ′ . (3.84)

For a small system, A can be inverted directly and then multiplied on the left
by S and on the right by B. However, a direct matrix inversion, e.g. via LU
decomposition is a costly O(N3

DoF ) operation. Therefore, when the number of
unknowns is too high, it is preferable to use a Krylov subspace method such as the
Conjugate Gradient Squared method [114] or the Generalized Minimal Residual
method [104]. As opposed to direct inversion, such methods do not invert the full
matrix. Instead, for a given right-hand side vector b, they iteratively look for a
vector x that satisfies Ax = b up to a tolerated residual error. Therefore, with
iterative solvers, the time needed to compute the full leadfield is proportional to
the number of right-hand sides.

In this context, applying the reciprocity principle is straightforward and corre-
sponds to computing the leadfield from (3.81) as

L = (SA−1)B , (3.85)

instead of
L = S(A−1B) , (3.86)

where the parentheses determine the order in which the operations are done. This
means that we can get the leadfield matrix by either solving the system for Ne left-
hand sides or for Nd right-hand sides. Thus, when Nd > Ne, it is more advantageous
to use (3.85).

The physical interpretation is that the electric potential between two electrodes
and resulting from a unitary dipole source (formed by two points infinitely close
to each other) is the same as the potential difference between these two points
resulting from the unitary current injection and extraction at the two electrodes.

3.6 Wire Conductivity Model
Due to the high resistivity of the skull, it is quite difficult to get a precise es-

timate of the white matter conductivity, especially given its inhomogeneous and
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anisotropic structure. Furthermore, while tractography provides us with a set a
streamlines, the radius of each wire remains to be determined. Therefore we de-
scribe here a procedure to obtain a model of white matter conductivity consistent
with dMRI.

The choice of the tractography algorithm and its parameters (step size, stopping
criterion, seeding strategy, etc.) is impactful as different algorithms are known to
produce very different tractograms both in terms of density and shape [74]. This
is because the reconstructed streamlines are an estimation of the white matter
structure based on an indirect observation (the measured water displacement). An
interesting approach for the proposed hybrid formulation consists in clustering the
tractogram streamlines [46], resulting in a more concise representation of the main
conductive paths in the brain. Not only does it help reducing inter-tractography
and parameter variability [47], but it also brings the resolution of the fiber structure
to that of meshes used to discretize the other tissue geometries, thus reducing the
number of fiber unknowns. As tractograms are an indirect representation of axon
bundles, each individual streamline is understood as some cross-sectional area of
white matter [112]. Therefore, given a total streamline length L, the wire radius a
is adjusted to match a known volume of white matter V (approximately 450 cm3

[134]) as

a =
√︄
V

πL
. (3.87)

Note that in the proposed formulation, each wire may have a different radius. In
fact, the estimation of individual wire radiuses can alternatively be part of the
tractography routine as in [111, 33].

Once the radius is fixed, and given a longitudinal and radial white matter con-
ductivity, we solve a homogenization problem to obtain an equivalent or effective
homogeneous (but possibly anisotropic) brain conductivity. We consider only the
inner domain Ω1 containing all the wires, and for a given background conductivity
σ1 and longitudinal wire conductivity σl, we look for an effective conductivity σe

which satisfies
⟨J⟩ = σe⟨E⟩ , (3.88)

where
⟨·⟩ = 1

VΩ1

∫︂
Ω1
· dV (3.89)

denotes the volume average over Ω1. By imposing a boundary condition on the
normal component of the current density σ∇ϕ on the boundary ∂Ω1, i.e.

n̂ · σ∇ϕ = n̂ · J0 , r ∈ ∂Ω1 , (3.90)

where J0 is an imposed current density, the volume average for the component
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along the x-axis of the current density satisfies

⟨J⟩x = 1
VΩ1

∫︂
Ω1

x̂ · J dV

= 1
VΩ1

∫︂
Ω1
∇ · (xJ) dV − 1

VΩ1

∫︂
Ω1
x∇ · J dV , (3.91)

where we used the vector calculus identity for a scalar a and a vector b,

∇ · (ab) = a∇ · b + (∇a) · b . (3.92)

In the absence of an internal primary source, the Poisson’s equation (3.12) reduces
to∇·J = 0 so the second term in (3.91) vanishes. Using Gauss divergence theorem,
it follows that

⟨J⟩x = 1
VΩ1

∫︂
Ω1
∇ · (xJ) dV

= 1
VΩ1

∫︂
∂Ω1

xJ · n̂ dS

= J0

VΩ1

·
∫︂

∂Ω1
xn̂ dS

= J0

VΩ1

·
∫︂

Ω1
∇x dV

= J0 · x̂
= J0x . (3.93)

Applying the same reasoning for the ŷ and ẑ unit vectors, we thus obtain

⟨J⟩ = J0 . (3.94)

Then, we apply the hybrid integral equation formulation presented in Section 3.3
to obtain the scalar potential ϕ on ∂Ω1. The volume average of the electric field is
then given by

⟨E(J0)⟩ = − 1
VΩ1

∫︂
∂Ω1

ϕn̂ dS , (3.95)

where the subscript on the vector E(J0) indicates the dependency on the imposed
current. Thus, solving three forward problems for J0 ∈ {x̂, ŷ, ẑ} gives us the
effective conductivity as

σe =

⎡⎢⎣⟨E
(x)⟩x 0 0
0 ⟨E(y)⟩y 0
0 0 ⟨E(z)⟩z

⎤⎥⎦
−1

. (3.96)
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By definition, as σe satisfies Ohm’s law (3.88) averaged over the volume, it cor-
responds to the electrically equivalent average (homogenized) conductivity of the
inhomogeneous domain Ω1 for the specified boundary condition (3.90). This value
can then be compared with brain conductivity values reported in literature to ensure
that the obtained wire-based conductivity model of the white matter is realistic.

3.7 Numerical Results
A series of numerical experiments are showcased to demonstrate the validity of

the new hybrid formulation. This is achieved by comparing its solution with refer-
ence solutions obtained from other solvers. Although analytical and semi-analytical
solutions exist for spherical models [37, 135], comparison for more complex shapes
such as a realistically shaped skull or the fibers in the white matter can only be
performed against other numerical solutions. In that case, a reference solution is
obtained from a commercial finite element solver (COMSOL Multiphysics) applied
on a highly refined mesh with high order basis functions to minimize the impact of
discretization errors.

3.7.1 Validation on Canonical Models
Piecewise-Homogeneous Spherical Model

Following a well-established practice in literature [83], we first benchmark the
accuracy of the formulation with a standard 3-layer spherical model which approxi-
mates the head with three concentric spheres corresponding, in order, to the brain,
skull and scalp compartments. This geometry is depicted in Figure 3.9a. The layers
have normalized radiuses of 0.87, 0.92, and 1, and piecewise conductivities of 0.33,
0.01 and 0.33 S m−1, respectively. The average mesh element size is 0.1, resulting
in a total of 4220 vertices and 8528 triangles. In this piecewise isotropic case, the
conductivity contrast is null and the proposed formulation is equivalent to the ad-
joint double-layer BEM [66]. Hence, this scenario allows us to verify the accuracy
of the surface integral equations alone.

A current dipole acting as the primary source is placed along the x-axis with
a dipole moment of [1 , 1 , 1] in the cartesian xyz-coordinate system. For compari-
son with standard numerical solvers, a symmetric BEM solution is computed with
OpenMEEG [50], along with a FEM solution obtained with the FieldTrip toolbox
[90]. In all formulations, we have used the same mesh element size, as well as piece-
wise linear basis functions. The accuracy is measured as the relative ℓ2-error of the
scalp electric potential, i.e.

ϵ = ∥xref − x∥
∥xref∥

, (3.97)
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Figure 3.9: (a) 3-layer isotropic head geometry modeled as three concentric spheres
with constant conductivity and (b) relative error of the proposed and standard
methods with respect to an analytical solution.

and is plotted in Figure 3.9b as a function of the eccentricity of the source, since
sources closer to the surfaces are more sensitive to discretization errors. All so-
lutions display good accuracy, with less than 5 % relative error compared to the
analytical solution across all dipole positions. As expected [66], the hybrid (adjoint
double-layer) formulation is the most accurate representation up to 90% eccentric-
ity, over which the distance to the surface of discontinuity gets smaller than the
mesh element size.

Spherical Model with Anisotropic Skull

Next, we add anisotropy in the skull by discretizing the volume between the two
innermost spheres as shown in Figure 3.10a. The conductivity tensor described in
Section 3.2.2 is computed with hard bone conductivity σhard = 6.4 mS m−1 and soft
bone conductivity σsoft = 26.85 mS m−1 [34]. The soft bone thickness ts(r) ∈ [0, 1]
is defined such that it is equal to 1 in an arbitrary position p =

[︂
0.9 0 0

]︂T
within

the skull and decreases linearly to 0 according to the distance to p. This results in a
non spherically symmetric, inhomogeneous and anisotropic conductivity profile for
which no analytical solution is readily available. Therefore, the reference is instead
a FEM solution obtained with the COMSOL Multiphysics software, computed with
quadratic basis functions on a refined mesh. Just like in the first example, FieldTrip
FEM and OpenMEEG (symmetric) BEM solutions with the same mesh resolutions
as in the hybrid solver are presented for comparison. For the BEM solution, an
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Figure 3.10: (a) 3-layer head geometry with inhomogeneous skull conductivity. The
skull anisotropy is accounted for by discretizing the skull volume (in between the
first two spheres) with tetrahedral elements; (b) relative error of the proposed and
standard methods with respect to a high resolution FEM solution.

isotropic conductivity value of 0.01 S m−1 for the skull is used.
The relative errors are displayed in Figure 3.10b. The impact of skull anisotropy

is clear: for very deep sources, which are far away from the skull layer, the isotropic
conductivity value is a reasonable approximation (less than 5 % error for symmetric
BEM), but the error progressively increases for shallower sources since a single
constant scalar value cannot account for the anisotropy and heterogeneity close to
volume elements. The relative errors are also higher for the anisotropy-handling
FEM and proposed solutions when compared to the simpler isotropic case, but they
still remain well below 5 % even for sources close to the skull. The similar level of
accuracy of both formulations highlights the ability of the proposed method to
match the anisotropic modeling with volume elements just as well as a FEM-based
formulation.

Spherical Model with Anisotropic Skull and White Matter

Finally, we further complexify the spherical model by adding a white matter con-
tribution in the form of bundles of fibers oriented along the x- and y-axes within
the innermost sphere, as illustrated in Figure 3.11a. The 30 cylindrical fibers have
a normalized radius of 0.05, a length of 1.4 and a longitudinal conductivity that is
ten times that of the background. Again, a higher resolution FEM solution with
quadratic basis functions (3 110 264 unknowns, h = 0.03) is used as reference. As
explained in Section 3.4.1, no tetrahedral discretization in the inner sphere is needed
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Figure 3.11: (a) 3-layer spherical head geometry with inhomogeneous skull and
white matter. The skull anisotropy is accounted for by discretizing the skull volume
with tetrahedral elements whereas the fibrous white matter anisotropy is modeled
with x- and y-oriented bundles of 15 cylindrical fibers along which the white mat-
ter is 10 times more conductive; (b) relative error of the proposed and standard
methods with respect to a high resolution FEM solution.

for the hybrid solver, and instead, each fiber axis is meshed into 14 segments of
length 0.1. This results in an additional 450 fiber functions to account for the white
matter anisotropy, for a total of 23 358 unknowns. In comparison, the symmetric
BEM solution has 12 648 unknowns and the linear anisotropic FEM solution con-
tains 394 807 unknowns. The relative errors are displayed in Figure 3.11b. Once
more, the comparison with the symmetric BEM highlights how standard surface
modeling, which omits the fiber and volume integral equations results in important
errors (around 20 %). In contrast, the hybrid formulation exhibits less than 5 % rel-
ative error up to very high source eccentricity, performing slightly better than the
completely volumetric FEM solution. This experiment confirms the ability of the
proposed formulation to overcome the model approximations of a standard BEM
approach.

Overall, these tests on canonical structures illustrate the flexibility of the hybrid
solver in dealing with the different kinds of anisotropy in the human head. This
is achieved by exploiting the structured geometry of the inhomogeneous domains,
leading to a much more efficient discretization than full volume-based methods.
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Figure 3.12: Complete mesh geometry with tractography-generated white matter
fibers.

3.7.2 Validation of the White Matter Conductivity Model
The hybrid solver is also applied on a realistic head model derived from the

MRI of a single subject from the Wu-Minn Human Connectome Project database
[121] to highlight its applicability. Surface and volume meshes were obtained after
preprocessing [48], segmentation and tessellation [116] of the structural MRI data.
The different head compartments were assigned commonly used conductivity values
[73]. The soft bone thickness of the skull is defined as an affine function of the local
skull thickness. A probabilistic tractography algorithm [117] was applied on the
subject’s dMRI data to generate a bundle of non-connected streamlines, which
was subsequently clustered [47] to obtain a fiber map of the white matter. The
subject-specific model is illustrated in Figure 3.12.

The fiber radius was adjusted to match a white matter volume of 450 cm3. We
applied the procedure described in Section 3.6 with the anisotropic longitudinal
and transversal conductivities reported in [85] and obtained the homogenized brain
conductivity tensor

σe =

⎡⎢⎣0.1755 0 0
0 0.1915 0
0 0 0.1855

⎤⎥⎦ . (3.98)

These values are fairly close to the isotropic brain conductivity σbrain = 0.18 S m−1

[73], and thus confirm that our fiber conductivity model is consistent with the
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conductivity values reported in literature.

3.7.3 Comparison with a Realistic FEM Model
The comparison of the proposed technique with another numerical method is

difficult as anisotropy is either not considered or modeled differently. As explained
in Section 3.3.3, a state-of-the-art anisotropic FEM solution would consist in dis-
cretizing the full volume of the head and, for each element in the white matter,
assign a conductivity tensor derived with the help of DTI data. The hybrid solver,
however, takes advantage of the fact that the white matter is considered anisotropic
along some fiber pathways tracked by tractography and thus only requires the dis-
cretization of one-dimensional fibers, a structure which is quite different from the
fully tetrahedral FEM mesh.

Considering these constraints, we followed a specific protocol to obtain compara-
ble hybrid and state-of-the-art anisotropic solutions in a realistic setting. The mesh-
ing sequence obtained after preprocessing provides volume (tetrahedral) meshes of
the different head tissues and matching surface (triangular) meshes of their bound-
aries. Each tissue is assigned a commonly used conductivity value [73], as summa-
rized in Table 3.1. The skull anisotropy is modeled following (3.10), with the soft
bone fraction ts defined as an affine function of the local skull thickness. Further-
more, a white matter mask was extracted from the dMRI data. Then, for each
voxel in a 1.25 mm isotropic grid and within the mask, the diffusion tensor was
computed via a least-square fit. The conductivity tensor on each voxel in the white
matter was finally obtained by following a mean conductivity volume constraint
[103]. This protocol ensures that although the hybrid and FEM solvers are based
on different numerical methods, and in particular different ways of modeling the
white matter anisotropy, the discretized models have approximately the same con-
ductivity profiles. The surface potential, skull and white matter currents obtained
with the hybrid method are illustrated in Figure 3.13.

Figure 3.14 displays the difference between the hybrid and the anisotropic FEM
models. The cortical surface is made of 24991 vertices, and for each dipolar source
placed on a vertex and oriented normally to the surface, this difference is computed
as the relative error of the electric potential obtained on a standardized set of 76
electrodes. The electrodes and cortex structure are depicted in Figure 3.15.

Table 3.1: Conductivity values used in the isotropic and anisotropic models.

Brain WM lon. WM tra. Skull Hard bone Soft bone Scalp
σ (S m−1) 0.18 1.13 0.13 0.01 0.0064 0.02685 0.43
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(a) (b)

(c)

Figure 3.13: (a) Scalp surface potential, (b) skull volume currents, and (c) fiber
currents computed with the hybrid formulation. The arrow in (c) represents the
cortical dipole and the black dots in (a) indicate the electrode positions.

The effect of anisotropy modeling is highlighted with two other commonly em-
ployed metrics, the Relative Difference Measure (RDM) and the logarithmic mag-
nitude difference measure (lnMAG) [52], which are displayed on the cortex in Fig-
ure 3.16 and Figure 3.17. The RDM map indicates that the deeper the sources the
more dissimilar the scalp topographies. This is expected, as deep sources are more
likely to be surrounded by fibers than shallow sources, and thus are more affected
by the anisotropy. The lnMAG map shows how isotropic conductivity values are a
compromise that cannot be optimal for all sources. Overall, the potential produced
by shallow sources have too low of an amplitude whereas that of deep sources is too
high. Therefore, by using a different homogenized conductivity, we would decrease
the relative difference for some sources but also increase it for others.
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Figure 3.14: Cortex map of the relative error between the anisotropic FEM and
hybrid solver.

Figure 3.15: Electrodes (blue dots) and example dipoles (red arrows) overlaid on
top of the scalp and cortex meshes, respectively.
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Figure 3.16: Cortex map of the Relative Difference Magnitude between piecewise
isotropic and anisotropic head volume.

The topographic and magnitude changes between the two numerical methods
and the different conductivity models are further illustrated in Figure 3.18 which
displays the scalp potential generated by a deep and a shallow source (red arrows
in Figure 3.15). We can also appreciate how the hybrid and FEM curves have the
same shape for the shallow source and how their difference lies mainly in ampli-
tude, while the deep source produces a more dissimilar scalp map. Both numerical
methods produce almost identical solutions in the piecewise isotropic case, and
remain in relatively good agreement in the other case despite the fact that they
use intrinsically different models of anisotropy. Overall, this numerical experiment
confirms that the proposed multimodal MRI-based hybrid integral method is con-
sistent with a DTI volume-based anisotropic model of white matter despite their
intrinsic modeling differences.

3.8 Conclusion
In this chapter we have presented a new solution to the anisotropic EEG forward

problem that does not require a full volumetric discretization of the head. The
standard boundary integral formulation was coupled with thin volume and wire
integral equations that adequately match the non-uniform conductivities of the
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Figure 3.17: Cortex map of the logarithmic magnitude difference between piecewise
isotropic and anisotropic head volume.

skull and white matter, respectively. The accuracy and flexibility of this BEM-like
and anisotropy-handling formulation was demonstrated on a canonical model. A
realistic scenario illustrated its applicability in a clinical environment, in which the
patient-specific physiological properties were derived from multimodal biomedical
imaging techniques.

Additionally, like the classical BEM, the O(N2) asymptotic complexity in ma-
trix building and storage of the proposed integral equation method can furthermore
be reduced to linear complexity with fast solvers [13, 72]. This, combined with the
tailored discretization strategy, would result in a highly efficient solver. The asymp-
totic acceleration of integral equation methods is studied in the next chapter.
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Figure 3.18: Scalp electrode potential resulting from (a) a deep and (b) a shallow
source obtained from solving the EEG forward problem with the hybrid integral
method (continuous lines) and FEM (dots) and with isotropic (blue) and anisotropic
(red) conductivity assumptions.

60



Chapter 4

A Fast Electromagnetic Solver for
EEG Modeling

The core advantage of Boundary Element Method (BEM) solvers for the forward
problem of Electroencephalography (EEG) lies in the fact that the dimension of
the unknown space is reduced by one compared to solvers based on differential
equations like the Finite Element Method (FEM). Traditionally, the BEM has
been used for small objects or low-resolution geometries, which would result in
a few thousand unknowns N . Thus, matrix filling, storage and inversion could
all be done on a portable machine in a moderate time and computational effort
without the need for acceleration techniques. Technological progress in structural
brain imaging now allows for very precise, high resolution models of the human
head and better discriminability of its different tissues and their boundaries [120].
For instance, the brain compartment, classically modeled as homogeneous, can be
further divided into white matter, gray matter and cerebrospinal fluid domains,
each having a distinct conductivity [124]. The inclusion of more head tissues at a
higher resolution, as well as the modeling of inhomogeneity and anisotropy with
strategies such as those developed in the previous chapter inevitably increase the
number of unknowns. However, without specific treatment, standard BEM solvers
are unable to exploit this increase in modeling accuracy. Indeed, due to the non-
local nature of the involved operators, the discrete BEM systems are full, meaning
that matrix filling and storage grow in O(N2) and a full matrix inversion in O(N3)
complexity.

Fortunately, these complexities can be drastically reduced with the help of fast
solver techniques, such as the Adaptive Cross Approximation (ACA) [13], Multilevel
Fast Multipole Method (MLFMM) [113], Adapted Integral Method (AIM) [17], and
Multilevel Matrix Decomposition Algorithm (MLMDA) [78]. Fundamentally, all
these methods exploit the fact that while the matrix of the system to be solved
is in general full rank, there are submatrices which are compressible, i.e. they can
be replaced by low-rank approximants that require less memory than the original
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entries and allow for a faster matrix-vector multiplication.
Although well-established in the high-frequency electromagnetic community

[29], fast solver techniques are quite uncommon in the field of EEG [67, 59]. There-
fore, in the following, we explain the principle of matrix compressibility which ul-
timately allows for efficient linear or almost linear integral equation-based solvers,
then develop a new acceleration technique for the construction of computational
head models. Finally, numerical experiments demonstrate its performance and
practical advantages in EEG forward modeling.

4.1 Low-Rank Approximation
The concept of matrix compression is related to its rank and determines the

number of operations required to perform a matrix-vector multiplication. The so-
lution of a discrete system Ax = b, where A is a square matrix resulting from the
discretization of N linearly independent equations, can be obtained with a com-
plexity O(NiterNmvp) per right-hand side b, where Nmvp is the computational cost
of a matrix-vector product and Niter is the number of iterations when using Krylov
subspace iterative solvers, such as the Conjugate Gradient Squared method (CGS)
[114] or the Generalized Minimal Residual method (GMRES) [104]. Therefore,
a fast matrix-vector product is of particular interest because the solution of the
problem can subsequently be obtained in low complexity.

4.1.1 Fast Matrix-Vector Multiplication for Rank-Deficient
Matrices

Let us first consider the N ×N matrix of ones

M1 =

⎡⎢⎢⎣
1 . . . 1
... . . . ...
1 . . . 1

⎤⎥⎥⎦ . (4.1)

Naively, the dense product with a vector v costs O(N) operations per row (N
multiplications and N − 1 additions). Given that there are N rows, the complexity
of the matrix-vector product is thenO(N2). However, denoting v1 the size N vector
of ones, we notice that M1 = v1v1

T so that the matrix-vector product b = M1v
can be performed in two steps as

a = v1
T v , (4.2a)

b = v1a . (4.2b)

Each step costs O(N) operations, so the matrix-vector product can be performed
in linear complexity in this case. The interpretation is that despite being of size
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N ×N , no matter the value of N , M1 has a constant rank equal to 1, that is, it can
be described with a single vector v1 and thus the matrix-vector product is reduced
to two products with a row vector (4.2a) and with a column vector (4.2b).

The previous observation can be used to derive the complexity of the matrix-
vector product for an N×N matrix M of rank k. The singular value decomposition
(SVD) of M reads

M = UΣVT , (4.3)
where U = [u1 . . .uN ] and V = [v1 . . .vN ] are orthogonal matrices and Σ is a
diagonal matrix that contains the k non-zero singular values σ1 ≥ σ2 ≥ · · · ≥
σk > 0. The matrix-vector product can then be written as the sum of k rank-1
matrix-vector products

Mv =
k∑︂

l=1
σlul(vT

l v) , (4.4)

which costs O(kN) operations. Therefore, as long as k is small, the matrix-vector
multiplication has a linear complexity.

This result can further be generalized to matrices that are full-rank but for
which the singular values decay fast. Given a tolerance ϵ, if there exists a low-rank
matrix ˜︂M that satisfies

∥M− ˜︂M∥2
∥M∥2

≤ ϵ , (4.5)

where ∥ · ∥2 denotes the matrix spectral norm, then the full-rank matrix-vector
product Mv can be approximated by the low-rank matrix-vector product ˜︂Mv. In
fact, if we compute the SVD of M and choose k such that

σk−1 > ϵσ1 > σk , (4.6)

then the matrix
Mk = UkΣkVT

k , (4.7)
where

Uk = U:,1:k , Vk = V:,1:k , Σk = Σ1:k,1:k , (4.8)
is the best rank-k approximation of M satisfying (4.5) [14]. In that sense, the SVD
of a matrix provides an optimal indicator of its compressibility. Therefore, the
full-rank, but rank-k compressible matrix M which contains N2 elements can be
economically represented as

M ≈ ABT (4.9)
using two N × k matrices A = UkΣk and B = Vk. The total storage requirement
is 2kN elements and the multiplication by a vector is done in O(kN) operations.
Therefore, if k is independent from N , which is the case for Calderón-Zygmund
[35] operators such as those used in this work, these complexities are linear with
respect to N .
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4.1.2 Example Case
To illustrate the previous concept, let us consider the static single-layer operator

matrix S whose entries are

Sij = 1
4π

∫︂
Γ
fi(r)

∫︂
Γ

1
∥r − r′∥

fj(r′) dS ′dS , (4.10)

where Γ is the surface of a sphere, discretized with N = 1110 unknowns, and fk is
the piecewise constant basis function defined on the kth triangle of the discretized
geometry. This operator matrix appears for instance in the symmetric BEM for-
mulation.

Since the static Green’s function G, which constitutes the kernel of S, is asymp-
totically smooth [19], it can be shown that any submatrix of S corresponding to
the interactions between spatially well-separated subsets of basis functions has an
exponentially decaying spectrum [13]. Following the reasoning of the previous sec-
tion, such property implies that it can be approximated by a low-rank matrix for
a fixed approximation threshold, independently of the number of basis functions
inside the well-separated subsets.

To visualize the compressibility of S, we compute its SVD of and plot the
normalized singular values in decreasing order. Figure 4.1 displays the first 300
singular values, and we can observe that the spectrum (blue curve) decays quite
slowly. With a tolerance of ϵ = 10−3 (purple curve), not even a single value can be
truncated since in this example, σN > ϵσ1.

However, if we restrict ourselves to a 300×300 submatrix of S representing well-
separated off-diagonal interactions, the corresponding SVD in Figure 4.1 (yellow
curve) is much more compressible. It could in fact be approximated by a matrix of
rank 10 only. Consequently, using (4.9), this off-diagonal block can be represented
with two rectangular matrices of size 300× 10. This yields a compression rate of

1− 300× 10× 2
300× 300 ≈ 93% . (4.11)

Not all submatrices are as compressible. Notably, the red curve in Figure 4.1 shows
the singular values of the 300× 300 diagonal submatrix corresponding to the same
testing elements. We see that the spectrum decays almost as slowly as the full
operator matrix. Therefore, this example shows that compressibility depends on
the spatial discriminability of the interactions. Indeed, the distance from a given
testing element to a faraway source element is almost the same as that to another
source element near the first source element, as illustrated in Figure 4.2. We see
that df1 ≈ df2, so that the interactions of the testing triangle (in black) with the
far source triangles (in blue) will be similar. This observation does not hold for
near triangles (in orange), but since there are only few (O(1)) near source elements
for each testing element, the set of near interactions for the whole matrix comprises
only O(N) entries.
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Figure 4.1: Singular value decompositions of the static single-layer operator matrix,
a diagonal submatrix and an off-diagonal submatrix.

This encourages us to treat the various groups of interactions differently. Some
of them, the off-diagonal blocks, can be economically approximated by low-rank
matrices, while the rest (the diagonal blocks) needs to be computed accurately.
The latter blocks, which represent self and neighbor interactions, should not be
compressed, but fortunately account for only O(N) interactions. Overall, this
yields a representation that would be much more efficient than the original full
matrix, both in terms of storage and matrix-vector product complexity. Formally,
we want to decompose any operator matrix Z to be compressed into

Z ≈ Znear + ˜︁Zfar , (4.12)

where Znear is an uncompressible diagonal matrix that is sparse (thus contains only
O(N) non-zero elements) and the approximation ˜︁Zfar is a compressed representa-
tion of the remainder, which represents all the far interactions.

Being far is of course relative and depends on the proximity of the source el-
ements. In particular, on a discretized geometry, the distance of neighbor cells
is defined by the cell size, which is constant for a uniform mesh. An efficient
discrimination between near and far interactions can be obtained via an octree
decomposition, that provides a multilevel, or hierarchical, partition of the mesh.

65



A Fast Electromagnetic Solver for EEG Modeling

Figure 4.2: Distances between near and far mesh elements. The black triangle
represents a testing element, interacting with near and far source triangles in orange
and blue, respectively.

4.2 Hierarchical Matrix Decomposition

4.2.1 Octree Partitioning
Each basis function corresponds to an interacting element of the system matrix.

Given the mesh of the geometry under consideration, the basis functions are each
represented by a single point at the barycenter of the cell(s) defining their support.
The set of points is denoted I = {i0, . . . , iN−1}. An octree is a multilevel hierarchical
partition of the set of points. We define the parameter nmax as the maximum
number of points within a leaf box. The first level (l = 0) of the octree B consists
in a cubic box b0

0 that contains all the points. The octree is then recursively defined
as follows: if any box at level l contains more than nmax points, then each non-
empty box bl

i of that level is subdivided into 8 children boxes bl+1
j , . . . , bl+1

j+7 (where
j boxes have already been constructed at level l+ 1) that have half the side length
of the parent box bl

i. This subdivision process is repeated until the deepest boxes
all contain at most nmax points. Boxes without children are called leaf boxes. The
diameter of a box is the distance between two opposite corners, and represents the
maximum distance between any two points within the box. The octree partitioning
is illustrated in Figure 4.3. It is worth mentioning that the union of the boxes at
any level l form a partition of the entire set of basis functions.

An alternative parametrization to nmax consists in setting instead the minimum
box size eL−1, i.e. the edge length of the boxes at the deepest level L − 1. If the
mesh is almost uniform and eL−1 is chosen proportional to the mesh element size
h, the maximum number of elements per box remains bounded. The number of
levels L is then determined by doubling the box size until the entire geometry is
contained in a single box (the root). Once the root is determined, the subdivision
process is applied iteratively for all non-empty boxes until the last level.
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(a)

(b)

(c)

Figure 4.3: Geometrical representation of the octree decomposition of a head model
at (a) level 0, (b) level 1 and (c) level 2.
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Algorithm 1: Construction of the block cluster tree
Input : testing octree BT , source octree BS

Output: block cluster tree TBT ×BS

initialization: close boxes of rBT
← {rBS

};
for level l do

for testing box t do
for source box s close to t do

if 4.13 then
create compressible block βl

t×s;
else if t or s is leaf then

create non compressible block β̄l

t×s;
else

for child box t′ do
for child box s′ do

add s′ to the list of close boxes of t′;
end

end
end

end
end

end

4.2.2 Block Cluster Partitioning
Since an octree B represents a partition of the set of elements, the set of in-

teractions can itself be partitioned with a so-called block cluster tree TB×B whose
elements are pairs of testing and source boxes from B. This is equivalent to parti-
tioning the operator matrix into submatrices. If we consider different sets of basis
functions for the testing and source discretizations, one octree must be defined for
each set. For simplicity, we assume here that B applies to both testing and source
functions. We define the following admissibility criterion: two boxes t, s from B
with centers ct, cs and diameters dt, ds form an admissible block if

η ∥ct − cs∥ > max(dt, ds) , (4.13)

where η > 0 is the admissibility parameter. When η = 1, we see that two boxes are
admissible if they do not touch, i.e. there is at least one box between them. Thus,
the admissibility condition defines a relative discrimination rule between near field
and far field interactions.

A level-consistent block cluster tree TB×B is then constructed recursively start-
ing from the root according to Algorithm 1. Level-consistent means that boxes
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interact only with boxes of the same level. The idea behind the construction of the
block cluster tree is relatively intuitive. If two clusters of testing and source ele-
ments are admissible, they can economically be represented in a compressed block
β. Otherwise, the submatrix associated to the corresponding interactions is a di-
agonal or near-diagonal block, and if at least one of the two clusters is a leaf, it is
represented as a non-compressed block β̄. Finally, if neither condition is satisfied,
the boxes are subdivided and the decision is delayed to the next level.

In particular, a compressible block is created if and only if (a) the boxes are
admissible and (b) their parents are not. Therefore, compressible interactions are
compressed at the lowest possible level (closest to the root), which ensures that the
compression is done between as big clusters as possible. This concept is illustrated
in Figure 4.4. By construction, and since B is a partition of the set of basis
functions, all of the interactions in the operator matrix are partitioned into either
compressible or full blocks. In the next section, we describe an algorithm which
performs the block compression in almost linear complexity.

4.3 Fast Matrix Compression
We saw previously that an m× n matrix block M deemed compressible by the

block cluster tree is optimally approximated by the rank-k product

M ≈ ABT , (4.14)

where the m×k matrix A = UkΣk and n×k matrix B = Vk are computed from the
truncated SVD of M [14]. However, the SVD itself is computationally expensive.
Its complexity is O(m2n), the same as the full matrix inversion (if m = n). It
also requires the computation of all the elements in M, which makes it impractical.
Therefore, instead of the SVD, we use the ACA [14], which is an efficient algorithm
for the compression of low-rank matrices. Other popular fast solver techniques
such as the MLFMM require an expansion of the kernel and therefore necessitate a
complete reimplementation effort. In contrast, the ACA is purely algebraic in the
sense that it does not require a specific treatment depending on the kernel of the
operator matrix. As such, when applicable, it can be conveniently seen as a black-
box algorithm to be applied on top of an existing non-accelerated electromagnetic
solver.

The ACA algorithm, described in Algorithm 2, works intuitively by sequentially
computing a set of rows and columns of the original matrix. If the residual error
(in Frobenius norm) estimated at the end of each iteration is higher than the pre-
scribed ACA tolerance, the algorithm finds new pivots to determine a new row and
column to be added to the previously computed ones. In other words, the rank
of the approximant is gradually incremented at each iteration until convergence.
In the extreme case where the number of iterations reaches the dimension of the
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(a) Level 1 (b) Level 2

(c) Level 3

Figure 4.4: Block admissibility at different levels of a quadtree, the 2D version of an
octree. Blue boxes represent testing boxes, green and red boxes represent admissible
and non-admissible source boxes, respectively. Uncolored boxes indicate that the
corresponding block interactions are already treated at a parent level.

block, i.e. k = min(m,n), the block has been computed entirely. However, the
admissibility criterion (4.13) ensures that blocks deemed compressible are spatially
well-separated, thus guaranteeing the exponential decay of the approximation error
as the rank increases for matrices generated by an asymptotically smooth kernel
[14]. Therefore, for a fixed accuracy ϵ, k remains constant and much lower than m
or n as the mesh resolution increases The rank-k ACA approximation of the block
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Algorithm 2: Adaptive Cross Approximation
Input : tolerance ϵ
Output: low-rank approximant ˜︂M = UV = CR−1

k L−1
k R

initialization: set ik = 1, Isel = {ik}, Jsel = { }, ∥˜︂M∥2 = 0,
C,R,U,V = 0,L−1

k ,R−1
k = [ ];

for k ← 1 to min(m,n) do
vk ←M(ik, :);
R(k, :)← vk;
vk ← vk −U(ik,1 : k − 1)V(1 : k − 1, :);
jk ← maxj /∈Jsel

(|vk|);
Jsel ← Jsel ∪ jk;
if vk(jk) /= 0 then

vk ← vk/vk(jk);
end
V(k, :)← vk;
uk ←M(:, jk);
C(:, k)← uk;
uk ← uk − V(1 : k − 1, jk)U(: ,1 : k − 1);
U(:, k)← uk;
dk ←M(ik, jk)−U(ik,1 : k − 1)V(1 : k − 1, jk);

L−1
k ←

[︄
L−1

k 0
− 1

dk
U(ik,1 : k − 1)L−1

k
1

dk

]︄
;

R−1
k ←

[︄
R−1

k −R−1
k V(1 : k − 1, jk)

0 1

]︄
;

∥˜︂M∥2 ← ∥˜︂M∥2 + ∥uk∥2∥vk∥2 + 2∑︁k−1
l=1 |uT

l uk||vT
l vk|;

if ∥uk∥∥vk∥ < ϵ∥˜︂M∥ then
break;

end
ik ← maxi/∈Isel

(|uk|);
Isel ← Isel ∪ ik;

end

is then

˜︂M = UVT (4.15a)
= CM−1

k R , (4.15b)

where C (resp. R) contains k columns (resp. rows) of M selected by the ACA and

Mk = LkRk (4.16)
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is the k × k matrix of the entries of M at the intersection of C and R. It should
be noted that in practice, the expression (4.15a) is used and the computation of
C, R, L−1

k and R−1
k can be entirely skipped, although the alternative form (4.15b)

directly exhibits the fact that only k rows and columns need to be computed.
In the following, we call the m×k matrix U the column matrix, since it is built

from a linear combination of the k columns selected by the ACA. Similarly the
k× n matrix VT is called the row matrix. Contrary to the SVD, the ACA requires
to compute only a few entries of the original matrix. In fact, assuming that k is
bounded across all compressible blocks of the operator, the total storage require-
ment is of complexity O(N logN). The matrix-vector product is then performed
by going through all the blocks and summing the block-vector products. Therefore,
the complexity of the matrix-vector product is also O(N logN).

4.4 QR-SVD Matrix Recompression
The ACA algorithm provides a compressed representation of a matrix by storing

only a few rows and columns. However, the resulting row matrix VT and column
matrix U are not orthogonal in general. Therefore, they could themselves be or-
thogonalized to be represented even more efficiently. This process is called recom-
pression, i.e. it is an additional compression performed on the compressed matrices.
Observing that U and V have a dimension k independent from the matrix dimen-
sions m× n, it is possible to orthogonalize the matrices without compromising the
asymptotic complexity of the fast solver.

First, a QR decomposition is performed on the column matrix as

U = QURU , (4.17)

where QU is an m × k orthogonal matrix and RU is a square upper triangular
matrix. This operation can be performed in O(k2m) complexity [22]. Similarly,
the row matrix is decomposed in O(k2n) complexity as

V = QVRV . (4.18)

The compressed block thus takes the form˜︂M = UVT = QURURV
T QV

T . (4.19)

Since the middle block RURV
T is of size k × k, we can compute its SVD in O(k3)

complexity, which, importantly, does not depend on the original matrix dimensions.
This yields

RURV
T = USΣSVT

S . (4.20)
Then, similarly as described in Section 4.1.1, only k′ ≤ k rows and columns of the
SVD can be selected, according to

σk′ ≥ ϵ′σ1 > σk′+1 , (4.21)
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where σi are the singular values in the diagonal matrix ΣS and ϵ′ is an arbitrarily
defined recompression threshold. The matrix M is therefore economically repre-
sented as the rank-k′ approximant

˜︂M = U′V′T , (4.22)

where the recompressed m× k′ column matrix U′ and n× k′ row matrix V′T read

U′ = QUUS,k′Σk′ (4.23)
V′ = QVVS,k′ , (4.24)

where US,k′ , Σk′ and VS,k′ are the truncated matrices of the SVD. The recompres-
sion process has an overall computational complexity of O(k2(m + n)) which is
of the same order as the ACA. It can be performed immediately after the ACA
compression of a matrix block, thereby storing the m × n matrix with k′(m + n)
entries only. Since the QR-SVD is performed on the ACA product UVT , this pro-
cess will not improve the error with respect to the actual matrix M in general, but
at least provides an optimal representation of the approximation while maintaining
the computational complexity of the ACA.

4.5 Compression of the Green’s Function

4.5.1 Sparse Transformation Matrix Representation
Until this point, the interactions have always been considered between basis

functions. While this seems logical given that the operator matrix entry Zij corre-
sponds to the interaction between the ith testing basis function and the jth source
basis function, it is also possible to consider more elementary interactions. Notably,
the interaction between basis functions that span several cells (which is the case
for piecewise linear functions and SWG functions) can be computed as the sum of
the interactions between the basis functions restricted to each cell, i.e.

Zij =
∫︂

Γ
fi(r)

∫︂
Γ
K(r, r′)fj(r′) dS ′dS

=
∑︂
ci

∑︂
cj

∫︂
ci

∫︂
cj

fi|ci
(r)K(r, r′)fj|cj

(r′) dS ′dS

=
∑︂
ci

∑︂
cj

Zc
cicj

, (4.25)

where Γ is the discretized domain, K is the kernel of the operator, fi is a basis
function with the cells ci as its support, and Zc is an operator made of cell interac-
tions. Furthermore, since in the far field, integrals are computed numerically via a
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double Gaussian quadrature rule, the interactions in a compressible far field block
can be rewritten as

Zij =
∑︂
ci

∑︂
cj

aci
acj

∑︂
p∈ci

∑︂
q∈cj

wpfi(rp)K(rp, r
′
q)wqfj(r′

q) , (4.26)

where rp (resp. rq) is a quadrature point on cell ci (resp. cj), aci
and acj

are the
areas of the cells and wp and wq are normalized Gaussian weights. This shows that
far field interactions between basis functions effectively boil down to the evaluation
of the kernel on the set of all quadrature points. Contrary to the set I of basis
function barycenters introduced in Section 4.2.1, quadrature points do not represent
basis functions supported on one or more cells. This means that in general, an
octree and a block cluster tree built upon the quadrature point interactions can be
defined independently from basis function or cell size considerations. We therefore
introduce the transformation matrix Θ mapping the jth cell to the ith basis function

(Θ)ij =
⎧⎨⎩1 if cj belongs to the support of fi

0 otherwise ,
(4.27)

as well as the transformation matrix Ξ mapping the jth quadrature point to the ith
cell

(Ξ)ij =
⎧⎨⎩acj

wjfi(rj) if rj belongs to ci

0 otherwise .
(4.28)

Additionally, we also introduce the kernel matrix of the quadrature points

(K)ij =
⎧⎨⎩K(ri, rj) if i /= j

0 otherwise .
(4.29)

Like Z, if the kernel function K is asymptotically smooth, the kernel matrix K
can also be compressed blockwise for submatrices corresponding to well-separated
group of interactions [14]. We thus decompose it as K = Knear + Kfar, where
Kfar contains all the interactions that are used in double quadrature integrals to
compute Z as in (4.26). The operator matrix Z then reads

Z = Znear + Zfar

= Znear + ΘΞKfarΞT ΘT . (4.30)

While the point interaction matrix Kfar is based on an octree partition of the
quadrature points, the near field is still computed in a cell-based or basis function-
based manner to avoid singularities and ensure accurate evaluation of the matrix
entries. This inhomogeneity in the treatment of the near versus far field means that
Znear and Zfar may not be complementary sets anymore. To illustrate this, consider
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Figure 4.5: Example of a cell split between two octree boxes. Without treatment,
part of the interaction between the two triangle cells is computed in both near and
far blocks.

for instance that for a q-point quadrature rule, the quadrature points of a testing
cell tt are split into two neighbor boxes bt1 and bt2 by the octree decomposition.
Given a source box that is adjacent to bt2 but not bt1 and contains a source cell ts
as shown in Figure 4.5, the former will form a near field interaction while the latter
represents a far field interaction. As a result, the cell interaction between the two
triangles is fully computed once in Znear but also partly in Zfar due to the points
located in bt1. This redundancy is alleviated by imposing that all quadrature points
within a cell must belong to the same leaf box during the octree decomposition.
This can be achieved by associating all the quadrature points to their respective
cell center, which does not compromise the octree partitioning as long as q < nmax.

Alternatively, it is possible to employ instead a correction scheme similar in
principle to the one used in the pre-corrected Fast Fourier Transform (FFT) [97].
This is achieved by subtracting the double quadrature integrals from the accurate
analytical or semi-analytical integrals in Znear to remove the inaccurate contribu-
tions from the uncompressed blocks in K.

Owing to the fact that they contain local information, Ξ and Θ are sparse.
Therefore, they can be multiplied with a vector inO(N) operations which, assuming
that Kfar has been compressed, do not increase the asymptotic complexity of the
overall matrix-vector product. In this form, originally introduced in [4], the non-
separable part of the interaction is isolated into the matrix of quadrature point
interactions K. Compressing Kfar instead of Zfar has several advantages:

• the computation of matrix entries is very fast since it boils down to the simple
evaluation of the Green’s function, and no integral is involved;

• the compressibility is possibly higher from factoring out the contribution of
the basis functions;

• other parameters (e.g. a material scaling) are also factored out.
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This appears quite advantageous for hybrid formulations with volume and/or wire
unknowns such as the one presented in the previous chapter. Because operator-
specific parameters are excluded from K, a compressed approximation ˜︁K of the low-
level point matrix can be used for several operator matrices that share the same
kernel function K. Beyond hybrid formulations, this versatility may be highly
beneficial in a wider range of methods. For instance, it could allow for a single
compression of both single-layer and hypersingular operator matrices in symmetric
formulations, or a single compression of the scalar and the vector potential in
the Electric Field Integral Equation (EFIE) for antenna analysis and scattering
problems. In this work, this property is leveraged in two ways: to compress matrices
with different discretizations in the next section, as well as to compress matrices
with different material scalings in Chapter 5.

Beyond the fact that preprocessing becomes somewhat more involved, a caveat
of using a point compression is that it is sensitive to cancelling integrals between
different cells, as explained later in this chapter. This motivates the development
in Section 4.5.4 of an appropriate cure which does not compromise the asymptotic
complexity.

Another drawback of a point compression is that the dimension of the matrix
to be compressed is multiplied by the number of quadrature points per cell. In
practice, since compressible blocks correspond to far field interactions, a limited
amount of points per cell is sufficiently accurate and therefore does not drastically
increase the dimensionality of the problem.

4.5.2 Compression of Multiple Operators
The hybrid formulation introduced in Chapter 3 contains several types of un-

knowns (wire, surface and volume), leading to an overall system matrix that is
made of several operator matrix blocks (one for each combination of basis func-
tions). Since each block operator has a distinct kernel, scaling and/or set of testing
and source functions, the standard approach [15, 93] with the ACA is to perform
one compression for each block, e.g. if the overall system matrix Z takes the form

Z =
[︄
A B
C D

]︄
, (4.31)
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then the fast matrix-vector multiplication v = Zx is performed as

v = Zx

=
[︄
A B
C D

]︄ [︄
x1
x2

]︄

=
[︄
Ax1 + Bx2
Cx1 + Dx2

]︄

≈
[︄
Anearx1 + Bnearx2
Cnearx1 + Dnearx2

]︄
+
[︄ ˜︁Afarx1 + ˜︁Bfarx2˜︁Cfarx1 + ˜︁Dfarx2

]︄
, (4.32)

where Anear, Bnear, Cnear, Dnear are the uncompressed blocks representing the near
field interactions, and ˜︁Afar, ˜︁Bfar, ˜︁Cfar, ˜︁Dfar are the individual compressions of
each block. Indeed, the inhomogeneous matrix Z as a whole is not in general
asymptotically smooth and therefore the exponential decay of singular values is
not guaranteed. Notably, for the hybrid formulation, the surface tested blocks are
potential equations while the others are current equations. While this naturally
incites us to compress each block individually, this unfortunately introduces some
redundancy when we consider the fact that the support of the different types of
basis functions may overlap. For instance, in the hybrid formulation, part of the
surface basis functions are defined on the boundary of the volume basis functions.
Therefore, instead of compressing the blocks independently, it would be interesting
to cluster and compress together different elements when they are geometrically
close. In this context, the proposed point-based compression of the Green’s function
presented in the previous section is perfectly suitable since, up to differences in the
kernel function itself, factoring out basis function and scaling contributions makes
the inner system matrix homogeneous.

From the hybrid system matrix given in (3.64), it appears that the block opera-
tor matrices with the same testing functions have the same kernel. Indeed, there is
a double-layer kernel ∇nG when the rows correspond to pyramid testing functions,
and a single-layer kernel G otherwise. Therefore, a fast matrix-vector product for
the overall system matrix can be obtained with only two compressions, one for each
kernel.

For simplicity, in the following, we restrict our analysis to two types of basis
functions (surface pyramids and SWG functions) and neglect the wire anisotropy,
although the extension to this case is straightforward. We denote:

• qtet the set of quadrature points belonging to the tetrahedra volume;

• qf the set of quadrature points belonging to the tetrahedra faces, i.e. their
boundaries;

• qtri the set of quadrature points belonging to the triangles, i.e. those that
belong to the surface mesh delimiting the background conductivity jumps.
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Three octrees are then built:

• Bv, which partitions the SWG quadrature points qswg = qtet ∪ qf ;

• Bs, which partitions the pyramid quadrature points qtri;

• Ba, which partitions the complete set of all quadrature points qa = qswg ∪ qtri.

The block cluster trees are finally obtained from the octrees:

• TBs×Ba , which partitions the interactions with surface testing;

• TBv×Ba , which partitions the interactions with volume testing.

We can see that there are only two block cluster trees compared to the four that
would be required with a standard ACA. The point interactions of each block cluster
tree are compressed via the ACA algorithm followed by a QR-SVD recompression
to get the single- and adjoint double-layer compressions ˜︁S and ˜︁D∗, respectively.
The mapping matrices Θ and Ξ from Section 4.5.1 must be adjusted to take into
account the multiple types of basis functions, cells and quadrature points. We thus
define:

• Ξv,v, mapping the SWG quadrature points to the volume cells

(Ξv,v)ij =
⎧⎨⎩acj

wj∇ · (vi(rj)) if rj ∈ qswg belongs to ci

0 otherwise ,
(4.33)

• Ξa,χv, mapping all quadrature points to the volume cells

(Ξa,χv)ij =
⎧⎨⎩σi

−1acj
wj∇ · (χvi(rj)) if rj ∈ qa belongs to ci

0 otherwise ,
(4.34)

• Ξs,s, mapping the pyramid quadrature points to the surface cells

(Ξs,s)ij =
⎧⎨⎩acj

wjsi(rj) if rj ∈ qtri belongs to ci

0 otherwise ,
(4.35)

• Ξa,s, mapping all quadrature points to the surface cells

(Ξa,s)ij =
⎧⎨⎩(σl − σk)acj

wjsi(rj) if rj ∈ qa belongs to ci ∈ Γkl

0 otherwise ,
(4.36)

where si and vi are pyramid and SWG basis functions, respectively. Similarly as
in (4.27), we also define three sparse cell to basis function mapping matrices for:
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• the SWG functions Θv;

• the anisotropic SWG functions Θχv;

• the pyramid functions Θs.

The matrix entries are equal to 1 when the relevant cell (tetrahedron or triangle)
belongs to the support of the corresponding basis function. A distinct mapping Θχv

is needed for anisotropic SWG functions, i.e. SWG functions that are scaled by an
anisotropic constrast χ, because contrary to isotropic SWG functions, they are
possibly non-zero on all the faces making up the boundary of the SWG tetrahedra
instead of only the defining face. Note also that cell-wise scalings (e.g. σ−1

i or
σl− σk) can alternatively be placed on the Θ matrices rather than the Ξ matrices.

Finally, the four non-local operator matrices D∗
ss, D∗

sv, Svs and Svv are obtained
via

D∗
ss ≈ D∗

ssnear
+ ΘsΞs,s

˜︁D∗ΞT
a,sΘs

T (4.37)
D∗

sv ≈ D∗
svnear

+ ΘsΞs,s
˜︁D∗ΞT

a,χvΘχv
T (4.38)

Svs ≈ Svsnear + ΘvΞv,v
˜︁SΞT

a,sΘs
T (4.39)

Svv ≈ Svvnear + ΘvΞv,v
˜︁SΞT

a,χvΘχv
T . (4.40)

With this representation, the fast matrix-vector multiplication v = Zx, where

Z =
[︄
Gss −D∗

ss Gsv −D∗
sv

−Svs Gvv + Svv

]︄
, (4.41)

and
x =

[︄
xs

xv

]︄
, (4.42)

is performed with the following sequence of operations

• for the far field interactions:

x(1)
s = ΞT

a,s(Θs
T xs) (4.43a)

x(2s)
s = Θs(Ξs,s( ˜︁D∗

x(1)
s )) (4.43b)

x(2v)
s = Θv(Ξv,v(˜︁Sx(1)

s )) (4.43c)

x(1)
v = ΞT

a,χv(Θχv
T xv) (4.44a)

x(2s)
v = Θs(Ξs,s( ˜︁D∗

x(1)
v )) (4.44b)

x(2v)
v = Θv(Ξv,v(˜︁Sx(1)

v )) , (4.44c)

79



A Fast Electromagnetic Solver for EEG Modeling

• for the near field interactions:

x(ss)
near = (Gss −D∗

ssnear
)xs (4.45)

x(sv)
near = (Gsv −D∗

svnear
)xv (4.46)

x(vs)
near = Svsnearxs (4.47)

x(vv)
near = (Gvv + Svvnear)xv , (4.48)

• for the deflation (to set the resulting potential to zero-mean [26]), which is
handled exactly as in the first example of Section 4.1.1:

xdefl = λ1(1T xs) , (4.49)

• combining everything:

v =
⎡⎣x(ss)

near − x(2s)
s + x(sv)

near − x(2s)
v + xdefl

−x(vs)
near + x(2v)

s + x(vv)
near + x(2v)

v

⎤⎦ . (4.50)

All the operations in the matrix-vector product involve onlyO(N) sparse matrix-
vector products and O(N logN) compressed matrix-vector products, which leads to
an overall complexity of O(N logN). Furthermore, only two compressions, for the
Green’s function and its normal derivative, are needed to compute the full matrix
system compression.

Although the low-level compression of the Green’s function proves to be more
versatile than a standard compression scheme at the basis function level, an im-
portant issue arises in the computation of the Svv operator matrix. This problem
actually holds for any formulation that requires a hypersingular operator. In the
standard symmetric BEM setting (without fast solver), the hypersingular matrix
N is computed from the entries of the single-layer matrix S, as described e.g. in
[66, Equation (29)]. This stems from a theorem demonstrated in [84]. Accordingly,
if we wanted to accelerate the symmetric BEM with a point compression strategy,
it would be desirable to use a single compressed matrix to get both ˜︁N and ˜︁S.

Unfortunately, if we used the point compression scheme presented thus far with
a reasonably low tolerance ϵ, we would end up with a completely wrong approxima-
tion matrix ˜︁Svv (or ˜︁N in the symmetric BEM). The reason for this high inaccuracy
problem is the presence of integral cancellations, and it is explained and illustrated
in the following.

4.5.3 Numerical Stability
Consider a pair of far interacting testing and source SWG functions vi and vj, as

illustrated in Figure 4.6, with R = ∥c+
j −c+

i ∥. For the sake of simplicity, assume that
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Figure 4.6: The tetrahedral support of a pair of interacting basis functions. The
distance between two adjacent cell centers is proportional to the mesh parameter
h, which is small compared to R = ∥R∥ for a far interaction.

the conductivity contrast is homogeneously equal to 1 in the tetrahedral supports
T+

i ∪ T−
i and T+

j ∪ T−
j . The general piecewise inhomogeneous and anisotropic case

involves additional surface integrals on the tetrahedron faces but the underlying
issue remains. From Section 3.4.2, the volume-volume interaction is

(Svv)ij = −
∫︂

T +
i ∪T −

i

∇ · vi(r)
∫︂

T +
j ∪T −

j

G(r, r′)∇′ · vj(r′) dV ′dV

= − aiaj

V +
i V

+
j

∫︂
T +

i

∫︂
T +

j

G(r, r′) dV ′dV

+ aiaj

V +
i V

−
j

∫︂
T +

i

∫︂
Tj−

G(r, r′) dV ′dV

+ aiaj

V −
i V

+
j

∫︂
T −

i

∫︂
Tj+

G(r, r′) dV ′dV

− aiaj

V −
i V

−
j

∫︂
T −

i

∫︂
Tj−

G(r, r′) dV ′dV . (4.51)

The interaction is therefore the sum of four terms, two with positive signs and two
with negative signs due to the fact that an SWG function points toward its defining
face in its “+” tetrahedron and away from it in the “-” tetrahedron, as illustrated
in Figure 3.6.

Since the two SWG functions are far from each other, all four double integrals
have a similar value. To simplify the notation, in the following we consider far
interaction integrals approximated with 1-point Gaussian quadrature integrals. We
thus get

(Svv)ij = −aiaj

(︂
G(c+

i , c
+
j )−G(c+

i , c
−
j )−G(c−

i , c
+
j ) +G(c−

i , c
−
j )
)︂
, (4.52)

where c±
i (resp. c±

j ) is the center of tetrahedron T±
i (resp. T±

j ). Using the notation
in Figure 4.6, we then have ∥∆ri∥ ≈ ∥∆rj∥ ≈ h≪ R, where h is the mesh element
size and R = ∥R∥. This implies that the four terms almost cancel each other in
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the sum, resulting in a much smaller value than that of any of the individual terms.
More explicitly, the first term in (4.52) reads

G(c+
i , c

+
j ) = 1

∥c+
i − c+

j ∥
= 1
R
. (4.53)

A Taylor expansion of G in (c+
i , c

+
j ) reveals for the second term that

G(c+
i , c

−
j ) = 1

∥c+
i − c+

j + c+
j − c−

j ∥

= 1
∥R + ∆rj∥

= 1
R
− ∆rj · r̂

R2 + 3(∆rj · r̂)2

2R3 − ∥∆rj∥2

2R3 +O
(︄
h3

R4

)︄
, (4.54)

where r̂ = R/R. Similarly for the last two terms, we get

G(c−
i , c

+
j ) = 1

R
− ∆ri · r̂

R2 + 3(∆ri · r̂)2

2R3 − ∥∆ri∥2

2R3 +O
(︄
h3

R4

)︄
(4.55)

G(c−
i , c

−
j ) = 1

R
− ∆rij · r̂

R2 + 3(∆rij · r̂)2

2R3 − ∥∆rij∥2

2R3 +O
(︄
h3

R4

)︄
, (4.56)

where ∆rij = ∆ri + ∆rj. Thus, summing all four terms in (4.52) results in

(Svv)ij = −aiaj

(︄
3(∆ri · r̂) (∆rj · r̂)

R3 − ∆ri ·∆rj

R3 +O
(︄
h3

R4

)︄)︄

= O
(︄
h2

R3

)︄
. (4.57)

This means that, for a given mesh element size, the interaction between a pair of
basis functions in Svv is roughly proportional to 1/R3. This is to be contrasted with
the individual point interactions in (4.52), that evaluate to the Green’s function
G(r, r′), and thus decrease comparatively slowly in 1/R.

This difference in asymptotic scalings becomes an issue when put in the context
of a compressing algorithm, for which the accuracy of the matrix entries is guaran-
teed only up to a given threshold. Indeed, consider that we compress the matrix
of quadrature point interaction K (the kernel being the Green’s function G) with
a fixed tolerance ϵ. The entry-wise absolute error in K̃ can be of order ϵ/R, which,
past a certain distance R dominates the corresponding final matrix entries in Svv
that scale in 1/R3.

As a minimal example, assume that the block cluster tree decomposition of K
contains an admissible block Kβ which is exactly made of the two pairs of points in
Figure 4.6, i.e. the testing points are c+

i and c−
i and the source points are c+

j and c−
j .
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The corresponding final matrix entry is (Svv)ij as given in (4.52). For simplicity,
the points are all aligned and we assume the equality ∆ri = −∆rj = hr̂, so that
we can write this block as

Kβ =

⎡⎢⎢⎢⎣G(c+
i , c

+
j ) G(c+

i , c
−
j )

G(c−
i , c

+
j ) G(c−

i , c
−
j )

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
R

1
R + h

1
R− h

1
R

⎤⎥⎥⎥⎦ . (4.58)

In that case, we have
(Svv)ij = 2aiajh

2

R(R + h)(R− h) , (4.59)

which, as expected, scales in 1/R3. Furthermore, the equivalence of matrix norms
ensures that for any n× n matrix A we have in particular the inequality [58]

√
n∥A∥2 ≥ ∥A∥F , (4.60)

where ∥ · ∥F denotes the Frobenius norm. Thus, the spectral norm of Kβ is lower
bounded by

∥Kβ∥2 ≥
1√
2
∥Kβ∥F

≥ 1√
2

√︄
1
R2 + 1

(R + h)2 + 1
(R− h)2 + 1

R2

≥
√

2
R + h

. (4.61)

A rank-1 approximation ˜︁Kβ given by

˜︁Kβ =

⎡⎢⎢⎢⎣
1
R

1
R

1
R

1
R

⎤⎥⎥⎥⎦ , (4.62)

has an element-wise error

Kβ − ˜︁Kβ =

⎡⎢⎢⎢⎢⎣
0 −h

R(R + h)
h

R(R− h) 0

⎤⎥⎥⎥⎥⎦ . (4.63)

The spectral norm of this anti-diagonal matrix is given by its highest amplitude
element, i.e.

∥Kβ − ˜︁Kβ∥2 = h

R(R− h) . (4.64)
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For a fixed tolerance ϵ < 1, we further assume that the two pairs of tetrahedra are
sufficiently far from each other that we also have the inequality

R > h

(︄
1 +
√

2
ϵ

)︄
. (4.65)

Thus, combining (4.61) and (4.64), we get the upper bound of the relative error

∥Kβ − ˜︁Kβ∥2
∥Kβ∥2

≤ h(R + h)√
2R(R− h)

<

√
2h

R− h
< ϵ , (4.66)

which confirms that ˜︁Kβ is a valid rank-1 approximation of Kβ for the prescribed
accuracy ϵ. However, according to (4.52) the corresponding approximated matrix
entry in ˜︁Svv is

(˜︁Svv)ij = −aiaj

(︂ ˜︁G(c+
i , c

+
j )− ˜︁G(c+

i , c
−
j )− ˜︁G(c−

i , c
+
j ) + ˜︁G(c−

i , c
−
j )
)︂

= −aiaj

(︃ 1
R
− 1
R
− 1
R

+ 1
R

)︃
= 0 . (4.67)

Therefore, it follows that

|(Svv)ij − (˜︁Svv)ij|
|(Svv)ij|

= 1 > ϵ , (4.68)

which means that the error in ˜︁Svv is not bounded by ϵ. This example shows that
beyond a certain distance, the entries in the final matrix Svv require a higher accu-
racy than that guaranteed by the compression of the point kernel matrix K. As a
result, these entries may be pure noise.

4.5.4 Minimum Spanning Tree Solution
The previous analysis showed a discrepancy between the amplitude of the point

interactions in K and the final matrix entries in Z. This issue can be solved by
using interactions that have the same asymptotic scaling as the desired final result
while still retaining the simplicity of point interactions. This is achieved with the
following strategy.

We denote Qt the set of Nt testing quadrature points needed to get the desired
operator matrix, i.e. used to compute the outer numerical integrals. A graph of
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Figure 4.7: Minimum spanning tree for a set of 9 quadrature points. The dashed
arrow represents the incomplete edge with no origin and pointing to the tree root.

weighted edges between each point and all nearby points is created in O(Nt logNt)
complexity using the octree decomposition of Qt. The weight of each edge is equal
to its length. Then, from this graph, a minimum spanning tree (MST) Et is built.
Et is a subset of Nt − 1 graph edges connecting the Nt points without cycle and
having the minimum possible total weight. It is also obtained in O(Nt logNt)
complexity. Then, an arbitrary point of Qt is defined as the root of the MST, and
the edges are directed from the root to the leaves. The origin point of an edge is
called parent of the end point. Since Et contains no cycle, each point in Qt has
a unique parent, except for the root, which is ancestor of all other points and has
itself no parent. To have as many edges as the number of testing points, we append
to Et an additional incomplete root edge that ends on the root testing point but
has no origin. An example MST is illustrated in Figure 4.7.

Instead of building a point interaction matrix ˜︁K, we will compute an edge
interaction matrix ˜︁Ke. Each edge of Et is associated to its middle point and the
set of edges is decomposed into the octree Bte. The same procedure is applied to
the set of source quadrature points Qs to get the octree of source edges Bse. We
then build the block cluster tree TBte×Bse that partitions all the edge interactions.
The edge interaction between the ith testing edge with origin and end points q+

i

and q−
i , and the jth source edge with origin and end points q+

j and q−
j , is defined

as
(Ke)ij = K(q+

i , q
+
j )−K(q+

i , q
−
j )−K(q−

i , q
+
j ) +K(q−

i , q
−
j ) . (4.69)

If testing and source quadrature points coincide, the singular kernel function is set
to 0. Furthermore, the row corresponding to the interaction of the testing root
edge with all source edges, as well as the column corresponding to the interaction
of all testing edges with the source root edge, are excluded from the block cluster
tree and fully computed outside the compression. This represents a small memory
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overhead of Nt + Ns − 1 entries. To compute them, the terms involving a missing
origin point in (4.69) are set to 0.

Compared to the point interactions of K (cf. (4.29)), edge interactions require
slightly more operations but have the same amplitude as the cancelling entries of
the operator matrix Z. Therefore, the compression of Ke does not compromise the
accuracy of Z beyond the ACA tolerance ϵ.

The two kernel matrices K and Ke are related by the product
Ke = TtKTT

s , (4.70)
where Tt and Ts are square testing and source point-to-edge transformation ma-
trices respectively. These matrices are sparse and easily obtained as

(Tt)ij =

⎧⎪⎪⎨⎪⎪⎩
1 if qj = q+

i (testing edge origin)
−1 if qj = q−

i (testing edge end)
0 otherwise ,

(4.71)

and similarly for Ts with source edges and quadrature points. Thus, after com-
pressing Ke, and following (4.30), the approximation of Z reads˜︁Z = Znear + ΘΞ ˜︁KΞT ΘT

= Znear + ΘΞTt
−1˜︂Ke(Ts

T )−1ΞT ΘT . (4.72)
While the T matrices are sparse, their inverses are not. If they were stored explicitly,
the memory cost and matrix-vector multiplication ˜︁Zx would be in O(N2) complex-
ity, which does not fit a fast solver. Fortunately, we can use the tree structure of the
testing and source MST to avoid dense matrices and get the matrix-vector product
u = Tt

−1x and v = (Ts
T )−1

x in linear complexity.
In the first case, the coefficient corresponding to the root point is directly ob-

tained from the root edge entry as
ur = −xr , (4.73)

where r is the root index of Et. Then, the testing MST is traversed downward
following the recursive relation

ui = up(i) − xi , (4.74)
where p(i) is the parent of point i. The relationship is reversed in the transposed
case: any leaf coefficient l is determined from x as

vl = −xl , (4.75)
and the source MST is traversed in ascending order according to the recursive
relation

vi = −xi +
∑︂

j∈c(i)
vj , (4.76)

where c(i) is the set of children of i in Es. Since each point is traversed exactly
once, both matrix-vector multiplications are performed in linear complexity.
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4.6 Multithreaded Implementation of the Fast
Solver

An important feature of fast solvers is their scalability, and in particular, how
easily they can be parallelized to take full advantage of the available computational
resources. For the proposed fast solver, parallelism was implemented with offline
task scheduling in a shared memory environment. Due to the block structure of
the fast solver, all computations are relatively easy to parallelize. We distinguish
three main operations:

• the near field computation;

• the far field compression;

• the matrix-vector multiplication.

The first two operations constitute the matrix filling effort, while the last one is key
to how fast the solution of the problem is obtained with an iterative solver. Owing
to the block cluster tree described in Section 4.2.2, each block can be computed
and multiplied independently from all other blocks. This provides a trivial way to
parallelize the matrix filling. Each worker (a thread or process) is assigned a set of
blocks and fills them sequentially by allocating the required memory, and either

• for full blocks (near field), computing all of the interactions in the block;

• for compressible blocks (far field), applying the ACA algorithm and recom-
pressing immediately with the QR-SVD algorithm.

For a full block of size m × n, the workload and memory requirements are
known exactly in advance. The number of entries to compute simply corresponds
to the product of the dimensions of the block, equal to mn. However, the same
cannot be said about compressible blocks. Indeed, in this case, only k rows and
columns are computed and the memory cost is k(m + n). Since the compression
rank k is determined adaptively during the ACA algorithm, neither memory nor
computation time are known in advance. For this reason, some blocks may be
compressed by a worker much faster than the others and scheduling a completely
balanced workload across all workers is more challenging. To combat this issue, a
possibility is to estimate in advance the rank and use this information to distribute
the workload as evenly as possible. In the current implementation, we opted to call
the parallel compression over all the blocks within each level separately. Indeed,
blocks within the same level have the same testing and source box edge lengths as
well as the same relative spatial separation (there is approximately one box between
every pair of boxes making an admissible block). Thus, given the translation and
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rotation invariance properties of the Green’s function, the compressibility should
be similar across the blocks.

As highlighted in (4.32) and (4.50), the matrix-vector multiplication is per-
formed separately for the near and far interactions and the results are summed
together. The near field matrix-vector product is simply computed as a sparse
matrix-vector product. As in the matrix filling process, the far field matrix-vector
product follows the block structure of the block cluster tree. It also benefits from
the level-wise distinction of the blocks. Indeed, within each block cluster tree level,
all the blocks that have the same testing box fill the same rows of the matrix-vector
product, and two blocks that have different testing boxes fill different rows. There-
fore, the far field matrix-vector product is easily parallelized without race condition
by assigning to each worker all the blocks with the same testing box within each
level.

4.7 Numerical Results

4.7.1 Spherical Model
The performance of the proposed fast solver technique for EEG forward mod-

eling is validated with numerical experiments. We first test it on a homogeneous
sphere of radius 1, uniformly discretized into several meshes with decreasing aver-
age edge length. A dipole excitation is placed near the center of the sphere. The
ACA tolerance is set to ϵ = 10−3, the recompression tolerance to ϵ′ = 10−2, the
admissibility parameter to η = 1 and the minimum box size to 2 times the average
cell diameter. A 1-point quadrature rule is used for the compression of the far field
interactions while we use an accurate semi-analytical integration rule (analytical
source integral and 7-point quadrature testing integral) for near field interactions.

Despite the 10−2 compression threshold, the solution accuracy remains very
high as illustrated in Figure 4.8, with a relative error against an analytical solution
around 10−4. This demonstrates the efficiency of the multilevel partitioning, which
allows us to isolate a small near field computed with high precision while the highly
compressible rest of the matrix has a comparatively smaller impact on the solution
accuracy.

Next, we show the memory consumption of the fast solver at different discretiza-
tions in Figure 4.9. It can be seen that both near field and far field interactions
grow almost linearly with the number of unknowns. This shows that a standard
BEM problem with up to 1 million unknowns can run on a standard computer
without problem. In comparison, without fast solver acceleration, storing the full
BEM system matrix of a mesh with about 50 000 unknowns would already exceed
the memory cost of the compressed problem with 1 million unknowns.

The asymptotic reduction in memory cost directly translates to a reduction in
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Figure 4.8: Electric potential obtained analytically and with the fast BEM solver
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Figure 4.9: Memory cost of the compressed adjoint double-layer operator matrix
on the sphere.

computation time. In Figure 4.10, the matrix filling time, i.e. the computation
time of all near and compressed far interactions is displayed for different numbers
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Figure 4.10: Filling time of the compressed adjoint double-layer operator matrix
on the sphere.

of threads. Again, we clearly observe an O(N logN) evolution with the number of
unknowns. This is in agreement with the fact that the ACA algorithm computes
only O(N logN) interactions. Furthermore, the parallelization strategy appears
quite optimal, with a reduction of computation time that is proportional to the
number of threads used.

Finally, the matrix-vector product time is displayed in Figure 4.11. Again, only
O(N logN) operations are performed since the compressed ACA representation of
the non-local operator contains only O(N logN) elements. Therefore, a problem
with a few hundred thousand unknowns can be solved in only a few seconds per
right-hand side. The parallelization of the matrix-vector product is however slightly
less optimal than in the filling case. This could be explained by the relatively low
number of computations done by each thread, which accentuates the workload im-
balance. To improve upon this issue, we can exploit the fact that after compression
the number of elements in the compressed matrix is known exactly, and it is there-
fore possible to design a more balanced workload distribution. Furthermore, for
problems with many right-hand sides (more than the number of workers), such
as the computation of a leadfield matrix with a dense electrode array, one may
simply parallelize over the independent right-hand sides rather than within the
matrix-vector product.
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Figure 4.11: Matrix-vector multiplication timing.

4.7.2 MRI-Derived Model
The fast solver scheme with the multi-block compression is tested in a hybrid

surface-volume setting. A realistic, MRI-derived head model was obtained following
a procedure similar to Section 3.7.3. It consists of 3 triangular meshes delimiting the
brain, skull and scalp compartments and a tetrahedral mesh of the anisotropic skull
volume. We solve the hybrid surface-volume system as described in Section 4.5.2
with the proposed fast solver technique. The total number of unknowns is 33 278.
While relatively large, it remains small enough that it can be solved and stored in
full with the standard (non-accelerated) method which is used as a reference. A set
of 8022 dipoles covering the cortex surface is used as source and the leadfield matrix
is generated for a set of 72 electrodes placed on the scalp. The same parameters
as in the previous sphere example are used for the fast solver. After the setup,
which includes the filling of all required operator matrices and right-hand sides, the
solution is obtained via the GMRES solver with a tolerance of 10−3.

The memory and timing comparison is showed in Table 4.1. The potential
obtained on the scalp surface with the fast solver is illustrated in Figure 4.12. We
can observe that for this moderate-sized problem, the fast solver reduces memory
and time consumption by a factor of 10. Furthermore, these computational gains
do not compromise the solution accuracy as illustrated in Figure 4.13, and the
relative leadfield matrix error with respect to the full matrix is below 10−2.
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Figure 4.12: Electric potential on the scalp surface obtained with the fast solver.

4.8 Conclusion
We have presented a fast solver technique for EEG forward modeling. Based on

the multilevel Adaptive Cross Approximation algorithm, it compresses the Green’s
function kernel in terms of quadrature point interactions. Furthermore, we devel-
oped a correction scheme using a spanning tree linking all quadrature points. For
a small overhead, the resulting compression preserves the accuracy of operator ma-
trices requiring the divergence of basis functions up to the desired tolerance while
maintaining the practical advantages of a point compression. This makes it partic-
ularly suitable for integral equation formulations that involve several types of basis
functions or material scalings, as multiple operator matrices can be compressed

Table 4.1: Memory and timing comparison between the standard and fast hybrid
solver.

Memory Setup Solution Leadfield total
(MB) time (s) time (s) time (s)

Standard solver 4224 4206 78 4441
Accelerated solver 351 394 22 462
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Figure 4.13: Electric potential obtained with the accelerated and non-accelerated
solvers on a standardized set of 72 electrodes covering the head surface.

with a single compression. In practical applications, the proposed fast solver dras-
tically reduces both time and memory cost for the generation of computational
head models.
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Chapter 5

A New Framework for Tissue
Conductivity Estimation

The previous chapters focused on solving an Electroencephalography (EEG)
forward problem, for which there is enough information about the equations and
boundary conditions to make it well-posed. This means that it is uniquely solvable
as a square system with as many independent equations and unknowns. Another
family of problems, called inverse problems, arises when such information is not as
complete [123]. Inverse problems are typically ill-posed. Depending on the mod-
eling assumptions, there can be an infinity of solutions because there are more
unknowns than there are equations. To bypass this issue, one can make the rectan-
gular system square by introducing additional independent equations via the use of
regularization techniques. However, the inverse problem may still remain ill-posed
in the sense that small changes in the input may lead to large changes in the out-
put solution. More generally, the unknowns of an inverse problem may not have a
linear dependency with the system to solve, which makes their determination more
challenging.

A classical EEG inverse problem is that of source imaging, which aims at esti-
mating, possibly in real-time, the brain activity from EEG recordings [7]. Another
important inverse problem consists in reconstructing the unknown effective con-
ductivity profile of different head tissues. We present a new and efficient inverse
strategy to solve this problem in an integral equation framework which includes
on one hand the possibility to model inhomogeneity and anisotropy, and on the
other hand leverages the fast solver technique presented in Chapter 4 to alleviate
the computational burden and enables a fast conductivity estimation.
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5.1 Tissue Conductivity Imaging
The inverse tissue conductivity problem consists in determining the conductiv-

ity of the media through which brain signals or external stimuli reach measurement
electrodes at the surface of the head [27, 44]. While the head conductivity was
assumed to be perfectly known in the previous chapters, in reality, the exact con-
ductivity profile remains a topic of investigation [76]. The main reason for this is
because the conductivity of each tissue varies between individuals due to factors
such as age and gender. Notably, the shape and composition (e.g. fluid content)
of the different head compartments evolve over extended time periods, which di-
rectly affect the electrical properties of the tissues. There are also variations in
reported conductivity values in literature due to different recording techniques and
experimental conditions (e.g. frequency and temperature) [57]. Finally, there are
complications due to the fact that for all practical purposes, in vivo tissue con-
ductivity is not the same as that measured in vitro. For this reason, conductivity
estimation should preferably be done non-invasively [76].

The skull conductivity is of particular interest, given that its very high resistiv-
ity compared to the other tissues creates a bio-shielding effect which greatly impacts
the EEG recordings [88]. One non-invasive technique is Electrical Impedance To-
mography (EIT), which consists in solving an inverse problem where the head vol-
ume geometry obtained via Magnetic Resonance Imaging (MRI) and/or Computed
Tomography (CT) scans, as well as boundary measurements, are known, and the
conductivity distribution is to be determined [10, 44, 119]. Although non-invasive,
EIT requires the solution of a forward problem, which can be computationally
expensive considering that this must be performed several times in an iterative
scheme. In the following, we derive the solution of the EIT forward problem in
a general inhomogeneous setting, which, differently from the standard Boundary
Element Method (BEM), allows local conductivity changes in small volume ele-
ments. We then derive an optimization algorithm adapted to the inhomogeneous
case which makes it more versatile in its modeling abilities than standard Boundary
BEM EIT solvers. This algorithm is combined with the new fast solver described
in the previous chapter to enable the efficient solution of the ill-posed conductivity
estimation problem. Numerical experiments confirm the validity of the proposed
EIT solver.

5.2 Inhomogeneous EIT Forward Problem
A standard EIT system comprises a set of Ne recording electrodes and a current

generator. The generator is connected to a pair of electrodes to form a closed
circuit through which a current flows with controlled amplitude and frequency.
The voltage is then recorded on the remaining electrodes and demodulated to yield
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a vector vm of Ne − 2 measurements of the electric potential. This constitutes
an EIT dataset, which may be enlarged with several injection pairs. The inverse
problem of EIT then consists in building a forward model (parametrized by the
conductivity distribution) that best matches the EIT dataset [32, 43].

The EIT forward problem can be derived similarly to the standard EEG for-
ward problem studied previously. The main difference is that an electric current is
injected through a pair of surface electrodes, which can be assumed to be strong
enough that the neural brain activity is negligible in comparison [30]. In response to
this stimulus, an electric field is generated through the inhomogeneous and imper-
fectly conducting head medium and the electric potential on the scalp is recorded
on the remaining electrodes [43].

Starting from an initial conductivity distribution guess, the inhomogeneous head
medium is modeled similarly as in Chapter 3, by dividing it into compartments Ωi

with piecewise-homogeneous background conductivities σi and explicitly handling
local inhomogeneities with the conductivity contrast

χi(r) = (σiI− σ)σ−1(r) , r ∈ Ωi . (5.1)

In the absence of a primary source in the volume, the Poisson’s equation reads

∇ · (σ(r)∇ϕ(r)) = 0, r ∈ Ω . (5.2)

We denote rinj, rextr ∈ ∂Ω the positions of the injection and extraction electrodes
through which a current of amplitude I0 is applied. The boundary conditions on
each interface Γij separating two compartments Ωi and Ωj are then

ϕ(r)|−Γij
= ϕ(r)|+Γij

, (5.3a)
n̂(r) · σ(r)∇ϕ(r)|−Γij

= n̂(r) · σ(r)∇ϕ(r)|+Γij
, j < N + 1 (5.3b)

n̂(r) · σ(r)∇ϕ(r)|−ΓiN+1
= I0(δrinj

(r)− δrextr(r)) , (5.3c)

where we used the notation δr0(r) = δ(r− r0). Note that the last equation applies
to the external surface which is connected to the air with conductivity σN+1 = 0.
To simplify the notation, we also further assume that only the skull compartment
Ωs, 1 ≤ s < N is inhomogeneous. This is justified by the fact that the EIT
measurements resulting from a source and sink pair on the surface are mostly
sensitive to the conductivity of the superficial layers, and therefore the deep white
matter anisotropy does not strongly influence the result [119, 42]. Furthermore, the
skull is by far the most resistive head tissue and, as such, has a strong impact on
the surface measurements, which motivates us to handle it with the most realistic
model [131, 1].

Following a similar derivation as in Section 3.3 with the modified boundary
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condition (5.3c) leads to the surface integral equation on each interface Γij

σi + σj

2 ξij + (σj − σi)
⎛⎝n̂ · Jeqs

2σs

−
N+1∑︂
k,l=1
D∗ξkl + 1

σs

D∗
vJeqs

⎞⎠
= −I0

2 (δrinj
− δrextr) , (5.4)

and the volume integral equation in Ωs

(σsI− σ)−1Jeqs −
∑︂
k,l

∇Sξkl + 1
σs

∇SvJeqs = 0 . (5.5)

Once the surface and volume unknowns ξkl and Jeqs are determined, the predicted
potential on a surface electrode re is given by

ϕ(re) =
∑︂
k,l

Sξkl(re)−
1
σs

S∗
v Jeqs(re) . (5.6)

By expanding the surface unknowns with pyramid basis functions si (3.47) and the
volume unknowns with SWG basis functions vi (3.49) as

ξ(r) =
∑︂

i

αisi(r) , (5.7)

Jeq(r) =
∑︂

i

χβivi(r) , (5.8)

the discrete surface and volume integral equations form the forward system
Ax = b , (5.9)

with
A =

[︄
Gss −D∗

ss Gsv −D∗
sv

−Svs Gvv + Svv

]︄
, (5.10)

where the operator matrices are defined in Section 3.4.2, and the ith element of b
is defined as

(b)i = −I0

2 (si(rinj)− si(rextr)) , (5.11)

i.e. it is non-zero only on the two basis functions whose defining vertices coincide
with the injection electrode pair. Finally, the expression of (5.6) applied to each
measurement electrode gives us the vector of predicted potentials

vp = Sx = SA−1b , (5.12)
with S = [Sms

T Smv
T ]T defined from (3.82). The data error between the measured

and the predicted potentials is the vector
ρ = vp − vm . (5.13)

The data error is non-zero in general due to noise sources, and we assume that they
mainly come from modeling errors (in particular in the conductivity distribution)
in the forward problem.
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5.3 EIT Inverse Solution
We seek the conductivity distribution σ = [σ1, . . . , σNp ]T (where Np is the num-

ber of parameters, and depends on the modeling assumptions) in the head volume
that best fits the electrode measurements. In other words, we want to minimize
the cost function

f(σ) = ∥ρ∥2 = ∥SA−1b− vm∥2
, (5.14)

where ∥ · ∥ denotes the Euclidian ℓ2-norm. This is a non-linear problem because
σ appears in A which needs to be inverted. Furthermore, in the inhomogeneous
case, S also depends on σ, which is not the case in the standard BEM where only
piecewise-homogeneous media can be modeled. This problem can be linearized with
iterative schemes such as the one described in the following. Given the conductivity
distribution σ(n) of iteration n, the EIT forward problem described in Section 5.2
is solved to get the solution x, which is then used to compute ρ(n) = ρ(σ(n)). From
this error, a new conductivity distribution

σ(n+1) = σ(n) + ∆σ (5.15)

is determined, which starts a new EIT iteration. The process is stopped when
either f is below a threshold or σ has converged.

The conductivity update ∆σ is determined via the Gauss-Newton method
adapted to the inhomogeneous case and described hereafter. We introduce the
following notation for the partial derivative matrix(︄

∂M
∂x

)︄
ij

= ∂(Mij)
∂x

, (5.16)

where M is a matrix whose entries are function of the variable x. Considering that
the optimal σ minimizes (5.14), the gradient vector of the cost function must be
equal to zero, i.e. each parameter σj satisfies the equation

∂f(σ)
∂σj

= 0

⇔ ∂

∂σj

Ne−2∑︂
i=1

(︂
(SA−1b)i − vm

i

)︂2
= 0

⇔ 2
Ne−2∑︂
i=1

(︂
(SA−1b)i − vm

i

)︂ ∂(SA−1b)i

∂σj

= 0

⇔ 2
Ne−2∑︂
i=1

(︂
(SA−1b)i − vm

i

)︂
(JT )ij = 0 , (5.17)

where the Jacobian matrix J is defined as

(J)ij = ∂ρi

∂σj

. (5.18)
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Equation (5.17) can be equivalently written in matrix form

2JT ρ = 0 . (5.19)

Assuming that the difference between σ(n+1) and σ(n) is small enough, we perform
a Taylor expansion of ρ in σ(n) to obtain

ρ(σ(n+1)) = ρ(σ(n) + ∆σ)
≈ ρ(σ(n)) + J∆σ . (5.20)

Therefore, inserting (5.20) in (5.19) gives the conductivity update for iteration n+1,

2JT ρ(n+1) = 0
⇔ JT J∆σ = −JT ρ(n)

⇔ ∆σ = −
(︂
JT J

)︂−1
JT ρ(n) . (5.21)

The Gauss-Newton process requires the evaluation of the Jacobian matrix at each
iteration. In the inhomogeneous EIT formulation presented thus far, the columns
of J read

(J):,j = ∂(vp − vm)
∂σj

= ∂(SA−1b)
∂σj

= ∂S
∂σj

A−1b + S∂A−1

∂σj

b

=
(︄
∂S
∂σj

− SA−1 ∂A
∂σj

)︄
A−1b . (5.22)

In the following, denoting NT the number of tetrahedra, we write σ as the vector
of length Np = N +NT whose first N entries are the background conductivities in
each of the N head compartments, and the NT last entries are the conductivities in
the inhomogeneous tetrahedra. For simplicity, it is assumed that there is inhomo-
geneity but no anisotropy. Otherwise, each tetrahedron would have 6 parameters
(instead of 1) corresponding to the upper triangular part of the anisotropic conduc-
tivity tensor σ. From (5.10) the partial derivative matrix of A can be constructed
from the partial derivative matrix of each block. Using (3.55), the matrix entries
are

• for the surface-surface block(︄
∂Gss

∂σp

)︄
ij

= 1
2
∂(σk + σl)

∂σp

⟨si, sj⟩Γkl
, (5.23)(︄

∂D∗
ss

∂σp

)︄
ij

= ∂(σl − σk)
∂σp

⟨si,D∗sj⟩Γkl
, (5.24)
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• for the surface-volume block(︄
∂Gsv

∂σp

)︄
ij

= ∂

∂σp

(︃
σk + σl

2σs

)︃
⟨si, χn̂ · vj⟩Γkl

+ σk + σl

2σj

⟨si,
∂χ

∂σp

n̂ · vj⟩Γkl
,

(5.25)(︄
∂D∗

sv
∂σp

)︄
ij

= ∂

∂σp

(︃
σl − σk

σs

)︃
⟨si,D∗

vχvj⟩Γkl
+ σl − σk

σs

⟨si,D∗
v

∂χ

∂σp

vj⟩Γkl
,

(5.26)

• for the volume-surface block(︄
∂Svs

∂σp

)︄
ij

= ∂

∂σp

⟨vi,∇Ssj⟩Ωs = 0 , (5.27)

• and for the volume-volume block(︄
∂Gvv

∂σp

)︄
ij

= ∂

∂σp

⎛⎝ 1
σT +

j

⎞⎠ ⟨vi,vj⟩T +
j

+ ∂

∂σp

⎛⎝ 1
σT −

j

⎞⎠ ⟨vi,vj⟩T −
j
, (5.28)

(︄
∂Svv

∂σp

)︄
ij

= ∂

∂σp

(︃ 1
σs

)︃
⟨vi,∇Svχvj⟩Ωs + 1

σs

⟨vi,∇Sv
∂χ

∂σp

vj⟩Ωs . (5.29)

The usual rules of differentiation are applied to the conductivity factors. For in-
stance, in the tetrahedron T with conductivity σT , we have

∂χ

∂σp

= ∂

∂σp

(︃
σs − σT

σT

)︃
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
σT

if σp = σs

− σs

σ2
T

if σp = σT

0 otherwise .

(5.30)

Similarly for the (Ne − 2)×NDoF operator matrix S, we have(︄
∂Sms

∂σp

)︄
ij

= ∂

∂σp

∫︂
Γ
G(ri, r

′)sj(r′) dS ′ = 0 , (5.31)(︄
∂Smv

∂σp

)︄
ij

= ∂

∂σp

(︄
1
σj

)︄∫︂
Ω
G(ri, r

′)∇′ · (χvj(r′)) dV ′

+ 1
σj

∫︂
Ω
G(ri, r

′) ∂χ
∂σp

∇′ · vj(r′) dV ′ . (5.32)

Once the Jacobian matrix J is computed using (5.23)–(5.32), the new conductivity
is finally obtained according to (5.21) as

σ(n+1) = σ(n) − (JT J)−1JTρ(n) . (5.33)
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5.4 Fast Conductivity Updates
The inverse algorithm described in the previous section requires that a forward

problem must be solved for a new conductivity guess at each EIT iteration. This
appears computationally burdensome, especially for high resolution models that
include fine geometrical details of the head. In such realistic cases, the high number
of unknowns to solve for would make each EIT update slow and the overall pipeline
impractical. It can be noted however that

• while the conductivity distribution varies with each update, the geometry of
the head remains fixed;

• there are relatively few right-hand sides b to solve for in each EIT iteration.

These two observations suggest that a fast solver technique such as the one pre-
sented in Chapter 4 could prove highly advantageous in the EIT setting. In this
section we leverage the special structure of the quadrature point-based Adaptive
Cross Approximation (ACA) to derive an efficient EIT algorithm in which a mini-
mal processing effort is needed per EIT update, thus allowing for fast conductivity
estimation.

Using similar notation as introduced in Section 4.5, assume that an operator
matrix Z (Z ∈

{︂
D∗

ss,D∗
sv,Svs,Svv

}︂
) of the system matrix A has been compressed

into
Z = Znear + ΘLΞLKΞT

RΘT
R . (5.34)

The R (right) and L (left) subscripts stem from the fact that testing and source
domains are not always the same. The point to cell transformation matrices are
slightly modified to include testing and source conductivity-dependent scalings αL

and αR:

(ΞL)ij =
⎧⎨⎩αLacj

wjfi(rj) if rj belongs to ci

0 otherwise .
(5.35)

(ΞR)ij =
⎧⎨⎩αRacj

wjfi(rj) if rj belongs to ci

0 otherwise .
(5.36)

The specific scaling values for each operator matrix are synthesized in Table 5.1.
The remaining Gram matrices, as well as S and Znear are not problematic since
they contain only O(NDoF ) elements. With this representation, differentiating Z
with respect to σj for the computation of J yields

∂Z
∂σj

= ∂

∂σj

(Znear + Zfar)

= ∂Znear

∂σj

+ ΘL
∂ΞL

∂σj

KΞT
RΘT

R + ΘLΞLK∂ΞT
R

∂σj

ΘT
R , (5.37)
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Algorithm 3: EIT inverse algorithm
Input : measurement vector v(m), initial guess σinit, error tolerance ϵ,

minimum step α, maximum iterations nmax

Output: conductivity distribution σ
compress operator matrix kernels with Algorithm 2;
compute material-independent (unscaled) matrices and right-hand sides;
σ ← σinit ;
for n← 1 to nmax do

update sparse scaling matrices;
x← A−1b;
ρ← Sx− v(m);
compute J via (5.22);
∆σ ← −(JT J)−1JTρ;
if ∆σ ≤ α or ∥ρ∥2 ≤ ϵ then

break;
end
σ ← σ + ∆σ;

end

which highlights the fact that the same compressed kernel matrix K is necessary
for a matrix-vector multiplication independently of the conductivity distribution σ.
This appears logical considering that the non-separable part of the system matrix
stems from the Green’s function. This function depends only on relative distances
as opposed to the material which is a local information, individually embedded
within each element. Therefore, one needs to perform the matrix compression only
once as a preprocessing step, and the EIT updates require the rescaling of some
sparse transformation matrices only, which is quite inexpensive. Summarizing, the
complete inverse EIT procedure is given in Algorithm 3. The inverse of the system
matrix A, required to compute x and J, is never explicitly computed and the
solution is instead obtained with a Krylov subspace method such as the Generalized
Minimal Residual (GMRES) method [104].

Table 5.1: Conductivity scalings of the transformation matrices for each operator
of the EIT formulation.

Scaling D∗
ss D∗

sv Svs Svv

αL σk − σl σk − σl 1 1
αR 1 χ/σs 1 χ/σs

103



A New Framework for Tissue Conductivity Estimation

20

41.6

0

Potential [mV]

-14.5

Extraction
electrode

Injection
electrode

Figure 5.1: Electric potential on the surface of a 3-layer spherical geometry.

The convergence of iterative Gauss-Newton methods such as the proposed in-
verse EIT algorithm depends on the initialization of the vector σinit. Inappropriate
initialization may result in low convergence speed or convergence to a wrong local
minimum. Given that the head tissue conductivities are approximately known [73],
empirical experiments have shown that it is best to initialize the conductivity with
values slightly lower than those referenced in literature [43].

5.5 Numerical Results
We validate the proposed EIT algorithm through several numerical simulations

involving both spherical and realistic head geometries. First, a forward head model
with ground truth conductivity values is generated. This reference model is used
to simulate EIT measurements on a set of scalp electrodes. The ground truth
conductivity of the skull is then assumed to be unknown and we run the EIT
algorithm to estimate it starting from different initial conductivity guesses.
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Figure 5.2: Convergence of the EIT algorithm for different initial conductivities.

5.5.1 Spherical Head Model
Similar to the numerical example of Section 3.7.1, the geometry is a canonical

3-layer spherical head model with normalized radii of 0.87, 0.92 and 1, and ground
truth conductivities 0.33, 0.01 and 0.43 S/m, respectively. These compartments
represent homogeneous brain, skull and scalp and the skull conductivity is assumed
to be unknown. The discretized spheres result in a matrix system of 3218 unknowns.
A set of 80 electrodes, which approximately samples the upper half surface of the
external layer, is used in the EIT experiment. A current of normalized amplitude
is injected on two electrodes which are approximately located on opposite sides of
the sphere, as illustrated in Figure 5.1, while the reference electrode is placed on
the top. This yields a synthetic EIT measurement vector vm of size 77 that will be
used as input for the EIT reconstruction algorithm.

Starting from different initial skull conductivity guesses, we run the EIT algo-
rithm and the conductivity updates are displayed in Figure 5.2. Clearly, as long as
the starting conductivity guess is not excessively higher than the actual value, the
EIT algorithm converges within 4 iterations to the ground truth value. However,
initializing the algorithm with a guess that is too high (e.g. σ0 = 0.03 S/m, not
displayed in the figure) results in a non-physical negative conductivity in the second
iteration and therefore does not converge since the EIT forward problem cannot
be solved anymore. This was also observed in [43] and confirms that it is better to
set an initial guess that is on the lower end of the expected conductivity, as even a
value that is a hundred times lower safely converges to the ground truth.
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Table 5.2: Convergence and timing of the EIT inverse algorithm in an inhomoge-
neous MRI-derived head model.

Setup Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5
Cumulative timing (s) 401 410 420 429 438 448

Relative error (%) - 30.88 15.87 5.45 1.07 0.15
σsoft (S/m) - 0.005 0.030 0.071 0.096 0.104
σhard (S/m) - 0.0005 0.0029 0.0068 0.0094 0.010

5.5.2 Realistic Head Model
We also tested the proposed EIT on a realistic head model obtained from MRI

data. More specifically, we used the head model of Section 4.7.2 with 3 surfaces
representing brain, skull, and scalp compartments. The skull is assumed inhomo-
geneous and thus its volume is discretized with tetrahedra. The thickness fraction
of soft bone follows a linear function of the local skull thickness, and the conduc-
tivity in each tetrahedron is a function of soft and hard bone conductivities σsoft

and σhard, following (3.10). Therefore, in this setting, the inverse problem has two
parameters. The discretized surface-volume system contains 33 278 unknowns. A
ground truth EIT datasewt is generated with σsoft = 0.01 S/m and σhard = 0.001
S/m, giving a synthetic data vector of size 73 electrode measurements. The scalp
potential resulting from an EIT injection pair is illustrated in Figure 5.3.

The inhomogeneous skull conductivity is then assumed unknown and estimated
with the EIT procedure from the EIT measurements. The starting values for σsoft

and σhard are 20 times lower than the actual values. The results are reported in
Table 5.2.

The initial setup corresponds to mesh preprocessing, octree and block cluster
tree building, and matrix filling which includes the compression of the far field
blocks and the computation of the near field blocks. Following Algorithm 3, during
each EIT iteration the sparse transformation matrices are updated and the forward
system matrix is solved to get the new conductivity guess. The EIT procedure
converges with less than 1% relative error to the ground truth values in 5 iterations.
The performance of the fast solver acceleration becomes apparent in this numerical
experiment. After the initial setup, the cumulative time for the 5 EIT iterations is
less than a minute. Without a fast solver that factors the variable conductivity out
of the compression, every single iteration would require nearly the full setup time,
resulting in a much more time consuming EIT pipeline.
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5.5 – Numerical Results

Figure 5.3: Electric potential on the surface of an MRI-derived head model and
resulting from a current injection pair.
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5.6 Conclusion
A new integral equation-based inverse technique was developed for the esti-

mation of the head tissue conductivity in both homogeneous and inhomogeneous
settings. This was achieved by adapting the derived hybrid integral equations to
EIT scenarios. Synthetic examples showed that the optimization algorithm had
good convergence and that the time consuming iterative process is significantly
sped up with the use of a dedicated fast solver. The robustness of the pipeline un-
der more challenging conditions (noisy measurements) and the integration of other
priors will be the subject of further study.
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Chapter 6

Conclusion and Perspectives

This thesis concludes several years of research in computational electromag-
netics, with a focus in integral equation formulations for bioelectromagnetic brain
modeling. The main axes were on one hand, the development of a formulation that
enables the accurate representation of different head tissue inhomogeneities and
anisotropies, and on the other hand, the development of a fast solver technique to
improve both time and memory complexity of brain formulations. These advances
are notably investigated for the inverse problem of conductivity imaging. More
generally, this work should prove beneficial in clinical and research applications by
enabling the practical use of more realistic and detailed models.

The work done during this thesis also paves the way for future research including:

• The study of a fully symmetric anisotropy-handling brain formulation. A
symmetric system matrix has useful properties, e.g. only the upper triangular
part needs to be stored, which could reduce the computation and solution
time. The proposed hybrid method is asymmetric in the surface block (an
adjoint double-layer operator) and in the volume and wire blocks since the
contrast is not included in the testing functions.

• A conditioning analysis of the hybrid formulation. The proposed strategy
introduces new discretized volume and wire operator matrices, with possibly
different asymptotic behaviors (in high contrast or mesh refinement) than the
standard surface operators. If such a case arises, the use of an appropriate
preconditioner in the hybrid formulation would ensure that the system matrix
remains well conditioned.

• The application of the presented techniques to other scenarios. Applications
such as inverse source imaging for epilepsy planning, brain computer inter-
faces, and transcranial electric and magnetic stimulation all rely on the solu-
tion of a forward problem that could benefit from the proposed strategies.
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• The extension of the ACA-based fast solver to H2 matrices. This would be
achieved with the use of hierarchical bases, in which columns (or rows) in
low level blocks are expressed as a linear combination of columns (or rows)
in higher level blocks. This would remove the logN factor in the asymptotic
complexity of the fast solver, thereby achieving a true linear complexity.

• The error analysis of the fast solver. Compressing the kernel function sampled
on quadrature points introduces constraints on the accuracy of the integrals
at the level of the basis function interactions. Therefore, we should ensure
that the compression error remains controlled.

• The analysis of other optimization algorithms for inverse problems. For in-
stance, conductivity imaging could be recast in the framework of Contrast
Source Imaging (CSI) in which material inhomogeneity is also handled via
a contrast function. An improved optimization could be achieved with the
addition of the state equation error or suitable priors in the cost function.
The inclusion of multimodal data such as combined MEG/EEG data could
also positively impact the inverse procedure.
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Acronyms

ACA Adaptive Cross Approximation

BCI Brain Computer Interface

BEM Boundary Element Method

CGS Conjugate Gradient Square

CT Computed Tomography

dMRI Diffusion Magnetic Resonance Imaging

DTI Diffusion Tensor Imaging

EEG Electroencephalography

EIT Electrical Impedance Tomography

FDM Finite Difference Method

FEM Finite Element Method

FMM Fast Multipole Method

GMRES Generalized Minimal Residual

MEG Magnetoencephalography

MRI Magnetic Resonance Imaging

SVD Singular Value Decomposition

SWG Schaubert-Wilton-Glisson

Physical and Mathematical Notation

E Electric field (V/m)
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H Magnetic field (A/m)

D Electric flux density (C/m2)

B Magnetic flux density (Wb/m2)

J Electric current density (A/m2)

Jp Primary electric current density (A/m2)

ϕ Electric potential (V)

σ Conductivity (S/m)

ϵ Electric permittivity (F/m)

µ Magnetic permeability (H/m)

ρ Electric charge density (C/m3)

q Dipole moment (C.m)

n̂ Unit normal

χ Conductivity contrast

G Green’s function

δ Dirac delta function
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⟨a, b⟩ Inner product of a and b
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